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DYNAMIC PROPERTIES OF A
CONDENSED VERSION OF THE
WHARTON MODEL
E. PHILIP HOWREY • University of Pennsylvania

1 INTRODUCTION

THE modern econometric model-building approach to the analysis of
business-cycle phenomena is based, at least in part, on the Wicksell-
Slutsky-Frisch-Kalecki hypothesis that business cycles can be
adequately rationalized as the response of a stable dynamic system to
random disturbances. According to this explanation of economic
fluctuations, the lag structure incorporated into the econometric model
provides the mechanism by which the disturbances are averaged to
produce cyclical oscillations. The disturbances provide the energy
essential in keeping the system from settling down to a steady-state
equilibrium path. Although this view of economic fluctuations has not
gone unchallenged, it remains a conceptually important element in the
theory of business cycles.

Until recently, however, the extent to which the econometric
models constructed over the past several decades are consistent with
this theory of business cycles has not been rigorously considered.
Moreover, the studies that have been concerned with this problem
have, for the most part, relied on simulation techniques to generate
experimental series that are then compared with observed series. In
this paper, an analytical technique based on the spectral representation
of a stochastic process is used to determine if one of these models, a
condensed version of the Wharton Model, exhibits cyclical properties
similar to those observed in aggregate economic time series.

In the next section, spectrum estimates based on series of postwar
quarterly observations on several important macroeconomic variables
are introduced to indicate the nature of business-cycle variations in
these series. In Section 3, the spectrum-analytic approach to the
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602 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

determination of the dynamic properties of a linear econometric model
is considered. A modified version of the Wharton Model, introduced in
Section 4, is then analyzed, using the spectrum-analytic approach. The
real-sector results are summarized in Section 5, and the complete
system is examined in Section 6. The main results of the analysis are
summarized in the concluding section.

2 THE NATURE OF BUSINESS CYCLES

A PRELIMINARY question that needs to be considered in connection
with the use of spectrum-analytic techniques to study business-cycle
phenomena is the extent to which business cycles manifest themselves
in estimates of the power spectra of various aggregate economic time
series. The presumption of business-cycle analysts is that economic
variables exhibit sufficiently large and regular fluctuations to motivate
a detailed study of this particular component. However, if spectrum
estimates indicate that detrended economic variables are not serially
correlated or, as Granger [8] suggests, that power decreases smoothly
with frequency, then the spectrum estimates would not provide a mean-
ingful basis for the isolation of business-cycle variations for special
investigation. Several series are analyzed here in an attempt to shed
some light on this issue and to provide a basis for comparison with the
dynamic properties of the Wharton Model derived subsequently.

The spectrum densities of several of the endogenous variables in
the Wharton Model have been estimated using quarterly observations
for the period 1951-65. These variables include purchases of consumer
durables, purchases of consumer nondurables, purchases of consumer
services, investment in plant and equipment, nonfarm residential con-
struction, inventory investment, and gross national product less govern-
ment expenditure.1 All variables are expressed in terms of constant
(1958) dollars. Since these series are dominated by trends over the
sample period, quarterly changes and deviations from a linear trend

reason for excluding government expenditure from gross national product is
that government expenditure is an exogenous variable in the Wharton Model, whereas
gross national product kss government expenditure is endogenous to the system.
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estimated by ordinary least squares were analyzed. This choice of
detrending procedures is to a certain extent arbitrary. Indeed, relative
rates of change or deviations from an exponential trend might be
equally appropriate for this analysis. But given the relatively short
sample period under investigation here, the differences between the
arithmetic and logarithmic detrending methods is not very great. More-
over, the variance of the relative rate-of-change series tends to de-
crease over the sample period, especially after the 1960—61 recession.
This phenomenon is particularly apparent in the analysis of growth
rates based on data beyond the 1951—65 sample period employed in
this study. This apparent nonstationariness militates against the use of
the logarithmic forms of detrending.

The spectrum estimates obtained from the quarterly changes in
the consumption and investment series are shown in Charts 2.1—2.6,
and the estimates for the deviations from a linear trend are shown in
Charts 2.7—2.12. The three curves plotted on a logarithmic scale
correspond to the estimates obtained using a Parzen window, with the
truncation points 10, 20, and 4Ø•2 These estimates of the spectrum
density have been normalized so that the expected value of the esti-
mate is 0.5 for a sequence of uncorrelated random variables. The esti-
mates range from zero to one-half of a cycle per quarter in steps of 1/200
of a cycle per quarter. The band of frequencies corresponding to the
40-month business cycle is centered on 15/200 of a cycle per quarter (i.e.,

quarters per cycle X 3 months per quarter =40 months per cycle).
For ease of interpretation, two vertical lines corresponding to the

5-year and 2.5-year frequencies of oscillation are drawn on these
2The estimation procedure that was used is described in Parzen [17]. The form of the

spectrum-estimator employed here is

s(w) = 0.5
s=-m

cos ws

where ji(s) is an estimate of the autocorrelation function of the process defined by
n—IsI n -

b(s) = x(t + x(t)2

where x(t)(t = 1, 2,. . . , n) is the sample sequence with its sample mean removed. The
lag window, A(s), is defined by

1' — 6s2(1 — jsI/m)/m2 0 Isi m/2
X(s)12(l—IsI)/m3
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CHART 2.2
Consumer Nondurables, Quarterly Changes
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CHART 2.3
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CHART 2.4
Plant and Equipment investment
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CHART 2.5
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CHART 2.6
Inventory Investment
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CHART 2.7
Consumer Durables, Linear Detrend
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CHART 2.8
Consumer Nondurables, Linear Detrend
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CHART 2.10
Plant and Equipment Investment, Linear Detrend
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CHART 2.12
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diagrams. If the spectrum estimate exhibits a relative peak in this band
of frequencies, this indicates that there is an important business-cycle
component in the original series. The absence of a concentration of
power in the band of frequencies corresponding to the business cycle
means that the spectrum estimates do not provide a meaningful basis
for the isolation and analysis of business-cycle variation in the original
series. An examination of the spectrum estimates of the first-differenced
series indicates that relative peaks emerge in the range of frequencies
corresponding to 23 to 55 months per cycle. The rather pronounced
peaks in the spectra of the investment series occur in the low-frequency
end of this range (38—55 months per cycle), while the weaker peaks
in the consumption series appear at higher frequencies. These relative
concentrations of power, particularly in the residential construction
and inventory investment series, indicate that there is a tendency for
these series to oscillate with some degree of regularity.

Turning to the deviations from a linear trend, the spectrum esti-
mates shown in Charts 2.7—2.12 indicate that, except at the very low
and very high frequencies, the power decreases monotonically with
frequency.3 The two exceptions to this general pattern are residential

3The rather striking disparity between the first-differenced and linear-detrended con-
sumption series may appear to be surprising, since the two transformations are often
viewed as two ways to eliminate a trend from the data. However, the two transformations
are expected to yield substantially different results. Consider, for example, the two series

= —

where is the differenced series and is the linear detrended series. It is clear that
= Th — Th—i + b

From this relationship, it follows that the power spectra of the two processes are
related by

= 2(1 — cos

This shows that if the deviations from trend, are serially uncorrelated so that
is constant, the spectrum of the first differences will increase monotonically with fre-
quency. Conversely, if the first differences are uncorrelated, the deviations from trend
are generated by a nonstationary process with a (pseudo-) spectrum that decreases
monotonically with frequency. It will be noted that the spectrum estimates for the con-
sumption series are consistent with these relationships. The reason for including the
spectrum estimates of both the first-differenced and linear-detrended series is that it was
not clear at the outset which of the two detrending procedures was particularly appro-
priate. In retrospect, the first-difference transformation appears to provide more inter-
esting results from the point of view of business-cycle analysis.
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construction and inventory investment, which both exhibit relative
peaks at a frequency corresponding to a 50-month cycle. For these two
investment series, the deviations from a linear trend, as well as the
quarterly changes, tend to exhibit fairly regular business-cycle oscilla-
tions, judging from the spectrum estimates.

