I. Introduction

In the United States, economic growth rates are remarkably steady. Per-capita income has risen at approximately 2% per annum in real terms since the late 19th century (Jones 2016). Innovation -- the creation and implementation of new ideas -- is typically seen as a primary explanation for this growth (e.g., Solow 1956, Rosenberg 1982, Romer 1990, Mokyr 1990). One measure of innovative effort is research & development (R&D) expenditure, which also appears in aggregate to be a broadly steady activity. For example, aggregate R&D spending in the U.S. has fluctuated between the rather narrow bands of 2.1% and 2.8% of GDP for the last 60 years, with no apparent trend (NSF 2020).

This aggregate steadiness, however, masks remarkable underlying sectoral differences and dynamics, where specific industries have experienced extraordinarily different productivity gains and innovation investment. For example, agriculture and manufacturing have seen huge productivity increases while other areas – such as housing, education, and the energy sector – have seen much less advance and, seemingly, much less innovative effort. Overall, we witness enormous, transformative advances in some sectors of the economy. In others, not so much.

These underlying differences raise fundamental questions. First, why would innovative effort differ so greatly across industries? Second, if the innovation engine operates weakly in some sectors, is this outcome inevitable? Third, what are the implications of these differences for meeting ongoing challenges? For example, as the U.S. economy appears caught in an aggregate productivity slowdown, what roles and opportunities can individual sectors play in overcoming this challenge?
This chapter addresses these questions. The discussion integrates across the sector-specific analyses that constitute this book and provide rich and diverse perspectives. The goal here is a synthesis that, while necessarily incomplete and often speculative, provides a framework for thinking about the enormous diversity in innovative effort and productivity gains that we see.

Section 2 of this chapter outlines enormous sectoral differences in innovation, with an emphasis on the sectors examined in this volume. Sections 3-5 then consider potential explanations for this variation. The analysis is organized around a simple framework for considering the incentives to innovate. Namely, an agent considering an investment in innovation is making some assessment of its value, and effort at innovation should naturally increase when the expected return on an innovation investment is higher. The question then is: why is the expected return to innovation higher in some industries and lower in others?

The synthesis offered here emphasizes three features that determine the return on innovation investment and that vary across industries. First is demand. Demand incorporates market scale, willingness to pay for a given innovation, and buyer uncertainty. Demand features are the subject of Section 3. Second is supply. Supply here means the fixed costs of creating a productivity-enhancing advance, as well as the ongoing costs of producing, marketing, and distributing this advance. Supply features are the subject of Section 4. Third is institutions. Institutions here include the standard tools of innovation policy (e.g., patents and public R&D funding) as well as sector-specific regulatory environments and market structure. Institutions are the subject of Section 5. To the extent possible, this chapter will use this demand-supply-institutions framework to understand the varying efforts at innovation across sectors and the various outcomes that result.

Overall, the picture that develops is multifaceted. The potential explanations for sectoral variation are not easily reduced to a small set, with different sectors often suggesting somewhat different opportunities and challenges. At the same time, an important and relatively contained set of features appear relatively elastic to policy. While fundamental demand and supply features can be rooted deeply in preferences and technological possibilities, institutional features are often, in principle, more malleable. The closing section of this chapter, Section 5, thus further considers opportunities -- through institutions and policy -- to accelerate innovation in lagging sectors, such as education, health services, and energy, with applications to diverse challenges, including the productivity slowdown and climate change.
II. Industry Variation in Innovation

Innovation differences across industries can be measured through both inputs and outputs. On the input side, a standard approach measures R&D expenditure. One might also look at new venture investment. On the output side, one might look at intellectual property outcomes (i.e., new patents, copyrights, trademarks), the introduction of new goods and services, productivity growth, market value, or, in a more equilibrium context, market shares. All of these approaches have limitations, and one consequently has to keep caveats in mind when studying these data. That said, substantial evidence links these measures in natural ways, and they can paint fairly coherent pictures.

Table 1 presents R&D expenditure for various sectors discussed in this volume. The root data is the National Science Foundation’s Business Research and Development and Innovation Survey (BRDIS). BRDIS is a firm-level survey that includes information on R&D and sales, with results reported by industry NAICS code. BRDIS is linked to U.S. Census establishment data and aims to produce a relatively comprehensive picture of R&D for the United States and its businesses.

An advantage of BRDIS is that it includes the firms’ worldwide sales, which may be more useful than domestic sales or output for thinking about firms’ R&D decisions. However, an important caveat with the BRDIS data is that it only includes firms with positive reported R&D expenditures. That is, the survey omits firms that report no R&D. This is not a problem for counting up R&D in an industry, but it can be a problem for counting output in industries where R&D-performing firms are uncommon. R&D-to-sales ratios in the BRDIS data can then lead to odd results, especially for service industries where most firms report no R&D. For service sectors, Table 1 thus replaces worldwide sales from BRDIS with the relevant industry sales in the U.S. Census’s Service Annual Survey.

1 For example, innovative effort may not be credited explicitly as R&D (e.g., Brouwer and Kleinknecht 1997), patents may apply to a relatively narrow class of product innovations, and total factor productivity measures require production function and input measurement assumptions that are susceptible to error (e.g. Collard-Wexler and De Loecker, Jones 2014).

2 For example, firm-level R&D expenditure and patent production is closely linked to the firm’s market value and broader productivity gains (e.g., Hall, Jaffe, and Trajtenberg 2005; Hall, Mohen, and Mairesse 2010; Kogan et al. 2017).

