Contributors

anthony lising antonio
School of Education
Stanford University
Stanford, CA 94305

Stephen R. Barley
Technology Management Program
College of Engineering
University of California, Santa Barbara
1320 Phelps Hall
Santa Barbara, CA 93106-5129

Erling Barth
Institute for Social Research
PO Box 3233 Elisenberg
N-0208 Oslo, Norway

Samantha R. Brunhaver
The Polytechnic School
Ira A. Fulton Schools of Engineering
Arizona State University
7171 E. Sonoran Arroyo Mall
Mesa, AZ 85212

Helen L. Chen
Designing Education Lab
Office of the Registrar, Wallenberg Hall
Stanford University
450 Serra Mall, Building 160
Stanford, CA 94305-2055

James C. Davis
Boston Federal Statistical Research Data Center
National Bureau of Economic Research
1050 Massachusetts Avenue
Cambridge, MA 02138

Richard B. Freeman
National Bureau of Economic Research
1050 Massachusetts Avenue
Cambridge, MA 02138

Shannon K. Gilmartin
The Michelle R. Clayman Institute for Gender Research
Stanford University
589 Capistrano Way
Stanford, CA 94305-8640

Susan Helper
Weatherhead School of Management
Case Western Reserve University
11119 Bellflower Road
Cleveland, OH 44106-7235

Ron Hira
Department of Political Science
Howard University
Washington, DC 20059
Yoon Sun Hur
Korea Institute for International
Economic Policy (KIEP)
[30147] Building C, Sejong National
Research Complex, 370
Sicheong-Daero, Sejong-si, Korea

Morris M. Kleiner
University of Minnesota
Humphrey School of Public Affairs
260 Humphrey Center
301 19th Street South
Minneapolis, MN 55455

Russell F. Korte
Department of Human Organizational
Learning
Graduate School of Education and
Human Development
The George Washington University
2134 G St NW
Washington, DC 20037

Jennifer Kuan
A. B. Freeman School of Business
Goldring/Woldenberg Hall
Tulane University
7 McAlister Drive
New Orleans, LA 70118-5698

Daniel Kuehn
The Urban Institute
2100 M Street, NW
Washington, DC 20037

Leonard Lynn
Weatherhead School of Management
Case Western Reserve University
10900 Euclid Avenue
Cleveland, OH 44106-7235

Hal Salzman
E. J. Bloustein School of Planning &
Public Policy
J. J. Heldrich Center for Workforce
Development
Rutgers University
New Brunswick, NJ 08901

Sheri D. Sheppard
Department of Mechanical
Engineering
Peterson Building (550)
Stanford University
Stanford, CA 94305-4021

Andrew J. Wang
National Bureau of Economic
Research
1050 Massachusetts Avenue
Cambridge, MA 02138

Yingchun Wang
Davies College of Business
University of Houston, Downtown
One Main Street
Houston, TX 77002