The Spectrum estimates for the gross national product series are
shown in Charts 2.13—2.16. The spectrum estimates of the first-
differenced series shown in Chart 2.13 indicate that there are relative
concentrations of power around 15.4 and 8.7 quarters per cycle. This
is not surprising in view of the fact that GNP less government expendi-
ture does not differ substantially from the sum of the consumption and
investment series analyzed above. The spectrum estimates of the
linear detrended GNP series shown in Chart 2.15 indicate a relative
concentration of power around the frequency corresponding to a 50-
month cycle. This again is not surprising in view of the fact that the
detrended residential construction and inventory investment series
exhibit concentrations of power around this same frequency. The low-
frequency portions of the spectrum estimates of the two GNP series
are shown on an expanded scale in Charts 2.14 and 2.16. In these two
diagrams, the frequency axis ranges from zero to one-eighth of a cycle
per quarter, so that these diagrams correspond to an enlargement of the
first quarter of the diagrams to the left of them. These are included here
to emphasize the fact that the business-cycle variation found in the
components of gross national product, particularly in the investment
series, is not transmitted to the aggregate in unattenuated form. Indeed,
the aggregate exhibits much less cyclical variation than might be ex-
pected.

These estimates indicate, from a descriptive point of view, the
reality of three- to five-year business cycles, particularly in the invest-
ment series. However, the statistical significance of these oscillations
remains to be considered. The rather limited number of observations
available creates several problems'in connection with the construction
of significance tests for spectrum estimates. Nevertheless, it may be
useful to consider an approximate test of the significance of the vari-
ability that does emerge in the spectrum estimates.

Two tests of significance immediately suggest themselves. The
first test is concerned with the null hypothesis that the spectrum esti-
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CHART 2.14
Gross National Product, Quarterly Changes
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CHART 2.15
Gross National Product, Linear Detrend
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CHART 2.16
Gross National Product, Linear Detrend
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mates are not significantly different from a constant; i.e., the underlying
series are serially uncorrelated. On the assumption that the series are
normally distributed, the spectrum estimates are proportional to a
Chi-square variate.4 A 100(1 — 2a) per cent confidence interval for
independent, normally distributed random variables can be determined
from

Pr {X2i-aV)

where for the Parzen window 1= 4n/m where n denotes the number of
observations and m is the truncation point of the estimate. The upper
bounds of the confidence band for the spectrum estimates shown in
Charts 2.1—2.16 are as follows:

m=10 rn=20 m=40
a = 0.05 0.76 0.88 1.05
a = 0.025 0.82 0.97 1.20

Provided an estimate exceeds the appropriate value in this table, the
null hypothesis is rejected. An examination of the spectrum estimates
shown in Charts 2.1—2.14 indicates that the only series for which the
null hypothesis is not rejected at the 95 per cent level are the first
differences of purchases of consumer durables and the first differences
of consumer nondurables purchases. In all other cases, the spectrum
densities deviate significantly from the estimates that would be ex-
pected if the series were serially uncorrelated.

A second and more important test within the context of business-
cycle analysis is concerned with the significance of the relative peaks
that emerge in the estimates of the spectrum densities. A convincing
test of the significance of the peaks that emerge in the band of fre-
quencies corresponding to the business cycle is particularly difficult
to construct with the short series that are analyzed here.5 The reason
for this is that in order to resolve a peak in the spectrum, three in-
dependent estimates of the spectrum are needed: one estimate centered
on the peak and one on either side of the peak. Since the bandwidth
of the Parzen estimate is approximately 1/rn, where m is the truncation

a derivation of the Chi-square approximation, see Jenkins {15J.
5 following discussion is based on Hatanaka and Howrey [11], to which the reader

is referred for a more detailed account.
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point of the estimate (i.e., an estimate centered onfis an average of the
true spectrum over the interval f± 1/rn), it follows that estimates
centered on frequency points separated by at least 2/rn are independent.6
1ff1, f2, and f3 denote the center frequencies of three estimates of the
spectrum where 0 f1 <f2 <f3 it follows that these three
estimates will be independent if, and only if, the following inequalities
are satisfied:

f1+ 1/rn 1/rn

f2+ 1/rn sf3— I/rn
With f2 = 1/14 of a cycle per quarter, which corresponds to a 42-month
cycle, it follows from the first of these inequalities that a truncation
point m 28 is required in order for the estimate centered onf1 = 0

to be independent of the estimate centered onf2 1/14.

Even this degree of resolution is not completely satisfactory, how-
ever, because the estimate centered on zero is subject to a downward
bias.7 This downward bias will tend to inflate the ratio of the peak
estimate to the estimate centered on zero and will therefore distort the
significance test. In order to circumvent this problem, at least partially,
the estimate centered onf1 should be independent of the zero frequency.
This requires that the additional inequality

be satisfied. With f2 = 1/14, a truncation point m 42 is required in
order for the estimate centered on f2 to be independent of the estimate
centered on = '/42cpq, which is, in turn, independent of the power
at the origin.

These considerations suggest that a rough indication of the signifi-
cance of the business-cycle peaks that emerge in estimates obtained
with a truncation point m = 40 can be obtained by comparing the peak
estimate centered on f2 with the estimates centered on f2 ± 1/20. The
ratios of these spectrum estimates will have an F-distribution, provided
the original process is normal. The critical value at the 95 per cent
level for the F-distribution with 4n/m = 6 degrees of freedom in both

6This definition of the bandwidth of the spectrum estimate is due to Jenkins [15].
For a discussion of this bias, see Hannan [10] and Hatanaka and Howrey [11].
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the numerator and the denominator is 4.28. Provided the ratios exceed
this value, the peaks will be considered significant.

An application of this test to the spectrum estimates shown in
Charts 2.1—2.14 indicates that the only significant. peak, according to
this criterion, is the one that appears in the residential-construction
series. However, this peak emerges in the vicinity of 16.7 to 18.2
quarters per cycle, so that the estimate centered on the comparison
frequency of 100 to 200 quarters per cycle is biased downward. There-
fore, this evidence of a significant business-cycle component may be
somewhat biased.

Since the relative peaks that do emerge in the estimates of the
power spectra of these relatively short series are not statistically sig-
nificant according to the usual significance tests, these relative maxima
do not provide strong evidence of the reality of business-cycle phe-
nomena. Indeed, the purist might argue that these results confirm
Granger's contention [8] that spectrum analysis indicates that economic
time series do not exhibit any cQmplicated dynamic patterns of statis-
tical significance. However, several studies of considerably longer eco-
nomic time series indicate more strikingly the relative importance of
business-cycle variation. For example, the estimates obtained by
Adelman [1] in connection with a study of the long-swing hypothesis
indicate concentrations of power around the business-cycle frequency
band. The relative contribution of major and minor cycles to variations
of the rate of growth of various economic variables is even more ap-
parent in the estimates described by Howrey [12]. These studies of the
long-term development of the United States economy, together with
the results described here, provide fairly clear motivation for the study
of business-cycle phenomena. Therefore, it seems reasonable to use
these spectrum estimates as bench marks for comparison with the
spectra implied by the Wharton Model.

3 DYNAMIC PROPERTIES OF ECONOMETRIC MODELS

ONCE the parameters of an econometric model have been estimated,
the dynamic properties of the resulting system of equations are often
of considerable interest. These dynamic properties are frequently
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inferred from the deterministic system obtained by suppressing the
disturbance terms from the model. However, Frisch [6] and Kalecki
[16], among others, have argued that the disturbance terms are essential
elements in the theory of business fluctuations. Moreover, Haavelmo
[9], Fisher [5], and others have shown that the solutions obtained
when the disturbance terms are neglected may show widely different
patterns from the solution sequences that include the disturbances.
Realism demands that econometric models be regarded as stochastic
rather than deterministic systems to reflect the randomness of the be-
havior of the decision-makers which the model purports to describe.

Implicit in this tFieory of macrodynamics is the assumption that
observed series are generated by a stochastic process which can be
written in implicit functional form as

(3.1) G[3'(t), i(t), = 0

In this system, G[•] is a vector of functions with vector-valued argu-
ments = [y(t), y(t — 1), . . .] where y(t) is a vector of endogenous
variables at time t, = [x(t), x(t — 1), . . .] where x(t) is a vector of
exogenous variables, and = [€(t), E(t — 1), . . •1 where E(t) is a
vector of random variables. This system can be written in the usual
form of a linear econometric model as

(3.2) By(t) + Fz(t) = €(t) + i1(t)

where B and I' are coefficient matrices and z(t) is a vector which in-
cludes both the exogenous and the lagged endogenous variables. The
important point to note here is that even if the model were correctly
specified, in which case would be identically zero, the disturbance
vector €(t) would still impart a random element to the vector of
enous variables.