3 For example, looking at “real estate and rental leasing” (NAICS code 53), one finds that R&D expenditures amount to 8.84% of worldwide sales in BRDIS. This result may seem surprising, as this sector does not obviously appear very engaged in R&D. Digging deeper, one finds that the worldwide sales of these firms is only $5 billion in BRDIS, whereas the U.S. Census’s Service Annual Survey (SAS) indicates total sales of $633 billion for employer-firms in this NAICS code. Normalizing the measured R&D expenditure by total sales for this sector reduces R&D expenditure to 0.08% of output. The housing analysis by Kung (this volume) makes a similar correction. Another sector where this correction makes a large difference is “health services” (NAICS codes 621-623), where BRDIS shows worldwide sales of R&D-performing firms of $81 billion while SAS shows that total revenues for all employer firms in this industry are $2.254 trillion. In some service sectors, such as “information” (NAICS code 51),
The picture of R&D that emerges in Table 1 is one of enormous variance. Manufacturing sectors typically show large R&D expenditure rates. This is true for manufacturing overall, where the R&D-to-sales ratio is over 4%, and appears in several sub-categories of manufacturing relevant to the chapters in this book, including “computers and electronic products”, “pharmaceuticals and medicines”, “engines, turbines, and power transmission equipment”, “automobiles, bodies, trailers, and parts”, and “aircraft, aircraft engines, and aircraft parts.” Service industries, by contrast, show much less R&D. The exception is information services, which show an R&D rate (7.18%), exceeding that in almost all the manufacturing sectors. The broader story for services is one of very little R&D, with R&D-to-sales ratios often less than 0.1%.

It is further notable that the manufacturing versus services distinction tends to operate within related clusters of activity. For example, consider health. We see virtually no recorded R&D in health services, which incorporates ambulatory health care services (NAICS code 621), hospitals (NAICS code 622), and nursing and residential care facilities (NAICS code 623), where the R&D-to-sales ratio overall is 0.04%. Yet there is enormous R&D in pharmaceutical and medicines, where R&D rates per dollar of sales are 320 times larger. Similar stories appear for transportation, where transportation and warehousing services exhibit very low reported R&D, whereas relevant transportation manufacturing, including both automobiles and aircraft manufacturing, show R&D-to-sales ratios that are 42 and 60 times greater, respectively. Industries related to the energy sector are once again similar. Utilities show virtually no R&D per unit of sales (0.06%), mining and extraction show R&D rates 12 times higher, and relevant energy production machinery shows R&D rates 6 times higher than that.

The final sectors in Table 1 are agriculture, education, and housing. Agriculture presents relatively substantial private R&D-to-sales ratios and is more in line with manufacturing. The agriculture numbers include agricultural machinery as well as chemical and biological R&D investment and are taken from Alston and Pardey (this volume). By contrast, housing services show very little R&D, in line with typical service sectors. Finally, education, while hard to measure, also appears to have very low rates of R&D even including public R&D (Chatterji and Jones 2012).

firms typically perform R&D and the difference in sales between BRDIS ($1.329 trillion) and the SAS ($1.498 trillion) is modest.

4 These numbers do not include public R&D, which is substantial in agriculture, and suggests more intensive R&D investment; see Alston and Pardey (this volume) for broader measures.
In terms of overall outcomes, looking to the economy as a whole, one can consider patterns of structural change. Figure 1A presents a standard picture, showing how the GDP shares of agriculture and manufacturing have declined dramatically while services have risen. A natural interpretation follows Baumol’s cost disease (Baumol 1993), where a declining sectoral share is consistent with rapid relative progress of productivity in that sector. For example, relatively rapid advances in manufacturing productivity are associated with declining manufacturing GDP shares not just in the U.S. but in more global contexts (e.g., Bergoing et al. 2004, Pilat et al. 2006). Conceptually, if demand curves are sufficiently downward sloping, then rapidly advancing productivity in a sector causes its prices to fall sharply as supply shifts outward, and the sector’s GDP share declines even as quantity rises. The converse implication is that the lagging sectors will see their GDP shares increase. One could then interpret Figure 1A as indicating relatively rapid productivity advances in agriculture and manufacturing, leaving the economy stuck with a greater share of activity and resources devoted to the sectors we are not very good at – here, services.

Figure 1B extends the services picture. We examine three large sectors that are primarily based on services: health; education; and finance, insurance, and real estate. These sectors present substantial and increasing shares of the overall economy. These sectors are also areas that appear to see little overall R&D, as in Table 1.⁵

Overall, we see huge variation in R&D expenditures across sectors. While innovation effort is imperfectly measured by R&D expenditure, outcomes seem to follow related equilibrium output patterns. Service sectors, such as health services and education, see very little measured R&D effort and rising output shares. Manufacturing and agriculture see much larger measured R&D effort and declining output shares.

One can of course track inventive outcomes and productivity gains at more micro levels, but, for the purposes of this essay, the aggregate output share perspective is useful. In particular, the important equilibrium idea here is that a rising GDP share can be symptomatic of low rates of progress. Moreover, since the overall economy is increasingly made up of the lagging sectors, it suggests that overall progress might slow down if progress in these lagging sectors remains hard. This issue substantially raises the stakes in understanding, and potentially overcoming, the forces that limit innovation in these sectors. The

⁵ Note that the Bureau of Economic Analysis’s industry-level value-added output series do not match perfectly with the specific NAICS-level organization of R&D expenditures in BRDIS, so Figure 1 uses related but somewhat distinct industrial categorizations as in Table 1.
rest of this chapter consider reasons that innovation may proceed faster in some sectors and more slowly in others.

III. Demand

The proverb “necessity is the mother of invention” suggests a central role of demand in driving technological advance. That human wants and needs may guide innovative effort is natural, and there is good evidence in the literature that innovation responds to demand. For example, natural experiments regarding pharmaceuticals and vaccines show that expanding demand does indeed drive more innovative activity (e.g., Acemoglu and Linn 2004, Finkelstein 2004). This section will use this lens to consider variation across sectors, drawing on sectoral examples from the book. As we will see, demand-side considerations seem important yet insufficient for understanding the different innovation experiences of different industries.