Catherine J. Weinberger
Institute for Social, Behavioral and
Economic Research (ISBER)
University of California
Santa Barbara, CA 93106-2150
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abcarian, R.</td>
<td>90</td>
</tr>
<tr>
<td>Abowd, J. M.</td>
<td>186</td>
</tr>
<tr>
<td>Abraham, K. G.</td>
<td>248n5</td>
</tr>
<tr>
<td>Acs, Z. J.</td>
<td>201</td>
</tr>
<tr>
<td>Adelman, C.</td>
<td>50n3</td>
</tr>
<tr>
<td>Alden, J. D.</td>
<td>96</td>
</tr>
<tr>
<td>Allen, R. G. D.</td>
<td>11</td>
</tr>
<tr>
<td>Almond, D.</td>
<td>114n32</td>
</tr>
<tr>
<td>Amelink, C. T.</td>
<td>50n4</td>
</tr>
<tr>
<td>Anderson, K.</td>
<td>132, 154</td>
</tr>
<tr>
<td>Aragon, F.</td>
<td>247</td>
</tr>
<tr>
<td>Arjmand, O.</td>
<td>112</td>
</tr>
<tr>
<td>Arrow, K.</td>
<td>2, 12</td>
</tr>
<tr>
<td>Astin, A. W.</td>
<td>56, 76</td>
</tr>
<tr>
<td>Atkinson, R. C.</td>
<td>33, 34</td>
</tr>
<tr>
<td>Atkinson, R. D.</td>
<td>206n6</td>
</tr>
<tr>
<td>Atman, C. J.</td>
<td>50n3, 51, 130, 131, 132, 133n5, 155</td>
</tr>
<tr>
<td>Audretsch, D. B.</td>
<td>201</td>
</tr>
<tr>
<td>Babco, E. L.</td>
<td>102, 130</td>
</tr>
<tr>
<td>Bailyn, L.</td>
<td>151n9</td>
</tr>
<tr>
<td>Baker, R.</td>
<td>56, 76</td>
</tr>
<tr>
<td>Bankel, J.</td>
<td>131</td>
</tr>
<tr>
<td>Barth, E.</td>
<td>180</td>
</tr>
<tr>
<td>Benbow, C.</td>
<td>112</td>
</tr>
<tr>
<td>Benson, D.</td>
<td>206</td>
</tr>
<tr>
<td>Besterfield-Sacre, M. E.</td>
<td>50n3, 129, 130, 136</td>
</tr>
<tr>
<td>Biddle, J.</td>
<td>27</td>
</tr>
<tr>
<td>Binkin, M.</td>
<td>34</td>
</tr>
<tr>
<td>Bix, A. S.</td>
<td>90, 109n30</td>
</tr>
<tr>
<td>Bjorklund, S. A.</td>
<td>76, 150, 151n8, 153</td>
</tr>
<tr>
<td>Black, D.</td>
<td>247</td>
</tr>
<tr>
<td>Blackwell, J. E.</td>
<td>91, 92, 93, 94, 102n26</td>
</tr>
<tr>
<td>Blackwell, T.</td>
<td>273</td>
</tr>
<tr>
<td>Blakemore, A. E.</td>
<td>112</td>
</tr>
<tr>
<td>Blank, D.</td>
<td>1, 12</td>
</tr>
<tr>
<td>Boldrin, M.</td>
<td>201</td>
</tr>
<tr>
<td>Bomey, N.</td>
<td>263</td>
</tr>
<tr>
<td>Bound, J.</td>
<td>114n32</td>
</tr>
<tr>
<td>Bowen, W.</td>
<td>112</td>
</tr>
<tr>
<td>Bradburn, E. M.</td>
<td>51</td>
</tr>
<tr>
<td>Bradley, J.</td>
<td>273</td>
</tr>
<tr>
<td>Brainard, S. G.</td>
<td>50n3</td>
</tr>
<tr>
<td>Brawner, C. E.</td>
<td>73</td>
</tr>
<tr>
<td>Brinegar, P.</td>
<td>218</td>
</tr>
<tr>
<td>Brown, C.</td>
<td>35, 112</td>
</tr>
<tr>
<td>Brown, J. S.</td>
<td>152</td>
</tr>
<tr>
<td>Brunhaver, S.</td>
<td>75, 76, 147, 156n11</td>
</tr>
<tr>
<td>Bryk, A. S.</td>
<td>52</td>
</tr>
<tr>
<td>Bucciarelli, L. L.</td>
<td>151n9</td>
</tr>
<tr>
<td>Burt, B. A.</td>
<td>90</td>
</tr>
<tr>
<td>Busch-Vishniac, I. J.</td>
<td>136</td>
</tr>
<tr>
<td>Bush, V.</td>
<td>11</td>
</tr>
<tr>
<td>Butler, J. S.</td>
<td>90</td>
</tr>
<tr>
<td>Campbell, S. E.</td>
<td>76, 150, 151n8, 153</td>
</tr>
<tr>
<td>Capobianco, B. M.</td>
<td>150, 154</td>
</tr>
<tr>
<td>Cappelli, P.</td>
<td>156</td>
</tr>
<tr>
<td>Capron, W.</td>
<td>2, 12</td>
</tr>
<tr>
<td>Card, D.</td>
<td>102, 114n32</td>
</tr>
<tr>
<td>Carey, P.</td>
<td>96n16</td>
</tr>
<tr>
<td>Carlin, L.</td>
<td>50n3</td>
</tr>
</tbody>
</table>
Author Index