In order to determine the dynamic properties of the system (3.2),
it is convenient to rewrite the system as

(3.3) B(L)y(t) = C(L)x(t) + u(t)

where B(L) and C(L) are matrices of polynomials in the lag operator
L, and u(t) = €(t) + is the vector of the sum of the two sources of
error. Provided this system is stable, i.e., the roots of the determinantal
polynomial IB(X)I = 0 lie outside the unit circle, the solution for y(t)
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will converge to

(3.4) y(t) = B(L)'C(L)x(t) + B(L)'u(t)
where B(L)1 is the inverse of the matrix of linear operators B(L). It
is clear from this solution of the system that the variability observed in
the vector of endogenous variables is the result of variations in the
exogenous variables and variations in the disturbance series. If the
econometric model is consistent with the notion that business cycles
are generated in response to random shocks administered to the system,
then the second term in the solution should exhibit a cyclical response
path.

The response of the system to the disturbance process can be
conveniently described in terms of the spectral representation of the
stochastic process B(L)1u(t). For purposes of estimation of the
parameters of the system (3.3), it is generally assumed that u(t) is
generated by a covariance stationary stochastic process. If this condi-
tion is satisfied, then u(t) possesses the spectral representation8

(3.5) u(t) = f
where

(3.6) U(oi) =
IT

The spectral representation of the stochastic response of the system,
denoted by 9(t), is obtained by substituting (3.5) into (3.4):

(3.7) 9(t).= f
An interchange of the order of the operations in (3.7) yields

(3.8) 9(1) = f
where T(w) = This shows that the spectral representation of
9(t) is

(3.9) = T(w)dU(o)
8 For a detailed discussion of spectral representations, the reader is referred to

Yaglom [21].
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Finally, the spectrum matrix of the endogenous variables of the sys-
tem is given by

(3.10) E[d)?'(w)d)?*(o,)]

= T(&))fUu(w)T*((ij)

In this final expression, denotes the spectrum matrix of the dis-
turbance process (= E[dU(o4dU*(w)]), T* denotes the conjugate
transpose of T, and E is the expectation operator.9

Up to this point it has been assumed that the system is stable. If
this condition is not satisfied, the vector of endogenous variables does
not converge to the expression given in (3.4) but rather is given by
(3.11) y(t) = P(t) + B(L)1C(L)x(t) + B(L)'1u(t)

where P(t) is a vector of functions of the form

(3.12) = + k32)4 +. . . +

where the are the characteristic roots of the system of equations and
the are constants determined by the initial conditions.'° The ex-
istence of roots greater than unity in absolute value thus imparts a trend
(if X2> 1) or an explosive oscillation (if lxii> 1 and X, is complex-
valued) to the endogenous variables in the system. In this case, the
spectrum matrix given in (3.10) still provides a useful description of
the process as Chow and Levitan [4] and Quenouille [18] have shown.

For an analysis of the dynamic properties of the system, the power
spectra given by the main diagonal elements of the spectrum matrix
are particularly relevant. These power spectra characterize the re-
sponse of the endogenous variables of the system to the disturbance
process. Provided these power spectra exhibit relative concentrations
of power at the frequencies corresponding to the business cycle, the
model is consistent with the impulse-response theory of cyclical fluc-

For an alternative derivation of the spectrum matrix in terms of the characteristic
roots of the system, see Chow [2].

10 For purposes of exposition, it is assumed that none of the roots are repeated. If there
were repeated roots, one or more of the in equation (3.12) would be polynomials in I.
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tuations. It should be emphasized that the absence of a relative con-
centration of power in the business-cycle frequency band of the spec-
tra of the stochastic response does not imply that the system will not
exhibit cyclical fluctuations. But if the model is correct, the absence of
business-cycle power in the spectrum means that whatever business-
cycle oscillations are observed in the endogenous variables are due not
to the internal dynamics of the system but rather to corresponding
oscillations in the exogenous variables or the disturbance process. In
this case, the lag structure of the model by itself is simply not suf-
ficiently complicated to explain the existence of business-cycle vari-
ations in the data."

4 A CONDENSED VERSION OF THE WHARTON MODEL

THE macroeconometric model that is analyzed here is a forty-five
equation version of the Wharton Econometric Forecasting Unit Model.
The parameters of the model were estimated using two-stage least-
squares techniques on quarterly data spanning the period 1948—65.
For a detailed discussion of the specification and estimation of this sys-
tem, the reader is referred to Rahman [19, Chapter 3]. For purposes of
analysis, the nonlinear equations were• linearized using the technique
described by Goldberger [7]. The linear approximation that was used
in the following analysis is given immediately below each of the original
nonlinear equations in the system. An asterisk denotes an exogenous
variable.

I. CONSUMPTION

(4.1) Cd = 42.0689 + 0.1381 V — 4 1.7527Pd/Pc - 0.0630Kd_1

— 0.3037Un + 1.4236Cr* — 2.2453Ds* — 0.70 l7Cd_1

It should be emphasized that the spectrum matrix implied by a dynamic econometric
model is used here exclusively for the purpose of describing the dynamic properties of
the stochastic system. The use of the spectrum matrix implied by a system of equations
to validate a model is considered in Howrey and Ketejian [14].
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(4.la) Cd = 0. 1381Y — 0.0630kd_1 — 0.3037Un — 0.7017Cd_1

— 41.7527Pd+ 41.7527Pc

(4.2) Cn= 14.4115 +0.2056Y+0.1093

(4.3) Cs = —3.4493 + 0.0568Y.+ 0.2225 Cs_,

Cd Purchases of consumer durables
Y Personal disposable income

Pd Implicit price deflator for consumer durables
Pc Implicit price deflator for consumption
Kd Stock of consumer durables
Un Unemployment in per cent
Cr Dummy variable for consumer credit conditions
Ds Dummy variable for shortages in supply of automobiles
Cn Purchases of consumer nondurables
Cs Purchases of consumer services

11. INVESTMENT

(4.4) Ip = 0.2856 — 3.6972iL_1 — 0.0133Kp_1

+ 0. + 0.004

(4.5) Ih = —45.0367 + 0.0450Y +

+ 1.8152(iL — iS*)_3 + 0.2745 MRGE*_I

(4.Sa) Ih = 0.0450Y — 38.6202Ph_3 + 1.8 152iL_3

(4.6) iXli = —55.1446 + — 0.19921i_2

± +

Ip Private investment in plant and equipment
iL Average yield (per cent) on corporate bonds
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Kp Stock of investment in plant and equipment
GNP in the private sector

Ih Private investment in nonfarm housing
Y Personal disposable income

Pr Price index for rent
Ph Implicit price deflator for residential structures
iS Average yield (per cent) on 4- to 6-month commercial

paper
MRGE Marriage rate per thousand population

Ii Stock of business inventories
Sales in the private sector

U Unfilled orders in manufacturing
STR Dummy variable for steel strikes

III. FOREIGN TRADE

(4.7) Fl —4.4693 + 0.0683Y + 0.0650iX1i — 2.393 lPi*/P

+ 0.0681 Fi_,

(4.7a) Fi = 0.0683Y + + 2.393 1P

Fi_,

(4.8) Fe = —16.9099 + 12.7990Xwt* + 15.8086Pwt*/Pe

+ 0.1225 Fe_,

(4.8a) Fe15.8086Pe±0.1225

Fi Imports
Y Personal disposable income
Ii Stock of business inventories

Pi Implicit price deflator for imports
P Implicit price deflator for GNP

Fe Exports
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Xwt Index of world trade
Pwt Price index of world trade
Pe Implicit price deflator for exports

IV. PRODUCTION AND CAPACITY

(4.9) in (Xv) = 2.3745 + 0.655 1 in (N X h)

+ 0.1479 In (Kp x Cp) + 0.0048t

(4.9a) = 0.0109N + 0.6551h + 0.000l4Kp + 1.0482Cp
(4.10)

in (X9)C = 2.3745 + 0.6551 In + 0.1479 in (Kp) + 0.0048t

(4.lOa) 0.00 = 0.0109N + 0.6551Un + 0.000l4Kp

GNP in the private sector
(XP)C Full capacity private GNP

N Number of employees in the private sector
h Index of average weekly hours

Kp Stock of investment in plants and equipment
(Np' Full employment private-sector labor force [=(1 + UN)N]
Cp Wharton School index of capacity utilization
Un Unemployment rate