1. Scale and Price

From a microeconomic perspective, straightforward logics connect innovative investment to demand. If it is possible for the innovator to appropriate the value of the innovation (e.g., through advantageous market structure, or a patent), then the value of such an innovation should be increasing in both the willingness to pay per customer and customer scale, so that more demand will attract more innovative effort. Further, if there is a fixed cost to the creation of the idea, then the innovative process naturally faces increasing returns to scale, again suggesting a key role of demand. These demand-side logics are often explicit in venture capital funding, where the “total addressable market” is a prominent consideration for investment.

At a macro level, one may also expect the scale of demand to play a central role. For example, consider endogenous growth models where innovation is getting harder with time (e.g., Jones 1995, Kortum 1997, Jones 2009), meaning that more people are required to produce a given percentage productivity advance. In this context, rising demand is essential to maintain innovation investment, for while innovation costs are increasing, the value of a given success also increases as the overall market expands. This demand-side expansion maintains incentives to invest in R&D and sustains steady-state growth.

Multiple chapters in this volume speak to these logics. For example, Fuchs et al. (this volume) explore U.S. manufacturing and suggest the importance of scale. A main finding is that U.S. manufacturing firms produce a substantial share of value added outside the U.S., so that globalization appears to extend the
market size for an innovation. With R&D returns substantially realized abroad, this scale logic provides some explanation for high (and sustained) R&D expenditure by U.S. manufacturing firms. Popp et al. (this volume) study the energy sector and suggest the key role of price. Namely, R&D investment in clean energy technologies rises when energy prices are high and falls when they are low. As substitutes for other energy production technologies, a high-willingness to pay can then explain clean energy investment, both historically and today.

Further examples come from pharmaceutical R&D. Challenges in drug development for niche diseases, for which there are few consumers, suggest the importance of scale and the need for policy interventions (Drummond et al. 2007). Separately, biomedical firms invest relatively little in diseases like malaria that largely affect lower-income consumers, who have less capacity to pay (Kremer and Glennerster 2004). These demand-side problems further point to the importance of demand-side policy interventions, such as advanced purchase commitments, to pull forth innovations (Kremer 2000).

These examples suggest that one might understand innovative effort in substantial part by considering how scale and willingness to pay affect the market value of an innovation. However, it is also clear looking at Table 1 that there are sectors with seemingly enormous demand that see extremely little innovation. For example all individuals in the U.S. economy experience education and health services, and often spend substantial sums for these services, yet there are appears to be very little innovative effort in these sectors. This suggests that simple price and quantity signals paint a limited picture.

2. Uncertainty and Salience

A perhaps less obvious but potentially central issue on the demand side concerns consumer uncertainty about the utility of an innovation. That is, consumers may have difficulty assessing whether an innovation is actually worth buying, and this uncertainty may be a fairly fundamental feature of the product or service. If consumers are unable to easily evaluate the good, then reaching the market, even if it is large, may be challenging, lowering the return to innovative effort.

Education services provide a potentially useful example along these lines. While the scale of primary, secondary, and tertiary education are all huge, and costs per student are large, it is often difficult to say what is “better” in this space. The measurement issue is partly one of duration, where important life outcomes from a given educational approach are determined over a long horizon. Proving that any newly-innovated approach is better is very difficult in a short period of time. The measurement issue is also one of complex goals and unsettled tradeoffs, where the objectives of education are multidimensional.
and subject to debate. For example, an innovation that improves mathematics scores may be helpful on some dimensions, but what happens if it crowds out historical knowledge, or creativity? If families, as well as teachers and school officials, are unclear about how to assess the benefits from an innovation, selling innovations becomes hard. And if selling such innovations is hard, it may not be surprising that little such innovation investment occurs (Chatterji and Jones 2012). Furthermore, in making choices amidst opaque evidence, school systems may end up investing in new technology that may not improve learning. Investment in the “shiny new object” (e.g., computer tablets) may then present a community with a veneer of innovation while schools fail to create or adopt provably effective pedagogical advances.

Health services appear to face some similar difficulties. It is often difficult to know that a given approach is better in terms of patient outcomes. Patients may recover despite bad care or, conversely, have adverse outcomes despite very high quality care. This noise muddles assessment. Patient selection issues also undermine measurability; for example, attempts at doctor and hospital scorecards are bedeviled by selection issues in the populations served (Dranove et al. 2003). Further, there are difficult balancing issues (somewhat akin to education) across complex endpoints, where success against the diagnosis must be weighed against side effects and other quality of life issues.

One place where we do see enormous innovative effort in health is in pharmaceuticals and medicines. Here there is an explicit (and onerous) process of approval through the U.S. Food and Drug Administration (FDA) and similar agencies elsewhere in the world. Side effects are explicitly assessed, and randomized-controlled trials are used to prove that an innovative medicine advances the standard of care. Thus, we see that high levels of certainty can be created even where it is hard, and that R&D effort can be enormous when this provability element is created. The FDA example further suggests the importance of institutions in promoting innovation in light of buyer uncertainty, which we return to below.

Coming back to manufactured goods, the qualities of these goods may, by contrast to education and health services, be highly salient. For example, an internal-combustion engine, microprocessor, or chemical process that produces the same output but at lower cost will presumably be adopted, as the buyer’s self-interest and market forces push in this direction. While quality may not fully obvious with some manufacturing goods (e.g., the durability of new capital equipment), the uncertainties do seem much more limited compared to things like educational services or hospital services.
Altogether, demand-side considerations – scale, price, and uncertainty – appear useful and even powerful ways to think about sectoral variation in innovation. Yet, looking at Table 1, it is not obvious that these features are anywhere near enough to understand the variation in innovation across sectors. Namely, there are many sectors that account for large amounts of GDP and see extremely little innovation, including sectors like transportation and warehousing services, and real estate, where scale is large and an uncertainty story does not seem germane. This suggests that technological and institutional features may critically important, as we turn to next.