Carnevale, A. P., 76
Carrington, W., 247
Carroll, C. D., 51
Caylor, E., 155
Chait, R., 33, 34n19
Chatterjee, S., 274
Chay, K. Y., 114n32
Cheah, B., 76
Chen, H. L., 51
Choy, S. P., 51
Chubin, D., 102, 130
Clark, M., 50n2, 51
Clay, K., 247
Cohen, W. M., 200, 201
Colbeck, C. L., 76, 150, 151n8, 153
Colby, A., 156
Collins, A., 152
Conrad, C., 94
Constantine, J., 116
Cooke, M., 156
Corcoran, M., 112
Creamer, E. G., 50n4
Creswell, J. W., 136
Cunningham, C. M., 150
Currie, J., 114n32
Darby, M., 2
Dauffenbach, R., 112
Diefes-Dux, H. A., 150
DiFilippo, A., 33, 34, 35, 36n21
Donaldson, K., 51
Douglas, E. P., 153n10
Downing, L. K., 96n16
D’Souza, S., 274
Duderstadt, J., 129, 130
Dunlop, J. T., 217
Dunsmore, K., 131, 153n10
Dym, C. L., 153
Ehrenberg, R. G., 90
Eide, E., 112
Eliot, M., 153n10
Eraut, M., 132n2, 133n4
Eris, O., 50n3
Ezell, S. J., 206n6
Fairman, K., 172n9
Farrell, D., 246n4
Fernandez, I., 265
Fiorito, J., 112
Folk, H., 217
Forrest Cataldi, E., 51
Fort, T. C., 186

Foster, L., 186
Fox, J. R., 21n13, 33
Franklin, K., 90
Freeman, R. B., 2, 3, 12, 25, 94, 114n32, 119, 119n35, 217
Frehill, L., 51
Friedman, M., 233
Fries-Britt, S., 90
Froyd, J. E., 152
Fryer, R., 116

Gallucci, M., 252n9
Garces, E., 114n32
Garrison, L., 56
Gibson, G., Jr., 25
Gittleman, M., 220, 230, 233
Goble, W., 154
Goldin, C., 89
Gomes, S., 102
Goodman, J., 119n34
Goolsbee, A., 2
Goroff, D., 3
Grant, A., 246n4
Greenan, N., 180, 188, 188n15
Greenstone, M., 114n32, 116
Griliches, Z., 2, 175
Grim, C., 186
Grohowski-Nicometo, C., 132
Grose, T. K., 154
Grossman, P. L., 152
Guiibeau, E., 154
Guryan, J., 114n32