V. HOURS AND WAGES

(4.11) h = 0.0182 + O.0002X" + + O.1995Cp

(4.12) (w — w_4)/w_4 = 0.039 1 — 0.007 Un_,

+0.3041(w_1 — w_5)/w_5

+ 0.33 15(Pc — Pc_4)fPc_4

(4. 12a) w = 0.3041w_1 + 1.0245w_4 — 0.3041w_5

— 0.0048 + 2.0454Pc — 2.0454Pc_1



632 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

h Index of average weekly hours
Private sector GNP

Cp Wharton School index of capacity utilization
w Wage rate in the private sector

Un Unemployment (per cent)
Pc Implicit price deflator for consumption

VI. TAX EQUATIONS

(4.13) Tb = —3.45.5 + 0.0752N1 + 0.386 it

(4.14) Tr = 3.8250 + 0.9004Un + 0.44181

(4.15) Tp = —14.910 + 0.155(P1 + — Tr)

(4.16) Tc = 4.2 136 + 0.3589(Pcb — Iva)

Tb Indirect business taxes and business transfer payments
NI National income
Tr Transfer payments

Un Unemployment (per cent)
Tp Personal tax and nontax payments
P1 Personal income

SSI Personal contributions for social insurance
Tc Corporate profits tax

Pcb Corporate profits before taxes
Iva Inventory valuation adjustment

VII. PRICE AND INTEREST RATE EQUATIONS

(4.17)

4
(4.i7a)

(4.18) Pw = 0.2183 + 0.5.065P + 0.2916Cp

(4.19) Pd= 0.2836 + 0.201 1P + 0.5038Pw

(4.20) Pn = 0.23 13 + 0.4144P + 0.3565Pw
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(4.21) Ph = 0.0527 + 0.83 14P + 0.OO28Ip + 0.0021h

(4.22) Pk = —0.2467 + 1.3783P — O.00321p

(4.23) Pe = 0.0692 — 0.0672P + 1.0074Pw

(4.24) iS = 0.4411 + 0.9746id* — 7.7878Fr*

(4.25) iL = 0.2 175 + 0.O972iS + 0.8779iL_1

P Implicit price deflator for GNP
W Wage bill in the private sector

Private sector GNP
Cp Wharton School index of capacity utilization
Pw Wholesale price index
Pd Implicit price deflator for consumer durables
Pn Implicit price deflator for consumer nondurables
Ph Implicit price deflator for residential structures
Ip Private investment in plant and equipment
lh Private investment in nonfarm housing
Pk Implicit price deflator for nonresidential fixed business in-

vestment
Pe Implicit price deflator for exports
iS Average yield (per cent) on 4- to 6-month commercial paper
id Discount rate (per cent)

Fr Net free reserves as a fraction of total required reserves
IL Average yield (per cent) on corporate bonds

VIII. NONWAGE INCOME

4
(4.26) DIV= 0. 1491 + 0.0723(Pca + D) + 0.1566

4
(4.27) PR! = 0.8182 + x + 0.2527 PRI_,

(4.27a) PR! = + + 0.2527 PRJ_,

DIV Dividends
Pca Corporate profits after taxes

D Capital consumption allowances
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PR! Business and professional income plus rental income plus
personal interest income

P Implicit price deflator for GNP
Private sector GNP

IX. OTHER STOCHASTIC EQUATIONS

(4.28) IVA —0.3906 — 17.78

1

D = 0.0595Kp + 61.9990Pk

(4.30)

=—0.5260 + + O.649ThGd* + 4.2979Duw*

JVA Inventory valuation adjustment
Pw Wholesale price index
D Capital consumption allowances

Pk Implicit price deflator for nonresidential fixed business
investment

Kp Stock of investment in plant and equipment
U Unfilled orders in manufacturing

Private sector sales
Gd Government purchases for national defense

Duw Dummy variable for Korean War period

X. DEFINITIONS AND ACCOUNTING IDENTITIES

(4.31)

X — (wg*/Pg*)

(4.33) PX=PdCd+PnCn+PsCs+PkIp+Phlh
+ + Pe Fe — Fi + Pg* G*

(4.33a) 557.OP = 67.9Pd + 181.OPn + i54.4Ps + 63.3Pk
+ 23.lPh + 9.8Pw + 32.9Pe
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(4.34)

(4.35) Y=(Pl — Tp)/Pc

(4.35a) Y = IP Tp — 476.5Pc

(4.36) NJ=PX—Tb—D
(4.37) Pcb=NI—W— Wg*_PRJ_F*+lgc*
(4.38) W=wXNXh
(4.38a) W=60.lw+6.33N+380.4h
(4.39) Un = 100(NL* — N — Ng* — Nf — Ns*)/NL*

(4.39a) Un = —1.3137N

(4.40) = —

(4.41) Pc = (PdCd + PnCn ± PsCs)/(Cd + Cn + Cs)
(4.41a) Pc = O.1684Pd.+ 0.4488Pn + 0.3828Ps

(4.42) Kd
=

(0.924)tCd_,

(4.42a) Kd = 0.929Kd_1 + Cd

(4.43) Kp =

(4.43a) Kp = 0.953Kp_1 + Ip
(4.44) Cp =
(4.45) Pca = Pcb — Tc

X GNP
G Government purchases of goods and services

Wg Compensation of government employees
Pg Implicit price deflator for government purchases

igc Interest paid by government consumers
Soc Social Security contributions

F Unincorporated farm income
NL Civilian labor force
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Ng Number of government employees
Nf Number of farm operators
Ms Number of nonfarm self-employed persons

5 DYNAMIC PROPERTIES OF THE REAL SECTOR

IN VIEW of the complexity of this model, it may be useful to consider
first a model of the real sector obtained by holding prices constant. This
real-sector model indicates how the economy would be expected to be-
have if prices were not permitted to vary according to equations (4.17)
to (4.23) but, instead, were fixed. The characteristic roots of this linear
approximation to the real sector are shown in Table 5.1.12 The first
point that emerges from these calculations is that the linear approxi-
mation appears to be unstable, since the largest root is 1.0078; It is
interesting to note that this root implies an annual rate of growth of
some 3.2 per cent. However, in view of the sampling variability to
which the parameter estimates, and hence the characteristic roots,
are subject, it seems unlikely that the three largest real roots are
significantly different from one another. But these calculations do sug-
gest that the linear approximations are stochastically unstable in the
sense that the variance of the endogenous variables increases with
time. This is due, of course, to the accumulation of disturbance errors
implied by the unit roots of the system of equations.

The complex roots give rise to transient oscillations with fairly
short periods. The longest oscillation is a little more than eight quarters,
but the modulus of this component is so small that it cannot be
sidered very important. The remaining complex roots have periods of
less than five quarters. It appears, therefore, that the transient response
of this model does not exhibit twelve- to fifteen-quarter business-
cycle oscillations.

12 characteristic roots of the system were obtained through a two-step procedure.
The model was first converted to a first-order system of the form

where is the vector of current endogenous variables augmented by the lagged endog-
enous variables necessary to effect the first-order conversion. The characteristic roots
of the matrix E = were then computed. A standard computer program (Share No.
3006.01 by J. E. Van Ness) was used in the characteristic-root calculation.
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TABLE 5.1

Characteristic Roots of the Real Sector of the
Condensed Wharton Model

Real Part Imaginary Part Modulus Period

1.0078
1.0042
1.0000
0.9534
0.9379
0.8944
0.8779
0.8351
0.77 17
0.7372
0.6228
0.4922
0.2967
0.2020

—0.0000
—0.3373
—0.4588
—0.5204
—0.5251
—0.5504
—0.5883
—0.6083
—0.886 1
— 1.0047

0.0026 ±0.0026 0.0037 8.14
0.0710 ±0.1742 0.1882 5.31
0.0001 ±0.0001 0.0001 4.17
0.0017 ±1.0056 1.0056 4.00

—0.0000 ±0.0001 0.0001 4.00
—0.0499 ±0.4793 0.4819 3.75
—0.0679 ±0.6219 0.6255 3.74
—0.0606 ±0.553 1 0.5564 3.74
—0.0599 ±0.5450 0.5483 3.74
—0.0645 ±0.58 14 0.5850 3.74
—0.0026 ±0.0027 0.0037 2.68
—0.1338 ±0.0.988 0.1663 2.51
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The stochastic response of this model is similarly devoid of busi-
ness-cycle dynamics. The spectrum matrix of the endogenous variables
of the real-sector model was computed using equation (3.10), in-
troduced above. Since interest centers on how the system responds to
uncorrelated shocks, the spectrum matrix of the residual process was
obtained from

1(5.1)
uu

where is an estimate of the contemporaneous covanance matrix of
the disturbance vector u. The power spectrum of gross national prod-
uct implied by the real-sector model is shown in Chart 5.1.13 This
power spectrum, which is representative of the spectra of the consump-
tion and investment variables in the model, indicates that power de-
creases with frequency, except for the relative concentrations of power
at one-fourth and one-half of a cycle per quarter. The spectrum of
quarterly changes in GNP shown in Chart 5.2 increases with fre-
quency, which indicates that short-run variations in quarterly changes
in GNP are more important than long-run changes.'4 Once again there
is a relative concentration of power at one-fourth of a cycle per
quarter.