IV. Supply

The cost side of innovation and associated technological opportunity provide an additional lens on innovation effort (e.g., Scherer 1965, Jaffe 1986). Similar technologies may suggest similar cost-side features, which in turn may push toward broadly similar innovation returns and investment. This cost-side similarity can, in turn, map into sectoral innovation tendencies if industry classification schemes group sectors in ways that suggest technological affinities. For example, manufacturing processes may in general involve relatively common physical and engineering principles and hence similar technological opportunities even as the products themselves (e.g., processed foods, printed books, building materials, and aircraft engines) have relatively unrelated sources of demand. Then the observation that manufacturing sectors typically see very high R&D rates and productivity gains may be a statement about common (low) innovation costs as opposed to common (high) demand. In this section we examine various cost and technology features.

1. Cost features

To further articulate costs, we can write the expected present value, V, of an innovation as

$$V = \Pi(c, s) - F$$

where F is the fixed cost of creating a new product or process and $\Pi(c, s)$ is the net present value of profits from this innovation once it is created. Other things equal, the expected value (V) is declining in the fixed cost (F), the per-unit production costs (c) of the new product or service, and the per-unit sales cost (s), which includes sales, marketing, and distribution costs for the new product or service. By this logic, innovation will be relatively high when the cost parameters F, c, and s are relatively low.
An example suggesting the relevance of this cost perspective is the creative arts, where we have witnessed an explosion of movies, television programs, on-line videos, music production, and new books. As Joel Waldfogel argues (this volume; Waldfogel 2018), this explosion in innovation follows from technological changes in the cost of creating \(F \), duplicating \(c \), and distributing \(s \) new works. For example, musicians today can record at home using sophisticated and inexpensive software. The music can then be duplicated digitally at essential zero marginal cost and published instantaneously at close to zero cost to followers online. As such costs have declined, it is not surprising that we have witnessed a huge expansion of these creative outputs. Similar cost features appear among other digital products, including in mobile application development, where the Android ecosystem adds over 30,000 new apps in a typical month,\(^6\) further suggesting that innovation effort will be large when the relevant innovation costs are low.

By contrast, consider the energy production sector (Popp et al., this volume). Here innovation costs tend to be high. At one extreme, nuclear fusion has seemingly vast demand-side potential but innovation requires enormous fixed costs for experimentation. In practice, we see relatively few independent innovative efforts at fusion technologies, and these efforts are supported by the public sector. Compared to nuclear power innovations, clean energy technologies like wind and solar power generation see relatively lower innovation costs and have meanwhile seen more rapid technological and market progress.

Uncertainty is also germane (e.g., Arrow 1962, Kerr et al. 2014). Beyond the demand-side considerations of consumer uncertainty discussed above, a basic form of uncertainty is that the technological approach will fail, either because the technology doesn’t work or, more generally, is not cost effective. Investment portfolio strategies may overcome individual project risk, but this will be difficult for resource constrained agents when the fixed cost of each innovation bet is high. This feature may suggest why venture capital investment and start-up activity in energy technologies has traditionally been relatively low (e.g., Ghosh and Nanda 2010). By contrast, sectors that feature low innovation costs (whether music or mobile apps) may see substantially more innovation attempts and more resulting innovation. Interestingly, Popp et al. (this volume) show that while clean energy patenting and start-up activity has been plummeting since 2010, activity is steady or increasing for smaller and more modular energy technologies, which may have cost advantages along these lines.

2. Scale and scalability

\(^6\) For Android metrics, see https://www.appbrain.com/stats/number-of-android-apps.
Sectors vary in the fixed costs of creating a useful invention. But the costs of producing and distributing the new product or service – the ‘scalability’ of the innovation - may be at least as important. Other things equal, when the scalability of the product is high, the investment becomes more attractive. These scalability costs often seems essential for understanding innovative effort.7

Digitization, and the massive innovation investments therein, seem to hinge importantly on this low-cost scalability. While the fixed costs of developing a new digital product may be high or low – compare a simple mobile application with enterprise software -- a common feature of digital products is that they can be duplicated and distributed at very low cost. Returning to services, “information services” see R&D rates that exceed the average in manufacturing (Table 1). Information services are a striking outlier among service sectors, and with its expanding set of uses, computing and information approaches are often recognized as a “general purpose technology” (GPT). At root, closely-related technological methods -- with common types of (low) scalability costs -- are being applied to an ever expanding range of demands. This phenomenon appears throughout the volume.

Consider, for example, the entrance of digital innovations into housing and transportation services, where measured innovation rates have historically been extremely low (Table 1). Kung (this volume) examines the housing sector, including new technology businesses that facilitate real estate transactions (e.g., Redfin, Trulia, and Zillow) and homestays (e.g., Airbnb and HomeAway). These scalable digital platforms connect buyers and sellers, providing key information -- locations, reviews, histories, and photographs -- to reduce search costs and limit uncertainty. These businesses, which have received substantial venture capital backing, have achieved scalability in dimensions of the real estate and housing sectors that heretofore have been fractured. Interestingly, while real estate R&D is measured to be only 0.08% of sales (Table 1), looking narrowly at the firms in this sector that actually perform R&D in the BRDIS survey, the R&D share of sales rises to 8.84%. This looks like a lot like information services in general. It suggests how, when new technology allows for scalability, R&D investment and disruptive business models can enter formerly less-innovative sectors.