Haag, S., 154
Haber, S., 220
Hall, B. H., 2, 175
Haltiwanger, J., 186
Hamm, S., 265
Hansen, W. L., 12, 217
Helper, S., 167, 194n3, 195, 206, 209
Henderson, R., 195
Hennessy-Fiske, M., 265
Henry, D., 34
Herbst, M., 265, 271
Herrera, F. A., 71, 74
Hewitt, N. M., 50
Hiatt, F., 33, 34
Hill, D., 258
Hill, J., 89, 90
Hira, A., 270n7, 273
Hira, R., 270n7
Hirsch, B. T., 218
Holditch, S. A., 258
Holm, A., 152
Howard, L., 273
Hoynes, H. W., 114n32
Huang, G., 50n3
Huberman, A. M., 136
Humphrey, H., 91
Humphreys, M. A., 131
Hunt, J., 3
Hurtado, S., 71, 83
Irby, D. M., 156
Isaacson, W., 245
James, W., 169
Jamieson, L. H., 129, 151, 152, 154
Jarosz, J. P., 136
Johnson, D. W., 153
Johnson, R. C., 114n32
Johnson, R. T., 153
Jones, D. T., 206
Jones, E. A., 145
Jones, R., 247
Jordan, W., 132, 147, 156n11
Joy, L., 90, 112, 119n35
Kaiser, D., 21
Kane, T., 90
Katz, L. F., 89
Kemp, J., 257
Klasik, D., 56, 76
Kleiner, M. M., 218, 220, 230, 231, 233
Klepper, S., 200
Klimek, S. D., 186
Knafl, G., 136
Knight, D. B., 136
Knittel, C. R., 193n1
Korte, R. F., 132, 142, 147, 154, 155, 156n11
Kotys-Schwartz, D., 50n4
Krueger, A. B., 114n32, 218, 231
Kruse, M., 273
Kuan, J., 167
Kudrle, R., 218, 231
Kuehn, D., 6, 18
Kuhn, S., 151n9
Lachapelle, C., 150
Landis, R. B., 90
Lassetter, S., 259
Lattuca, L. R., 130, 131, 132, 151, 152
Leiponen, A., 201
Levin, R. C., 194
Levine, D. K., 201
Levy, F., 112
Lewis, H. G., 230, 233
Lichtenberg, F., 2
Lichtenstein, G., 56, 130, 155
Linden, G., 35
Lindgren-Streicher, A., 150
Litzinger, T., 152, 153n10
Lohmann, J. R., 129, 151, 152, 154
Lohr, S., 274
Lord, S. M., 50n3
Low, S. A., 112
Lowell, B. L., 6, 12n2, 18, 51, 71, 130, 245, 246n4, 266
Lusterman, S., 91, 91n7, 92, 93, 119
Lynn, L., 2, 7, 12n2, 75, 130, 245n2, 246
MacDuffie, J. P., 206
Macpherson, D. A., 218
Mairesse, J., 2, 175, 180, 188, 188n15
Malison, A. F., 35
Marchand, J., 247
Margo, R. A., 247
Margolis, J., 50n4
Marshall, R., 265
Matsch, L. A., 129
Matusovich, H. M., 130
May, G. S., 102, 130
Mazumder, B., 114n32
McDougall, P., 274
McGee, M. K., 267
McGourty, J., 129, 130, 136
McKinnish, T., 247
McMasters, J. H., 129
McNair, L. D., 153
McPherson, M. S., 21
Medeiros, G. W., 16
Meier, R. L., 131
Meiksins, P., 247
Melton, M., 76
Miles, M. B., 136
Mills, B. F., 102
Miranda, L., 93
Mohnen, P., 2, 175
Moretti, E., 114n32
Moris, F., 35
Murnane, R. J., 112
Mykerezi, E., 102
Nathans-Kelly, T., 132
Nettles, M., 90
O’Brien, B., 156
Ohland, M. W., 50n3, 152
Oliver, R., 34
Oseguera, L., 56, 76
Oware, E., 150

Padulo, L., 92n11
Paglin, M., 112
Parsons, C. K., 155
Passow, H. J., 132
Patton, M. Q., 134
Pavitt, K., 201
Pawley, A. L., 150
Perloff, J. M., 222
Perlow, L., 151n9
Perna, L. W., 76n19
Petrides, L. A., 73
Pierre, P., 90, 91n7, 92, 93, 93n12
Prince, M., 153
Pruitt, A. S., 88, 89
Puzzanghera, J., 265
Raelin, J. A., 154, 155
Raudenbush, S. W., 52
Reardon, S. F., 56, 76
Reese, C., 51
Regets, M. C., 51
Ro, H. K., 50n4
Roberts, K., 27
Robson, M., 201
Robst, J., 51
Romer, P., 2
Roos, D., 206
Rose, S. J., 76
Rosen, S., 12
Rosenberg, N., 194
Rosin, M. S., 130
Rothstein, D. S., 90
Rouse, C. E., 76n19
Royster, D. A., 112
Rubin, D. K., 222
Rubin, M., 258
Rud, J. P., 247
Rufolo, A. M., 112
Ruiz, E., 93
Russell, J., 220
Ryoo, J., 12