The rather unexpected behavior of the power spectra at the
frequencies corresponding to the annual and semi-annual variation in
GNP can be explained by an examination of the wage equation in the
model. Suppose that the four-quarter percentage changes in this wage
equation are replaced by four-quarter absolute changes in the wage
rate. This would yield a wage equation with the auto-regressive struc-
ture

(5.2) wg = wt_4 + — +

130n this and the following diagrams, the spectrum is evaluated at = 2irj/40(j = 1, 2,
20) unless otherwise indicated. The reason that the power at the frequency w = 0 is

not included is that, due to the fact that one of the roots of the determinantal equation
is unity, the matrix is singular when w = 0. Since must be inverted to ob-
tain the transfer matrix defined in equation (3.8), the transfer matrix, and hence the
spectrum, is not defined at o = 0.

spectrum of quarterly changes was obtained by multiplying the original spec-
trum by the gain of the first-difference transformation. This = 1 —

is the spectrum of the original variable is the spectrum of the first-
differenced variable.
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CHART 5.1
Gross National Product, Real-Sector Model
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CHART 5.2
Changes in Gross National Product, Real-Sector Model

Frequency
0 4 8 12 16 20



DYNAMIC PROPERTIES OF THE WHARTON MODEL • 641

If the disturbance process is serially uncorrelated with variance
the spectrum of the wage rate is

(5.3) fw(°)) = I

where the frequency response function, T(w), is

(5.4) T(w) = [(1 — —

Since the factor (1 — exhibits singularities at w = 0, IT/2, and ir,
the power spectrum of the wage rate will exhibit relative concentra-
tions of power at each of these frequencies. These concentrations of
power affect the power spectra of the other endogenous variables in
the system. This indicates that the wage equation imparts a strong
seasonal pattern to the endogenous variables of the model.

In order to determine the dynamic properties of the system. in the
absence of the somewhat peculiar behavior of the wage rate, the wage
equation was deleted from the system. The power spectra of gross
national product and changes in GNP are shown in charts 5.3 and
5.4 for the resulting modified real-sector model. The absence of a
relative peak at one-fourth of a cycle per quarter in these spectra con-
firms the suspicion that the form of the wage equation is responsible
for the relative peaks in the real-sector model.

The basic point that emerges from this analysis of these models
is that neither version of the real-sector model is consistent with an
impulse-response explanation of business cycles. The lag structure of
these models does not impart the sort of smoothing that is required for
the model to respond cyclically to random disturbances. Any cyclical
behavior that this model might exhibit is therefore due to serial cor-
relation in the disturbance process, or to business-cycle variations in
the exogenous variables.

6 DYNAMIC PROPERTIES OF THE COMPLETE MODEL

THIS section is devoted to an analysis of a linear approximation to the
complete model. Due to the peculiar behavior of the wage variables, as
described above, the' wage equation is not included in the model. This
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CHART 5.3
Gross National Product, Modified Real-Sector Model
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CHART 5.4
Changes in Gross National Product, Modified Real-Sector Model
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leaves a system of twenty-nine stochastic equations with endogenous
variables lagging as many as four quarters.

The characteristic, roots of this system are shown in Table 6.1.
The real roots of the determinantal equations range from —0.850 to
1.005. The root slightly greater than one implies an annual rate of
growth of some 1.9 per cent. Once again there is a cluster of complex
roots with periods of about four quarters. This, of course, is not too
surprising in view of the repeated use of a four-quarter lag in the mov-
ing averages of the endogenous variables as predetermined variables
in the structural equations of the model. As was found for the real-
sector model, this model is unstable, and the transient response does
not exhibit twelve- to fifteen-quarter business-cycle oscillations.

The power spectrum of gross national product implied by the
complete system is shown in Chart 6.1, and the spectra of the three
investment series —plant and equipment, residential construction, and
inventory investment—are shown in Charts 6.2 to 6.4. These spectra
were computed on the assumption that the disturbance process is
serially uncorrelated. Hence, the spectrum matrix of residuals used in
equation (3.1) was computed using equation (5.1), with an estimate of
the contemporaneous cövariance matrix corresponding to the complete
model. The spectrum of GNP implied by the model indicates that the
variations in gross national product are dominated by very long and
very short oscillations. Once again, business-cycle variations are
absent from the model. The power spectra of the first differences of
these variables are shown in Charts 6.5 to 6.8. A comparison of the
spectra of the investment series, implied by the model with the spec-
trum estimates in Section 2, indicates quite clearly that the lag structure
of the model does not explain the dynamic behavior of these series.
This means that the response of this system of equations to random
disturbances does not provide an adequate explanation of business
cycles.
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TABLE 6.1

Characteristic Roots of the Modified Condensed
Wharton Model

Real Part Imaginary Part Modulus Period

1.0047
1.0000
0.9619
0.9448
0.8779
0.865 1
0.8375
0.7663
0.7404
0.6217
0.49 18
0. 1887
0.00 11
0.0001
0.0000

—0.0013
—0.3291
—0.4583
—0.5504
—0.6086
—0.8500

0.0808 ±0.1356 0.1578 6.08
—0.0001 ±0.0016 0.0200 3.99
—0.0012 ±0.0200 0.0200 3.85
—0.0621 ±0.9117 0.9138 3.83
—0.0517 ±0.5527 0.5551 3.78

±0.4788 0.4814 3.75
—0.0607 ±0.5497 0.5530 3.74
—0.0672 ±0.5780 0.5819 3.73
—0.0843 ±0.6141 0.6199 3.68
—0.0903 ±0.6566 0.6628 3.68
—0.1429 ±0.1485 0.2061 2.69
—0.5858 ±0.0104 0.5859 2.01
—0.5221 ±0.0032 0.5221 2.00
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CHART 6.1

Gross National Product, Condensed Wharton Model
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CHART 6.2
Plant and Equipment Investment, Condensed Wharton Model
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CHART 6.3
Residential Construction, Condensed Wharton Model
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CHART 6.4
Inventory Investment, Condensed Wharton Model

1/40 c/q)

Frequency
20

Power
5.0

1.000

.500

0 4 8 12 16



650 • ECONOMETRIC MODELS OF CYCLICAL BEHAVIOR

CHART 6.5
Gross National Product, Quarterly Changes, Condensed Wharton Model
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CHART 6.6
Plant and Equipment Investment, Quarterly Changes,

Condensed Wharton Model
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CHART 6.7

Residential Construction, Quarterly Changes, Condensed Wharton Model
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CHART 6.8
Inventory Investment, Quarterly Changes, Condensed Wharton Model
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7 ADDENDUM: THE CHARACTERISTIC ROOTS
OF THE MODEL

DURING the course of this investigation of the dynamic properties of a
condensed version of the Wharton econometric model, an attempt was
made to calculate the characteristic roots of a linear approximation to
the model. While this was not the major purpose of the study, it was
felt that an examination of the roots of the determinantal polynomial
of the system might yield additional insights into the dynamic behavior
of the endogenous variables of the model, as characterized by their
implied power spectra. Although some of the difficulties associated
with the extraction of roots of large systems of equations were recog-
nized at the outset, the magnitude of this problem was, perhaps, not
fully appreciated. This root-extraction problem may be illustrated by
the divergent results obtained by Kei Mori, using the same input data
but a different root-extraction algorithm.15 The real roots obtained
using the alternative computational methods are shown in Table 7.1
and the complex roots are shown in Table 7.2. The major differences
between these two sets of roots can be summarized as follows:

(a) Howrey finds 17 nonzero real roots whereas Mon finds only
15. There is very little difference between the Mon roots and
fifteen of the Howrey roots. However, the Howrey routine
finds two more real roots, 0.962 and 0.865, than the Mon
routine.