Turning to transportation services, we see a similar phenomenon. Choe et al. (this volume) discuss the rise of ride-sharing as well as efforts to develop autonomous vehicles within the broader context of the transportation sector. Like housing services, transportation and warehousing services see very low R&D

7 Business and new venture language often orients around these forces, where attractive “unit economics” equates to low costs of producing additional instances of the good or service and attractive “customer acquisition costs” equates to low costs of reaching buyers.
shares of sales (0.06% in Table 1). Yet again like housing services, transportation has recently seen the advent of disruptive, venture-backed business models (e.g., Uber and Lyft) building on digital platforms. While autonomous vehicles are a prominent area of innovative effort, venture-capital is also targeting logistics and warehousing, with many bets on IT-enabled approaches.

Finally, Delgado et al. (this volume) explore the “servicification” in the U.S. economy, investigating elements of the transition from manufacturing to services. Abetted by digitization, innovation and the STEM workforce are increasingly located in business-to-business services. This process can be seen within established firms; for example, in the rise of cloud computing services for companies like IBM. More generally, Delgado et al. study 2,000 large incumbent manufacturing firms and see a marked increasing in the employment of these firms toward business-to-business service activities.

3. Nature’s Opportunities and Constraints

In tackling the cost side of innovation, and its capacity to explain difference across sectors, a fundamental aspect may be the varying technological opportunities that nature provides. For example, digitization and its expanding role are greatly facilitated by Moore’s Law, yet gains in engine efficiency are held back by the Carnot maximum. Viewed in terms of the fixed cost of invention, R&D investments in microprocessors can produce large percentage gains in performance, over and over again, while R&D investments in a new engine design, no matter how large, cannot achieve such substantial gains.

To the extent that technological opportunities vary, observers may be tempted to focus on fields and industries where progress has been profound. Looking backwards through time, sectors where productivity has advanced rapidly have driven economic growth, sectoral dynamics, and social change. Yet this backwards-looking perspective is incomplete. For example, rapid computing advances must increasingly be viewed in the context of an apparent productivity slowdown at the aggregate level. Looking forward, and returning to Baumol’s cost disease, the harder things take on increasing importance. That is, GDP and future progress depend less and less on the sectors we have found relatively easy to advance (like agriculture, manufacturing, or now digital technologies), and increasingly on the sectors that continue to be hard, which make up a growing share of the economy. Nature’s constraints may then ultimately be more important than nature’s bounty, and the difficult problems – in

8 While Moore’s Law is partly endogenous to demand and institutions, it also relies on fundamental technological opportunities among computing technologies.
energy, transportation, construction, health services, education, and government services – only come to matter more.

V. Institutions

If innovation rates come down to fundamental and largely immutable demand and supply features, then altering the progress of different sectors would be largely out of our hands. However, a substantial part of demand and supply side features may depend not only on basic human preferences and natural laws, but also on institutions and policies. This section draws out several institutional roles, with two objectives. First, institutions can help further explain sectoral variation in innovation. Second, institutions can provide explicit mechanisms to advance sectors where needs may be great but innovation lags.

The institutional parts of the innovation system are manifold: They include intellectual property, R&D tax credits, basic research institutions (e.g., the NIH), and anti-trust policy, among others. While surveying this entire landscape is beyond the scope of this essay, there are several institutional features that may help explain sectoral variation and will be emphasized here. These include the role of institutions in influencing innovation incentives, advancing basic research, and achieving scalability.

1. Institutions and appropriability

A basic issue in innovation incentives is appropriability, which governs the capacity of the innovator to capture a significant share of the innovation’s value. In general, appropriability will be low if others can successfully enter and compete using the new idea. The imitator(s) will have a cost advantage over the initial innovator by not having paid the fixed cost of creating the new product or service. With competitive entry reducing post-innovation profits, the initial innovator will see lower returns on the investment and may even face a net loss. Thus, even if the social value of innovations are high, we may expect little innovation if appropriability is low.

Appropriability naturally depends on institutional and market structure features. Consider first intellectual property institutions. Returning to sectoral variation (Table 1), one might imagine that patentability could be an important part of the story. New manufacturing products, as tangible goods, seem especially amenable to receiving patent protection, while service industries and various kinds of business model and service innovations seem less so. Separately, trade secrets may provide effective protection for goods with complex manufacturing processes yet do little for service innovations. Low
R&D in service industries could then in part be a symptom of weak appropriability on the intellectual property dimension.

While patenting is a complex institution with many tradeoffs – e.g. between upstream and downstream innovation (e.g., Scotchmer 1991; Sampat and Williams 2019), and its importance for appropriability appears mixed and sector dependent (e.g., Levin et al. 1987), it seems essential for understanding innovation in some sectors. For example, pharmaceutical innovation typically features very high fixed R&D costs and recouping these costs would be difficult without patent protection (Mansfield 1986). Separately from patents, trade secrets are important means of appropriability in many manufacturing industries (Cohen et al. 2000). Overall, to the extent that patents and trade secrets fit better with manufacturing industries, it is an interesting and open question whether service sector innovation lags in part due to less access to these intellectual property institutions.9

Separate from intellectual property, market structure can influence appropriability. The relationship between market power and innovation is a deep research topic with diverse theoretical and empirical results (e.g., Schumpeter 1942, Arrow 1962, Gilbert and Newbery 1982, Cohen 2010). The net implications of market structure can be difficult to elucidate generally and appear non-linear (e.g., Aghion et al. 2005). Moreover, many theoretical results frame market power in terms of single product firms, which may not fit well with actual business structures in many industries. All this suggests that, in seeking to explain cross-industry variation in innovation, market power reasoning may not provide an obvious or simple perspective. At the same time, different sectors have distinct and more subtle technological and institutional features related to market power that seem relevant to the variation we see.