Sako, M., 209
Saline, L. E., 93
Salzman, H., 6, 7, 12n2, 18, 19n12, 75, 130, 151, 152, 245, 245n1, 245n2, 246, 246n4
Sandelowski, M., 136
Sanders, S., 247
Saunders, B., 259
Saxenian, A., 35
Schanzenbach, D. W., 114n32
Schmitt, K., 218
Schmookler, J., 206
Schneller, R. J., 91n8
Seering, W., 131, 131n1, 132
Seymour, E., 50n3
Shauk, Z., 257
Shauman, K. A., 112
Sheppard, S. D., 49, 50n4, 51, 51n6, 53, 54n9, 71, 72, 73, 74, 76, 77, 77n20, 129, 130, 131, 132, 133, 134, 147, 151n9, 152, 153n10, 154, 156n11
Shuman, L. J., 50n3, 129, 130, 136
Sibulkin, A. E., 90
Simmons, H. S., 155
Singh, S., 272
Slaughter, J. B., 90, 92, 105n28
Smith, C., 247
Smith, J. S., 91
Smith, K. A., 153
Stake, R. E., 136
Stein, C., 169
Steinmueller, E., 194
Stigler, G., 1, 12
Stouffer, W. B., 220
Strassner, E. H., 16
Strohl, J., 76
Sullivan, W. M., 130, 156
Taddese, N., 50n3
Takeishi, A., 209
Teitelbaum, M., 2, 12, 12n2, 245n1, 246
Terenzini, P. T., 130, 131, 151, 152
Thomas, B., 11
Thomas, D., 114n32
Tilli, S., 133n4
Titus, M. A., 56, 76
Todd, R., 218
Toppo, G., 265
Townsend, J., 201
Treisman, U., 90
Trent, W., 89, 90
Trevileyan, J., 130, 132n2, 133n4, 151n9, 152
Tuchman, J. L., 222
Turner, S., 112
Turns, J., 131, 153n10
Vest, C. M., 130
Voils, C. I., 136
Volkwein, J. F., 130, 131, 151, 152
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter, E.</td>
<td>50n3</td>
</tr>
<tr>
<td>Warnke, J.</td>
<td>35</td>
</tr>
<tr>
<td>Weaver, A.</td>
<td>252n9, 259</td>
</tr>
<tr>
<td>Weinberg, M.</td>
<td>88, 89n3</td>
</tr>
<tr>
<td>Weinberger, C. J.</td>
<td>90, 112, 114n32, 119n35</td>
</tr>
<tr>
<td>Weinstein, E.</td>
<td>2</td>
</tr>
<tr>
<td>Wharton, D. E.</td>
<td>96n16</td>
</tr>
<tr>
<td>Willet, J. B.</td>
<td>112</td>
</tr>
<tr>
<td>Williams, C.</td>
<td>91n8</td>
</tr>
<tr>
<td>Williams, M. R.</td>
<td>131</td>
</tr>
<tr>
<td>Witherell, C.</td>
<td>91n9</td>
</tr>
<tr>
<td>Womack, J. P.</td>
<td>206</td>
</tr>
<tr>
<td>Woods, D. R.</td>
<td>153</td>
</tr>
<tr>
<td>Xie, Y.</td>
<td>112</td>
</tr>
<tr>
<td>Yasar, S.</td>
<td>150</td>
</tr>
<tr>
<td>Yellin, J. M.</td>
<td>131, 153n10</td>
</tr>
<tr>
<td>Yin, R. K.</td>
<td>136</td>
</tr>
<tr>
<td>Yuskavage, R. E.</td>
<td>16</td>
</tr>
<tr>
<td>Ziedonis, R.</td>
<td>206</td>
</tr>
</tbody>
</table>
Subject Index

Page numbers followed by “f” or “t” refer to figures or tables respectively.