(b) The Howrey routine finds 13 pairs of complex roots, whereas
the Mon calculations reveal 14 pairs of complex roots. Twelve
of these pairs of roots are in close agreement, but the remain-
ing roots are quite divergent. The Mon routine finds .8190 ±
0.19341 and 0.8249 ± 0.0884i, whereas the Howrey routine
yields 1.1344 ± O.0743i. The Mon roots are particularly
interesting because they have periods of 27 and 59 quarters
(6.75 and 14.75 years, respectively), with damping factors of

15 author is indebted to Kei MOn for permission to quote his as yet unpublished
results, and for his helpful comments on this section of the paper. It should be noted that
the results described in this section are preliminary in the sense that further research on
the calculation of characteristic roots is being conducted by Mr. Mon.
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0.84 and 0.83, respectively. The Howrey root is also of some
interest, since it indicates that the system is unstable, with a
rather rapid speed of divergence.

In view of these differences, a resolution of the "characteristic-root
problem" seems desirable.

Two types of tests have been carried out in an attempt to shed
some light on the divergent results which have been obtained from the
alternative root-extraction routines. The first involves a simple check
on the characteristic roots. This calculation turns out not to be suffi-
ciently sensitive to discriminate among the disparate results. The
second test involves a comparison of the dynamic properties of two-
difference equations constructed from the alternative sets of char-
acteristic roots. A comparison of the transfer functions associated with

TABLE 7.1
Real Roots of a Condensed Version of the Wharton Model

Mon

Determinant

Howrey

Root DeterminantRoot
(1) (2) (3) (4)

1.0044 —0.5725E-12 1.0047 —0.1303E-13
1.0000 0.1251E-14 1.0000

0.9619

0.3753E-14

—0.1205E-14

0.9452 —0.3220E- 13 0.9448 0.5568E- 15
0.8779 0.0 0.8779

0.8651

—0.1388E-16

0.2200E-17

0.8307 —0.1052E-l3 0.8375 —0.7183E-17

0.7725 —0.3105 E- 14 0.7663 0. 1679E- 17

0.7428 O.6026E- 15 0.7404 —0.8744E- 18

0.6249 . —0.1415E-15 0.6217 0.1205E-18

0.4746 —0.2429E- 17 0.4918 —0.75 36E-2 1

0.1823 0.1887 0.9871E-33
—0.3559 0.2316E-21 —0.3291 —0.2126E-26
—0.4601 —0.1930E-20 —0.4583 0.1193E-23
—0.5503 —0.2836E-2 1 —0.5504 —0. 1795E-22
—0.6084 0.7 123E- 18 —0.6086 0.93 67E-20
—0.8112 —0.3885E-06 —0.8500 —0.6025E-09
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the difference equations indicates that it is extremely difficult to dis-
tinguish between the two equations. This suggests that from the point
of view of stochastic systems analysis, it may not be particularly
important which of the two sets of roots corresponds to the truth.

7.1 EVALUATION OF THE DETERMINANTAL POLYNOMIAL

As a first step in the resolution of this issue, an independent calcu-
lation of the value of the determinantal polynomial was attempted. In
particular, .the complete system of equations, involving lags of up to
order five, was converted to a first-order system of the form

(7.1) BY1— CY1_1

or

(7.la)
where E = B1C. If A is a characteristic root of E, then it should satisfy
the condition

(7.2) IE—XlI=O
or

(7.2a) C—XBI=O
The determinant of [C — AB] was evaluated for each of the char-

acteristic roots, with the results shown in Tables 7.1 and 7.2. These
results can be summarized as follows:

(a) The real roots .962 and .865 are not blatantly spurious, since
the determinant corresponding to these roots is zero to at
least fourteen places. The value of the determinantal poly-
nomial is closer to zero for these two roots than for several of
the other roots on which the algorithms agree—notably, the
roots close to unity.

(b) This check casts suspicion on the negative real roots —0.81
(Mori) and —0.85 (Howrey). In neither case is the determinan-
tal polynomial as close to zero as might have been

(c) The complex roots 0.82 ± 0. 19i and 0.82 ± 0.09i obtained by
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Mon both pass this root check. However, the unstable root
1.13 ± 0.071 appears to be spurious on the basis of the
determinantal polynomial test.

These results contribute to some extent to a resolution of the
problem. The basic difference that remains is that the Howrey routine
yields two real roots, 0.962 and 0.865, whereas the Mon routine pro-
duces two complex roots, 0.8 19 ± 0.193i and 0.825 ± 0.0881. Unfor-
tunately, the determinantal polynomial calculations offer virtually no
help in the resolution of these differences. Apparently, a more delicate
approach is necessary.

7.2 TRANSFER FUNCTION ANALYSIS

The inability of the determinantal polynomial calculations to
discrimInate between the two sets of characteristic roots means that an
alternative approach to the problem is necessary. One possibility is to
consider the extent to which the two sets of results diverge from one
another in terms of their implications about dynamic behavior. If the
differences between the dynamic properties of the two sets of roots are
negligible, then from a pragmatic point of view, there would appear to
be little need to explore the matter further.

The specification of a comprehensive, quantitative measure of the
dynamic properties of a large set of roots is not an easy matter. How-
ever, within the context of stochastic systems analysis, it seems quite
natural to compare the alternative stochastic difference equations

(7.3) L\M(L)y(t) = €(t)

and

(7.4) €(t)

where the zeros of correspond to the characteristic roots ob-
tained by Mori, and the zeros of correspond to the roots obtained
by Howrey. The power spectra of these two stochastic processes are
given by

(7.5) = (j = M,H)

where
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(7.6) = (I = M,H)

andfE(o) is the power spectrum of €(t). This indicates that the functions
G,(a) provide a useful basis for a comparison of the dynamic properties
of the two systems.

The natural logarithm of for these two equations is shown in
Table 7.3. In addition, the logarithm of the gain (squared) corres-
ponding to the first differences of y(t) generated by (7.3) and (7.4) is
shown in this table. An examination of the results for the low-frequency
end of the spectrum indicates that for both of these equations, the ratio

TABLE 7.3

Dynamic Properties of the Two Sets of Roots

Mon Howrey

Log of Gain (squared) Log of Gain (squared)

First First
Quarters Level Difference Level Difference

(1) (2) (3) (4) (5)

200.0 35.51 28.59 32.62 25.70
100.0 32.85 27.31 28.51 22.97
66.6 31.09 26.37 25.49 20.76
50.0 29.67 25.52 23.03 18.89
40.0 28.38 24.67 20.95 17.25
33.3 27.13 23.79 19.15 15.81
28.6 25.87 22.83 17.57 14.53
25.0 24.58 21.81 16.17 13.41
22.2 23.26 20.73 14.94 12.41
20.0 21.94 19.62 13.84 1.1.52
18.2 20.66 18.52 12.87 10.74
16.6 19.43 17.47 12.01 10.05
15.4 18.28 16.47 11.25 9.45
14.3 17.21 15.55 10.58 8.92

16.24 14.72 10.00 8.47
12.5 15.36 13.96 9.49 8.09
11.8 14.56 13.28 9.06 7.78
11..1 13.85 12.69 8.69 7.53
10.5 13.23 12.17 8.39 7.33
10.0 12.68 11.71 8.15 7.19
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of output variance to input variance is a smoothly decreasing function
of frequency. Precisely the same result is apparent for the first dif-
ferences. Thus, despite the individual differences between the two sets
of roots, the over-all dynamic properties of the two sets of roots under
consideration are quite similar with respect to both levels and first
differences. In an attempt to confirm these results, the resolution was
increased by a factor of four so that instead of computing the gain at
twenty points ranging from 200.0 to 10.0 quarters per cycle, as in
Table 7.3, the gain was calculated at eighty points ranging from 800.0
to 10.0 quarters per cycle. Once again, no local maxima were found
in the gain functions.