As one force, market power over a complementary asset may allow a firm to capture value from innovative effort (Teece 1986). One might then expect more innovation from incumbents in sectors where businesses can create market power through complementary assets. For example, taking pharmaceutical firms, advantages in regulatory compliance (through FDA trials) and dominant sales networks (to health providers) can be seen as complementary assets that assist value capture, which may further help explain high R&D investment from incumbents – and why entrants tend to sell themselves to the incumbents (e.g., Gans and Stern 2003). In information technology, network externalities can lead to dominant firms with substantial market shares and market power. A tendency toward winner-take-all competition for digital platforms may help explain both the high level of venture capital devoted to IT

9 See also Moser (2005) for historical evidence that the availability of distinct intellectual property forms affects the direction of innovation.
and also encourage ongoing R&D among the winners (i.e., controlling the winning platform allows ongoing value capture). By the same token however, an incumbent’s dominance of a necessary complementary input may dissuade entry by others, potentially resulting in less innovation and dynamism in the sector.10 The sector-wide effect is ultimately unclear. What is clearer is that certain highly innovative sectors, like pharmaceuticals and information technology, feature incumbent firms with dominant complementary assets. Whether variation in innovation efforts across industries can be explained along these lines is an interesting and open research question.

As another example linking institutions and appropriability, natural monopolies may face innovation challenges through intermediating regulations. Utilities are natural monopolies that appear to see very little R&D (Popp et al. this volume and Table 1). With high fixed costs, electricity distribution, water, and sewage systems (and more classically telecom, cable television, and mail services) do not easily support multiple providers in a single market. Public ownership or price regulation are common institutional responses. However, such institutional intervention can undermine innovation incentives. For example, innovations that lower costs may simply result in lower regulated prices, providing little incentive for the regulated firm to undertake the improvements (e.g., Vickers and Yarrow 1995).

Overall, appropriability issues speak to the basic incentives to innovate. They can provide plausible inroads to understanding industry variation in innovation, and appropriability can in part be mapped into institutional features, including intellectual property and market structure (which becomes an institutional issue through anti-trust policy and other regulatory mechanisms). In part because such policy features can be revised, this lens on industry variation and laggard sectors seems to be a first-order issue for research.

2. Institutions and basic research

Basic research can play important roles in advancing marketplace innovations (e.g., Bush 1945), yet the payoffs are often indirect, with market value found in distant and often unexpected downstream applications (e.g., Ahmadpoor and Jones 2017; Azoulay et al. 2019). Basic research thus exhibits another

10 The bargaining power advantage of the incumbent firm (with the complementary asset) may dissuade entry. However, in a repeated game, reputational considerations may drive the incumbent firm to avoid taking advantage of any specific entrant, because the incumbent firm benefits by acquiring innovations that are complementary to its business and thus wants to encourage entry. Thus it is not obvious that innovative entry is dissuaded. The broad scale of entry by biotechnology firms and information technology firms, and the large scale of acquisitions in these sectors, suggests that the entry incentives are substantial, though of course the counterfactual market structures are not observed and the causal effect of the market structure remains unclear.
form of the appropriability problem, where virtually all the market returns to basic research are in its spillovers and cannot easily be captured by the researcher. Institutions such as the National Institutes of Health (NIH) and the National Science Foundation (NSF) can then play key roles in supporting basic research. Namely, these institutions implement a policy model where funding comes ex-ante, through grants, rather than ex-post, through some market appropriation mechanism.

From an industry point of view, public investment in basic research can be regarded as opening up new technological opportunities. One may then ask whether part of the industry variation in innovation follows from differential public investment in up-stream basic research. For example, U.S. federal government research funding is heavily tilted toward biomedicine through the NIH, which accounts for 44% of federal research funding outside the Department of Defense.\(^\text{11}\) NIH-sponsored research is often directly used by the private sector in developing new medicines and with high returns (e.g., Azoulay et al. 2019). The opportunities this basic research provides might then further help explain the high private sector R&D rates in pharmaceuticals and medicines (Table 1). By contrast with the biomedical sciences, we see much less government-supported basic research in other fields. For example, the R&D funding for the NIH is approximately 6 times, 36 times, and 144 times larger, respectively, compared to R&D funding for the National Science Foundation, Department of Transportation, and Department of Education.

Explaining the low rate of innovation in some sectors through “missing” basic research would be speculative as a primary explanation, but increasing basic research should facilitate progress. And it is striking how little government-funded research occurs for key sectors of the economy. Take education, which is a fundamental force for increasing labor productivity, a key input to the innovative workforce, and a mechanism for intergenerational mobility and individual opportunity (e.g., Biasi et al. this volume; Card 2001; Bell et al. 2019; Jones 2014, Hendricks and Schoellman 2018). Yet education is the target of little public R&D. As another example, transportation and warehousing is a larger sector than pharmaceutical and medicines yet sees much less federally support R&D. And within health, basic research in biomedicine is substantial and mirrored by enormously high rates of private-sector R&D, yet R&D targeted toward the provision of health services in hospitals and nursing homes – a much larger source of expenditure – seems almost absent by comparison.

\(^{11}\) This measure is R&D funding to the Department of Health and Human Services (largely NIH) in FY2018, which shows similar tendencies in other years (Sargent 2020).
Another example is energy research, where U.S. federal support is more substantial than in many areas but still small compared to biomedical research. Beyond the social returns logic that applies to supporting basic research in general (see above), energy generation also calls for public support on further dimensions. First, the private sector will have difficulty marshalling resources towards technology areas with substantial uncertainty over success and extraordinary fixed costs for innovation attempts. Nuclear fusion research, both for its high fixed costs and exploratory nature, then naturally relies on public support. Second, energy markets face an additional externality through fossil fuels and climate change, which suggests an even greater importance of basic research in this sector, here to advance alternative energy production opportunities. Expanding publicly-supported research through the Department of Energy or other institutions thus has natural logics and may be critical for confronting potentially large damages from climate change (e.g., Dell et al. 2014, Acemoglu et al. 2016).