Academic Pathways of People Learning Engineering Survey (APPLES), 49–52, 57, 71–72, 132
Academic Pathways Study (APS), 132, 133 aerospace engineers, 13–14; as component of technology innovation, 14 African American engineers, 92–94; access to education for, 94–105 African American women, access to engineering and computer science for, 109–12 Aligning Educational Experiences with Ways of Knowing Engineering (AWAKEN), 131–32 American Society of Civil Engineers (ASCE), licensing and, 220
APPLES (Academic Pathways of People Learning Engineering Survey), 49–52, 57, 71–72, 132 automotive supply chains, 193–95; description of, 196–200; engineering interactivity in, 206–13; identifying firms in, 195–96; interactivity of engineers in, 206–10; types of engineering activity in, 200–205 bachelor’s degrees, engineering: female share of, 41t; race and ethnicity composition of, 40t; trends in, 28–38 bioengineering, 68–70 Bush, Vannevar, 11, 21 Carnegie Classification, 78–79 Center for the Advancement of Engineering Education (CAEE), 50n2, 51 certification, as form of regulation, 218 civil engineering majors, 68 civil engineers, 13, 14 computer science education: analysis of access to, 105–9; entry of African American women to, 109–12
Crotonville speech, 91–92

data sources, for demand for engineers, 12–13 Demand and Supply of Scientific Personnel, The (Blank and Stigler), 1 demographics, engineering education, 39–41 engineering education: analysis of access to, 94–105; bachelor’s degree trends, 28–38; demographics, 39–41; entry of African American women to, 109–12; graduate degree trends, 38–39; graduates, 1966–2013, 29f; minorities and, 94–105; 1970s intervention for black students, 91–94; supply of new engineers and, 27–28. See also engineering students, undergraduate; HBCUs (historically black colleges and universities) engineering interactivity, in automotive supply chains, 206–13
engineering labor markets: analysis of demand and supply sides of, 3; demand and supply side of, 4; dynamics of, 243–44; institutional structures and, 7–8; operation of, 4; responsiveness of, to changes in demand, 246–47, 253–54; retirement and, 25–28; role of, and undergraduate engineering students, 67; shortage and mismatch claims and, 244–47; shortage fears and, 12; supply issues of, 3. See also engineering workforce; petroleum engineers/engineering

engineering pathways, student-level factors in, 74–77

Engineering Pathways Study (EPS), 133 engineering practice, 129–30; background studies of, 131–36; changing expectations for, 147–49; findings of changing views of, 143–47; findings of knowledge and skills in, 138–43; methodology of interview analysis for, 136–37; summary and implications of findings for, 149–56

engineering programs, 129–30; studies of, 131–36

engineering students, undergraduate, 49–51; average median salaries of, by occupational categories, 64t; data for study of, 51–57; early career paths of, 70–72; findings on postgraduation plans of, 57–70, 58t, 59t, 73–74; labor market outcomes, 112–19; results of multinomial logit models of postgraduation plans of, 61–62t; role of labor market and, 67; role of major field of study and, 67–70, 73–74; role of SES and, 65–67, 66t. See also HBCUs (historically black colleges and universities)

engineering workforce: data sources for demand for, 12–13; in federal government, 22–25, 23t; in state and local governments, 23t, 24. See also engineering labor markets; engineers