These results may appear to be somewhat surprising at first glance,
since they indicate that even though the Mon root set includes com-
plex roots with only modest damping factors, these complex roots do
not appear to impart discernible cyclical properties to the solution.
The fact of the matter is that the cyclical response path associated with
the complex roots is swamped by the contribution of the positive real
roots. The way in which this can occur is demonstrated by the fol-
lowing example. Consider a third-order difference equation with a real
root, A1, and a pair of complex roots, A2 and A3:

(7.7) (1 — X1L)(1 — X2L)(1 — X3L)y(t) = €(t)

The gain (squared) is the product of the three factors; i.e.,

(7.8) G(co) = G1(o.) X G2(w) X G3(a)

where

(7.9) G3(oi) = 1 —

X G3(w) exhibits a relative maximum at cv0, it is
still possible for to decrease smoothly. This is particularly likely
if is close to zero, and the real root is close to unity, in which case
G1(a) decreases rapidly as w increases from zero to w,.

The transfer function analysis of this section suggests that from
the point of view of stochastic systems analysis, it may not be particu-
larly important to discriminate between the Mon and Howrey sets of
roots, since both sets of roots imply similar response patterns. A more
general conclusion of this analysis is that it is not an easy matter to
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infer the over-all response of a stochastic system from an examination
of the individual roots of the system. It is equally important — if not
more important — to determine the combined influence of the entire
set of roots. Finally, it might be noted that the results obtained here
are consistent with the earlier calculations of the dynamic response
path of the Wharton Model and, hence, tend to increase confidence in
the numerical methods used in this study.

8 CONCLUDING REMARKS

THIS paper has been devoted to an examination of the Wicksell-
Slutsky-Frisch-Kalecki proposition that business cycles can be ra-
tionalized as the response of a stable dynamic model to random
disturbances. Spectrum-analytic techniques were used to determine
the dynamic properties of the impulse-response mechanism implicit
in a condensed version of the Wharton Model. It was found that the
power spectra implied by the model demonstrate that this model does
not exhibit the twelve- to fifteen-quarter oscillations in response to
random disturbances that are found in the original series. This means
that the model under discussion implies that the source of business
cycles is to be found in oscillations in the exogenous variables, or in
the disturbance terms, and is not due to the dynamic structure of the
system.
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DISCUSSION

CHARLES C. HOLT
THE URBAN INSTITUTE

This paper is reminiscent of Irma and Frank Adelman's study of
the Klein-Goldberger Model to determine whether it had the same
cyclical characteristics as the American economy when both are meas-
ured by the National Bureau turning-point analysis.

Howrey compares the power spectra of certain variables from a
forty-five equation Wharton Model with the corresponding empirical
series from the American economy.

Carrying through this analysis on both the mathematical and com-
putational levels for a model of this complexity is an impressive
achievement in itself. The author does not mention how he factored the;
characteristic equation of the model to obtain its 56 roots. He may
have some computer programs that would be of interest to other re-
searchers. I will not be so unkind as to raise the question of the nu-
merical accuracy of these difficult calculations. Not being a specialist
in spectral analysis, I will not undertake to evaluate the statistical
adequacy of the tests for cyclical peaks and so on, but, rather, will
concentrate on the economic issues involved in the study.

NOTE: This review is the of the author and does not necessarily reflect
the views of the Urban Institute or theDepartment of Labor, whose support is gratefully
acknowledged.
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Howrey starts off by distinguishing between various classes of
business-cycle theory, deciding on a study of the Wharton Model to
determine whether it would generate realistic cyclical behavior when
subjected to random disturbances. He clearly recognizes that even
though a model did not have a cyclical response, it could display cycles
as the result of fluctuations of exogenous variables. Indeed, his find-
ings either support the conclusion that the model does not have a cy-
clical response, or raise a question about the accuracy of the model as
a description of the American economy. However, certain qualifica-
tions must be added to this conclusion. These will be touched on later.

Before examining the details of Mr. Howrey's analysis, we might
briefly examine alternative approaches that could be used to answer
the question under consideration for a linear system. Nonlinear analyses
are much more complex. First, I already have mentioned the National
Bureau's turning-point analysis. (Its stress on peaks and troughs im-
plies nonlinear dynamics, although this is seldom made explicit.1 Sec-
ond, a model can be solved for a sequence of time periods until it
reaches equilibrium, and may then be disturbed by introducing an ex-
ogenous impulse, allowing one to observe the transient response for
cyclical fluctuations as it returns to equilibrium. Third, the model can
be subjected to a sinusoidal disturbance, and the model solved for a
sequence of periods until the system reaches a steady-state sinusoidal
fluctuation. This process is repeated for a pattern of frequencies in
order to determine those frequencies at which peaks in the system re-

Linear systems tend to fluctuate in sinusoidal patterns. Measurement of the ampli-
tude and timing of a sinusoidal fluctuation in the presence of noise would be best done as
follows. We get a good measure of amplitude by averaging the fluctuations in the region
of the peak, averaging in the region of the trough, and measuring the distance between
these two averages. The most accurate timing measure of a sinusoidal fluctuation is the
point at which the fluctuation crosses its middle level.

The NBER turning-point analysis is quite suitable for various nonlinear systems in
which some critical event reverses the fluctuation. However, this analysis, when ap-
plied to noisy sinusoids, will tend to exaggerate the amplitude, because it is measured as
the distance between random peaks and random troughs. The timing similarly is subject
to random variation, depending on when the random peak occurred on top of a smooth-
topped sinusoidal "peak."

Economic systems appear not to be linear, but many model estimates reveal only
slight nonlinearities so the sinusoidal hypothesis may not be too far from the mark. Con-
sequently, use of the NBER turning-point analysis should be made with considerable
caution, taking account of its tendency to overestimate amplitude, and its tendency to be
uncertain in iEs measurement of lead-lag relations.
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sponse occur. Fourth, the real and complex roots of the characteristic
equation may be determined computationally by factoring a high-order
polynomial. Fifth, the power spectrum may be calculated for the sys-
tem when it is excited by a matrix of random disturbances with known
covariance and autocorrelation. Sixth, since fluctuations of exogenous
variables that are not treated as random may account for part of the
fluctuations of the system, the previous method can be modified to in-
corporate the additional contribution to the power spectrum.

The NBER method is the most suitable for nonlinear systems. The
transient response is the easiest to perform on a model, but it will be
influenced somewhat by the particular point at which the system is dis-
turbed. Unfortunately, it is difficult to perform the same experiment on
the national economy, so direct comparisons are not possible. The
sinusoidal response is a little more trouble to calculate than the transient
but the other points mentioned there apply equally well. Knowing the
characteristic roots of the system tells a great deal, particularly if any
of them are unstable, but how much each of these roots will be excited,
and how they interact, can only be determined for particular sets of
initial conditions and disturbances. In short, it is difficult to judge the
system response from the roots. Finally, the power spectrum gives a
clear picture of the amplitude of the system's response at various fre-
quencies, when it is subjected to a realistic matrix of disturbance. Since
the American economy is continually being bombarded by comparable
disturbances, measurements performed on empirical time-series can
yield spectra that are directly comparable to that of the model. How-
ever, nonrandom exogenous disturbances must be added to complete
the picture before the business-cycle comparison is complete.

Of these alternatives, Howrey has used methods four and five.
However, he did not include the autocorrelation of his disturbances,
so the conclusion must be treated with caution. Since the random resid-
uals are unobserved — but nonetheless real — variables having their own
characteristic dynamic structure, the significance of including them
but suppressing their autocorrelation is questionable. Perhaps one
gains insight by dissecting a process to get at its separate dynamic com-
ponents, but conclusions must be carefully stated. Since his work seems
to suggest the importance of exogenous nonrandom disturbances, per-
haps we can look forward to a later paper using the sixth approach.
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In his examination of six representative variables from the Ameri-
can economy, Howrey finds evidence of cyclical peaks, but he con-
cludes that only one, residential construction, is statistically significant.
He examines the spectra of quarterly differences and deviations from
linear trend. One would have thought that exponential growth would
have been more suitable both for the economy and for linear dynamic
models.

Howrey fails to explain to the reader that quite different spectra
should be expected for the first differences and for the deviations from
trend. If x = A sin ft, then x = (Af) cos ft. Since the amplitude of x
tends to rise with frequencyf, this tends to offset partially the normal
tendency for dynamic systems to be less responsive to high-frequency
disturbance components.2

Casual examination of his empirical spectra suggests dual cyclical
peaks — in inventory investment, and in residential construction. His
analysis of quarterly changes in GNP seems to indicate peaks at 2.2
and 3.8 years, which seem suggestive of inventory, and construction
and capital-goods, cycles respectively.