In looking at sectors that see little basic research support, it may be that basic research and private sector R&D are both low due to limited opportunity. For example, perhaps there are fundamental technological opportunity factors that explain the lack of innovative investment in education or health services. Yet, it would be hard to argue that education services or health services in the U.S. could not be improved. The U.S. lags many advanced economics in educational comparisons (e.g. Schleicher 2019). And the U.S. spends twice the share of its GDP on health compared to other advanced economies even as U.S. citizens live substantially shorter lives. One imagines that research to explain these problems and provide solutions could be very high return endeavors.

3. Institutions and Demand

Government institutions can also play roles on the demand side. Whereas basic research can be seen as part of a “technology push” mechanism, government can also create “demand pull” mechanisms. This can occur through direct buyer mechanisms, like advanced purchase commitments, or indirect mechanisms like tax credits for adopting specific new technologies. Governments can also play a role in certification, reducing buyer uncertainty.

As examples of demand-pull policies, one can return to the energy sector, where many policies may have been motivated by direct considerations of negative externalities (from acid rain to greenhouse gases) but where adjusting demand for specific technologies also changes innovation incentives. Notably, for

12 The U.S. spent 17% of GDP on health in 2019 while the average across OECD countries was 8.8% (source: OECD Health Statistics 2020, http://www.oecd.org/els/health-systems/health-data.htm).
directional technology considerations, broad innovation institutions don’t really help: a fossil-fuel innovation (e.g., fracking) can take advantage of patent law or research tax credits just as a clean energy innovation can. Shifting innovation towards technologies with milder negative externalities then requires more specific interventions to tilt innovation effort and incentives (Popp et al., this volume). One approach might be a carbon tax or quota system that asymmetrically raises the price of the more polluting technology. One can also direct energy production technologies with installation credits (e.g., the U.S. Production Tax Credit for wind energy), direct buyer incentives (e.g., the Qualified Plug-In Electric Drive Motor Vehicle Tax Credit), or regulatory mandates (e.g., CAFE standards for automobile efficiency). These approaches are distinct from and can complement technology-push approaches.

Institutions can also play first-order roles in certification, working on the uncertainty dimension of demand. Institutional intervention may be especially important where product and service salience is an issue. As discussed above, the FDA helps prove that new drugs are effective and safe. Reducing buyer uncertainty in this way may then be critical for elevating incentives to engage in drug R&D. The education sector appears again here, as a counterexample. While the U.S. Department of Education has implemented the “What Works Clearinghouse” to collect and publicize information about rigorous assessments of innovations, there remains little systematic effort (or requirement) to engage in rigorous assessment of education tools (Chatterji and Jones 2012). One may then observe that many school systems invest in computers, tablets, and software tools but with little or no evidence that they are superior tools for children’s learning (Biasi et al. this volume). The education sector might be well served by the advent of similar institutions to the FDA, providing pathways for innovators to prove the quality of their new products and services. Rigorous certification can facilitate innovative entry and help schools and schools systems adopt effective innovations.

4. Institutions and Scalability

As discussed above, scalability can be a key attractor for innovative investment. The enormous innovative effort and venture capital orientation towards information services seem to hinge importantly on this logic, where new digital goods can scale cheaply, rapidly, and widely to reach new customers. While scalability in digitization depends importantly on technology fundamentals, in many contexts institutional and regulatory mechanisms also seem first-order.

Health services, as one example, embed privacy regulations that can inhibit data sharing. Such privacy regulations are well-meaning in their own terms, but they also constrain the ability to innovate in health
services through information sharing – innovations that could not only reduce costs but also create health benefits (e.g., by reducing diagnostic and treatment errors). Basic information around prices and outcomes is also hard for would-be innovators to ascertain. The balkanized market structure, complex regulatory layers, and intermixture of public and private insurers further inhibits scalability, and the U.S. health system in the context of the COVID pandemic has betrayed further weaknesses in data collection, testing, and coordination for patient care. By contrast, standard setting organizations in the information technology space have developed extremely successful inter-operability protocols. The opportunity in health services for improvement seems vast.

Education services also face scalability challenges. Privacy regulations for students, which are again well-intended on their own terms, can limit the collection of empirical evidence and the ability to assess educational innovations. State and local regulatory variation, and resource differences, further inhibit scalability. With thousands of different school districts, different views on teaching objectives, and weak evidence, selling new products depends enormously on a business’s salesforce and its network of relationships with school districts. The Common Core State Standards Initiative may then be important not just for raising standards but also for innovation: it creates high-scale targets for pedagogical innovators. This standard setting effort has faced headwinds, however, and efforts at rigorous evaluations of education tools remain much further behind (Chatterji and Jones 2012).

As a notable contrast, the advance of ride-sharing (e.g., Uber) and homestay markets (e.g., Airbnb) developed in the face of existing municipal taxi and hotel regulations. As business models that stood somewhat outside existing regulations, they were able to scale rapidly. Health and education services appear to face stricter restrictions that are hard for innovators to overcome – and an Uber-like approach of asking for forgiveness rather than permission seems less plausible. This suggests that conscious, ex-ante regulatory reform and standard setting may be essential pieces for allowing scalability and encouraging innovation. To the extent that regulations that inhibit scalability have benefits (e.g., for safety or privacy), participatory political processes can allow for greater care in how different dimensions of social welfare are balanced.

VI. Conclusion

The story of growth in advanced economies like the U.S. is one of aggregate steadiness overlaying massive cross-industry differences. This essay, in tandem with the broader volume, has assessed the enormous variation in innovation across industries and collected a range of explanations. The issues at the sectoral level are high stakes. For one, the aggregate steadiness in economic growth has more
recently met headwinds, with the U.S. economy entering an apparently sustained productivity growth slowdown. This slowdown becomes a sector-level issue not only in the obvious sense that macro outcomes are constructed from sectoral outcomes, but more acutely because of dynamics in sectoral GDP shares. Taking a Baumol cost disease perspective, the sectors that fail to progress end up occupying greater shares of GDP. Failures to advance these sectors can then become an economic albatross, calling into question the potential for future growth.