engineers: bachelor’s degree trends, 28–38, 30f; composition of, by federal government, 23t; composition of, by state and local governments, 23t; concentration in manufacturing sector of, 16; decline in unionization for, 218, 219f; defined, 13; demand for, 13–17; early career paths of, 70–72; earnings and, 181–85; effect of pass rates on hours worked by, 240t; employed in engineering, 18–19; employment of, by occupation, 20f; employment patterns of, 14–16, 15t; engineering education and supply of new, 27–28; in establishment production function, 175–80; fears of shortages of, 11–12; at goods- and services-producing establishments, 169–75; government demand for, 19–25; government regulation of, 220–22; graduate degree trends, 38–39; graduate trends by level of degree award, 28–29; industrial sectors employing, 17t; influence of professional exams and hours worked by, 239t; influence of professional exams and pass rates on wage determination of, 233, 234t, 235t, 236t; licensing of (see licensing, occupational); in manufacturing sector, 16 (see also manufacturing establishments); minorities and, 92–94; non-R&D, 6–7; percentage licensed by specialty, 1995 and 2012, 221, 221t; in PSTS industry, 16–17; retirement and replacement demand for, 25–27; role of, 11–12; salaries of, 17–19, 18t; supply of, in U.S. labor market, and economic conditions, 5–6; unionization and, 218, 219f. See also petroleum engineers/engineering

EPS (Engineering Pathways Study), 133 exams, professional, influence of, on wages and hours worked by, 239t; influence of professional exams and pass rates on wage determination of, 238t; influence of professional exams on wages and hours of, 233, 234t, 235t, 236t; licensing of (see licensing, occupational); in manufacturing sector, 16 (see also manufacturing establishments); minorities and, 92–94; non-R&D, 6–7; percentage licensed by specialty, 1995 and 2012, 221, 221t; in PSTS industry, 16–17; retirement and replacement demand for, 25–27; role of, 11–12; salaries of, 17–19, 18t; supply of, in U.S. labor market, and economic conditions, 5–6; unionization and, 218, 219f. See also petroleum engineers/engineering

federal government engineering workforce, 22–24, 23t; data sources for, 24; future demand for, 24–25

finite element analysis (FEA), 207–8

Fiorina, Carly, 263

foreign students, in engineering programs, 40–51

foreign workers, dependency on, 254–56

FTE (full-time equivalent) work, scientist and engineer, 171

goods- and services-producing establishments, scientists and engineers at, 169–75
government: demand for engineers by, 19–
Subject Index

labor markets. See engineering labor markets
licensing, occupational: advantages of,
217–18; basic theory of, 222–23; data,
model, and estimation for, 224–33,
234–35t, 236t; elements for, 221–22;
elements in development of index for,
224t; evolution and anatomy of, for
engineers, 220–22; as form of regu-
lation, 218–19; forms of, 218–19; as
growing policy issue, 218; U.S. labor
market and, 218

Liveris, Andrew, 245

majors, undergraduate, role of, and under-
graduate engineering students, 67–70,
73–74

manufacturing establishments: data set for,
173–75; mean value of selected vari-
ables for, 174t; reasons for studying, 168

manufacturing sector, engineers in, 16

Marshall, Ray, 265

master’s degrees, engineering, trends in,
38–39, 39t

Graham, Daniel, 33

green cards. See permanent resident vs.
guest worker status
guest workers, status, vs. permanent resi-
dents, 264–65
guest worker visas, 264

HBCUs (historically black colleges and uni-
versities), 87–88; educational opportu-
nities in engineering and, 89–90; gradu-
ates in STEM fields and, 3; graduation
rates of, 90; historical context of, 88–
90; STEM occupations and, 3; support-
ive environments of, 90–91. See also
engineering education
hierarchical linear modeling (HLM) tech-
niques, 52–53
higher education, U.S.: infrastructure of,
88–91; 1970s intervention for, 91–94
historically black colleges and universities.
See HBCUs (historically black colleges
and universities)
H-1B visas, 8, 263–64; data on, 266–67;
defined, 266; different uses of, 267–68;
employment rights of holders of, 264–
65; exploitation of holders of, 265; vs.
permanent residence visas, 264–65; rea-
sons offshoring firms rely on, 272–74;
as source of skilled-permanent immi-
grantion, 265; top twenty employers
using, 269t; use of, by offshoring firms
vs. product firms, 268–70

immigration, employment-based, four-step
process for, 267. See also H-1B visas
immigration yields, of offshoring firms vs.
product firms, 268–70, 271t
industrial engineering, 68
innovation, technology, aerospace engineers
as component of, 14
institutional structures, variation in ways
education and labor markets affected
by, 7–8