Turning now to the Wharton Model, which is nonlinear, it was first
necessary to make a linear approximation, because the spectral analy-
sis explicitly assumes linearity. Holding prices constant, the charac-
teristic roots and the spectra of the real economy are examined. A
growth rate of 62 per cent per quarter suggests that this system is
hardly to be taken seriously—at least, for its static properties.

The wage equation contains a four-quarter difference which intro-
duces a peak in the spectrum of the system corresponding to annual
fluctuations. To cure this, the wage equation was simply deleted. But
it seems rather strange that a model which was intended to be in real
terms would not even contain an equation for money wages. These
runs on the "real sector," both with and without the wage equation,
are highly questionable.

The "complete" model has a more reasonable growth rate, but
the wage equation is still omitted, with the result that the important
wage-price interaction is lost. No peaks are evident in the spectra, and

2 argument for discrete time is not quite this simple, but the above serves to make
the point. Note also that differencing will tend to shift the frequencies of cyclical peaks,
arid to shift the timing of the fluctuation by roughly 90 degrees.
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hence the conclusion is reached that the dynamics of the model in re-
sponding to random disturbances do not generate business cycles. The
reader should understand clearly that autocorrelated random distur-
bances will produce a different spectrum, and possibly a different con-
clusion about the business-cycle characteristics of the model.

A small point of questionable noncomparability that would tend to
favor the opposite outcome in the comparisons between the model and
the world, is the difference in data time-spans for model estimation and
spectra calculations— 1948—65 and 195 1—65, respectively.

The conclusion that the model's dynamics do not generate business
cycles must be qualified in two ways. First, the original model was non-
linear, and errors introduced in the linear approximation may accumu-
late to produce serious differences in its dynamic behavior. Second, a
wage equation should be introduced. It would be a simple matter to
run a transient response on the original nonlinear model (first method
above).

Perhaps the most significant finding of the Howrey paper is that a
one-year difference in a Phillips' wage-change equation introduces a
peak in the system spectra that seems counter to the empirical evi-
dence of the American economy. This equation should be changed in
the Wharton Model.

Knowing that the model failed to produce twelve- to sixteen-quar-
ter oscillations, one might use hindsight to ask whether we could rea-
sonably expect to detect dynamic lags of that duration reliably from
relations estimated to predict quarterly changes. I would have thought
that pressing a quarterly model to make forecasts eight quarters into
the future was about the limit of any reasonable chance of success.

We know that most models tend to under-forecast change for rea-
Sons that are not fully clear. Similarly, most models tend to under-pre-
dict fluctuation amplitudes. We recognize that errors in the observation
of variables bias the regression coefficients toward zero. For forecast-
ing, this bias is quite suitable, because reduced weight should be put on
noisy variables. However, when we are discussing the degree of dy-
namic stability of a system, we need unbiased estimates of the system
parameters.

Since there is a great deal of circular causality in an economy, its
degree of stability will be strongly influenced by the extent to which
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disturbances are amplified or attenuated as they travel around the many
loops in a model economy. For example, one causal loop is given by
the income, expenditures, production, income sequence. Regression
estimates can be made of the functions, but if there were errors in ob-
serving the independent variables, the regression coefficients would be
biased toward zero, and the response of a disturbance traveling
causal loops would be decreased. The clear consequence is that we
would overestimate the stability of the system. This phenomenon
should lead us to treat with caution Howrey's conclusion that there is
no evidence in the estimated model of business-cycle peaking. We
might experiment with the sensitivity of the model's stability to esti-
mation biases. All parameters could be increased by, say, 20 per cent,
and stability observed.

In closing, I would like to commend Howrey's efforts at vali-
dating the Wharton Model against empirical data in a new way. We
must do much more work in testing our models.

EMANUEL PARZEN
STATE UNIVERSITY OF NEW YORK

I believe that I should begin by emphasizing that I am not an
econometrician. My interest in being here derives from my interest,
as a statistician, in the general methodology of fitting models to time-•
series data. I have a great stake in believing that the art of econometric-
model-building and. the general theory of time-series model-making
would benefit from closer interaction. Therefore, my reaction to
Howrey's paper is a very favorable since I regard it as a valuable
contribution to the study of the interrelationship between —

(1) the qualitative ideas (such as the notion of a business. cycle)
which econometricians are trying to quantitatively model;

(2) current econometric models; and
(3) modern time-series analysis (especially systems theory, adap-

tive prediction theory, and spectral analysis).'

NoTE: These comments were made at the Conference except for the next-to-last
paragraph, which is new.
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I believe Howrey's perceptive work helps bring to our attention
the following important questions —

(1) How can empirical spectral-analysis of observed economic
time-series quantify the notion of business-cycle oscillations?

(2) Given business-cycle oscillations in endogenous variables,
can one explain them by partitioning them among causes, such as the
following:

(a) the internal dynamics of the equivalent linearized "sys-
tem," representing the dependence of endogenous vari-
ables on exogenous variables;

(b) business-cycle oscillations in exogenous variables;
(c) serial correlation in the disturbance process.

(3) Given a current econometric model, as typified by a con-
densed version of the Wharton School Model, does it support the
Wicksèll-Frisch-Kalecki (WFK) proposition (see Section 7): "business
cycles can be rationalized as the response of a stable dynamic system
to random disturbances."

I believe that the conclusions stated by Howrey in his Section 7
are basically supported by the numerical calculations reported in the
paper. However, as Howrey indicated in his oral presentation, these
calculations need to be: carefully checked, and may then lead to dif-
ferent conclusions.

In my comments, I would like to discuss some broad methodologi-
cal issues which I believe should guide further research on the ques-
tions I have listed above.

We must always carefully formulate what we mean by the spectrum
of a time series. In order that the qualitative notion of a business cycle
can be quantitatively captured by the. notion of spectrum (and more
precisely, by the of "spectrum of a stationary time-series"),
we must be aware that the spectrum we compute from observed time-
series is very much dependent on the transformations we first apply to
our data (such as first-differencing or linear detrending). I should note
that Howrey, also, points out this fact in his footnote 3.

To illustrate the alternatives available to us in defining the notion
of spectrum, let us consider an endogenous variable Y(t), exogenous
variable X(t),. and noise N(t) satisfying

Y(t) X(t) + N(t)
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A possible model for X(t) (which includes X(t) = a + bi, a straight line)
is

X(t) — 2X(t — 1) + X(t — 2) = €(t)

where €(t) is a zero mean stationary time-series. The model for X(t) can
be written

X(t) = a + bt +
where the "double sum over epsilon" process is a highly nonstationary
one. If we subtract from Y(t) a linear trend, the residual series still
has the sample spectral shape of the "double sum over epsilon" process.
This is the shape which Granger has called the typical spectral shape
of an economic time-series; the spectral density is decreasing steadily
from a maximum at zero frequency.

From the foregoing considerations, I infer that of the two methods
of trend elimination considered by Howrey—first differencing and
linear detrending— differencing gives the "right" answer. In our simple
model, it leads to the spectrum of the series

= €(t) +
If N(t) is white noise, A2N(t) is a second-order moving average

with a high-frequency spectrum. Therefore, any low-frequency features
in the spectrum of must be those of €(t). In our simple model for
Y(t), business-cycle oscillations in the differenced series must be as-
cribed to business-cycle oscillations in the spectrum not of X(t), but
in the spectrum of €(t) =

Turning now to the multiple-time-series case, let us use Howrey's
notation in his equation (3.3):
(*) B(L)y(t) = C(L)x(t) ± u(t)

This is the general form of a typical econometric model, and the ques-
tion is to study how the spectrum of y(t) is partitioned among the fol-
lowing five parameters of the model: B(L), C(L), the spectrum of u(t),
the spectrum of x(t), and the cross-spectrum of u(t) and x(t).

Howrey computes the roots of B(L) for two simplified versions of
the Wharton Model, and studies the spectrum of B(L)'u(t), under the
assumption that u(t) is a vector white-noise series. He finds that the
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spectrum of B(L)1u(t) not only does not exhibit business-cycle os-
cillations, but is also basically flat.

On examining the table of "complex roots of a condensed version
of the Wharton Model" distributed at the meeting, I am not so sure
that this conclusion would hold for revised numerical calculations
using the two new complex roots found—(.819, .193) and (.825, .088).

In any event, I believe that it would be interesting to see further
empirical work along the lines of Howrey's paper, not only computing
the roots of B(L) for other models, but also examining all five of the
parameters of the basic representation (*).