Lagging sectors are also high stakes because they directly limit progress at key challenges. One example is innovation in the energy sector and the capacity to avoid damages from climate change. Other examples are education and health services. Education may the greatest of all general purpose technologies in the sense it creates human capital, a key input to further innovation across the economy. Education also speaks to inequality, where failure to advance the quality of educational services across the economy undermines individual opportunity. Health services in the U.S. meanwhile manage to be extraordinarily expensive by international comparisons even as the U.S. population faces substantially lower life expectancy.

To assess and organize reasons for the large variation in innovative effort and success across sectors, this essay has used a three-part framework emphasizing demand, supply, and institutions. Plausibly strong forces exist within each dimension. However, whereas forces rooted in fundamental preferences and natural laws may be important, institutional forces are more elastic to change and therefore of more practical relevance. This essay has therefore highlighted a number of institutional roles in furthering innovation. The emphasis has been on institutional features that vary across sectors, from basic research support to regulation to appropriability regimes. While the analysis is necessarily incomplete, the frameworks and sectoral examples suggest fruitful opportunities for policy. Assessing policy options in detail and continuing to unpack the sources of cross-sector innovation differences are critical areas for future research.

Ultimately, innovation comes down to the opportunities and incentives facing individuals, firms, and investors. Naturally, innovative agents gravitate toward sectors with larger opportunities, which today appear especially in biomedicine and information-technology areas. But from a social progress point of view, innovators, policymakers, and scholars need to think not just about “the room where it happens” but about “the rooms where it doesn’t happen.” If the dearth of innovative activity in some industries is due to a fundamental lack of technological opportunities, than the current allocation of effort across sectors may be appropriate. But innovation is an environment with large spillovers and market failures, and
uneven institutions, so that there is little reason to think that we have an efficient allocation. The overarching observation in this essay is that we need to pay substantial policy and research attention to these other rooms, because they matter, and because there are many policy instruments that could elevate innovation and attack the essential problems these sectors pose.
References

Schumpeter, Joseph (1942). *Capitalism, Socialism, and Democracy*.

Table 1: Variation in R&D Intensity: Examples

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Industry</th>
<th>NAICS</th>
<th>R&D ($ billions)</th>
<th>Sales ($ billions)</th>
<th>R&D / Sales (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing (1)</td>
<td>Manufacturing</td>
<td>31-33</td>
<td>306.6</td>
<td>7,484</td>
<td>4.08%</td>
</tr>
<tr>
<td>Information Technology (2, 7)</td>
<td>Information</td>
<td>51</td>
<td>86.0</td>
<td>1,498c</td>
<td>5.74%</td>
</tr>
<tr>
<td></td>
<td>Computer and electronic products</td>
<td>334</td>
<td>90.9</td>
<td>1,267</td>
<td>7.18%</td>
</tr>
<tr>
<td>Energy (3)</td>
<td>Mining, extraction, and support activities</td>
<td>21</td>
<td>3.5</td>
<td>487</td>
<td>0.72%</td>
</tr>
<tr>
<td></td>
<td>Utilities</td>
<td>22</td>
<td>0.3</td>
<td>570c</td>
<td>0.06%</td>
</tr>
<tr>
<td></td>
<td>Engines, turbines, and power transmission equipment</td>
<td>3336</td>
<td>2.3</td>
<td>52</td>
<td>4.40%</td>
</tr>
<tr>
<td>Agriculture (4)</td>
<td>Agriculture a</td>
<td>-</td>
<td>5.6</td>
<td>214</td>
<td>2.63%</td>
</tr>
<tr>
<td>Education (8)</td>
<td>Education b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.20%</td>
</tr>
<tr>
<td>Housing (10)</td>
<td>Real estate and rental and leasing</td>
<td>53</td>
<td>0.5</td>
<td>633c</td>
<td>0.08%</td>
</tr>
<tr>
<td>Health Care (11)</td>
<td>Health Services</td>
<td>621-623</td>
<td>1.0</td>
<td>2,254c</td>
<td>0.04%</td>
</tr>
<tr>
<td></td>
<td>Pharmaceuticals and medicines</td>
<td>3254</td>
<td>99.3</td>
<td>767</td>
<td>12.94%</td>
</tr>
<tr>
<td>Transportation (12)</td>
<td>Transportation and warehousing</td>
<td>48-49</td>
<td>0.5</td>
<td>876c</td>
<td>0.06%</td>
</tr>
<tr>
<td></td>
<td>Automobiles, bodies, trailers, and parts</td>
<td>3361-63</td>
<td>28.2</td>
<td>1,134</td>
<td>2.49%</td>
</tr>
<tr>
<td></td>
<td>Aircraft, aircraft engines, and aircraft parts</td>
<td>336411-13</td>
<td>14.1</td>
<td>394</td>
<td>3.58%</td>
</tr>
</tbody>
</table>

Notes: R&D expenditure is primarily taken from the Business R&D and Innovation Survey (BRDIS). This R&D is worldwide R&D performed or funded by U.S. private sector companies with at least 5 employees. Worldwide sales are primarily taken from BRDIS. The data year is 2016. Exceptions as noted are (a) agriculture, where data is taken from Alston and Pardey (this volume); (b) education, where the data is taken from the President’s Council of Advisors on Science and Technology (2010); and (c) service industries, where R&D expenditure is still taken from BRDIS but sales are taken from the U.S. Census’s Service Annual Survey (2016).
Figure 1: The Evolution of Sectoral GDP Shares

A. Manufacturing, Agriculture, and Other Private Industries

B. Health, Education, and Finance, Insurance, and Real Estate