Jensen, Ron, 244–45
Jobs, Steve, 245

knowledge overlap, 209–10

offshoring firms: highest level of education
for H-1B workers, 279t; immigration
yields of, 270–72, 271t; reasons for re-
lying on H-1B programs by, 272–74;
top source country for H-1B workers,
277–78, 277t; use of H-1B visas by, vs.
product firms, 268–70; wage distribu-
tion, 275t. See also product firms
Padulo, Louis, 92, 92n11
PERM (Program Electronic Review Management) database, 266–67
permanent resident vs. guest worker status, 264–65
petroleum engineers/engineering, 244, 251f; age distribution, 252–53, 253f; defined, 247; degrees awarded by temporary visa status, 256; dependencies on domestic or foreign-student supply and, 254–57; employment, 251–53, 252f; formal start of, 247–48; future of, 257–60; market signals/responses and, 249–54; salaries, 250–51; temporary visa share of degrees awarded, 255–56, 255f; Trans-Alaska Pipeline and, 249–50. See also engineering labor markets; engineers
Pierre, Percy, 92
Planning Commission for Expanding Minority Opportunities in Engineering, 92–93
product firms: highest level of education for H-1B workers, 280t; immigration yields of, 274t; top source country for H-1B workers, 277–78, 278t; use of H-1B visas by, vs. offshoring firms, 268–70; wage distribution, 274–77, 276t. See also offshoring firms
professional, scientific, and technical services (PSTS) industry, engineers in, 16–17
professional exams, influence of, on wages and hours of engineers, 233, 234t, 235t, 236t
Program Electronic Review Management (PERM) database, 266–67
Prototyping the Engineer of 2020 (P2P) study, 132
PSTS (Professional, scientific, and technical services) industry, engineers in, 16–17
R&D (research and development): productivity and, 2–3; productivity of engineers and scientists outside of, 6–7; registration, as form of regulation, 218; regulation, occupational, forms of, 218–19. See also licensing, occupational replacement demand, engineering labor market and, 25–27
retirement, engineering labor market and, 25–28
Rising above the Gathering Storm (National Research Council), 12, 12n2
salaries, of engineering graduates, 17–18, 18t. See also wage determinations, influence of professional exams and pass rates on; wage distributions
Saline, Lindon, 92
science, technology, engineering, and mathematics (STEM) occupations. See STEM (science, technology, engineering, and mathematics) occupations
scientist and engineer full-time equivalent (FTE) work, 171
scientists and engineers proportion (SEP), of employment, 172–73; earnings of, 181–85; production function for, 175–80; productivity and, 167–68; in R&D and non-R&D activities for all industries, 2013, 169–70, 170t
Scientists and Engineers Statistical Data System (SESTAT), 170–71
SEP. See scientists and engineers proportion (SEP), of employment
SESTAT (Scientists and Engineers Statistical Data System), 170–71
shortages: as central issue in labor market analyses, 1–2; fears of, 11–12
Smith, J. Stanford, 91
socioeconomic status (SES), role of, and undergraduate engineering students, 65–67, 66t
state and local government engineering workforce, 23t, 24
STEM (science, technology, engineering, and mathematics) occupations: engineers in, 18–19; HBCUs and, 3; importance of immigrants and women in, 3; shortages in, 1–2; state of labor market for, 1–2
students, engineering. See engineering students, undergraduate
technology innovation, aerospace engineers as component of, 14
Teller, Edward, 33
Trans-Alaska Pipeline, 249–50
undergraduate engineering students. See engineering students, undergraduate
underrepresented minority (URM) women, postgraduation plans of, 74–75
unionization, 218, 219f

value analysis/value engineering (VAVE), 207–9

wage determinations, influence of professional exams and pass rates on, 238t
wage distributions: of offshoring firms, 274–77, 275t; of product firms, 274–77, 276t
workforce, engineering: in federal government, 22–25, 23t; in state and local governments, 23t, 24. See also engineers

visas. See H-1B visas