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15.1. Introduction

One of the more pressing problems facing statistical agencies and eco-
nomic analysts is the new goods (and services) problem—that is, how should 
the introduction of new products and the disappearance of (possibly) obso-
lete products be treated in the context of forming a consumer price index? 
Hicks (1940) suggested a general approach to this measurement problem in 
the context of the economic approach to index number theory. His approach 
was to apply normal index number theory but estimate hypothetical prices 
that would induce utility- maximizing purchasers of a related group of prod-
ucts to demand 0 units of unavailable products.1 With these reservation (or 

1. “The same kind of device can be used in another diffi  cult case, that in which new sorts of 
goods are introduced in the interval between the two situations we are comparing. If  certain 
goods are available in the II situation which were not available in the I situation, the p1’s cor-
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virtual2) prices in hand, one can just apply normal index number theory 
using the augmented price data and the observed quantity data. The practi-
cal problem facing statistical agencies is: how exactly are these reservation 
prices to be estimated?

Following up on the contribution of  Hicks, many authors developed 
bounds or rough approximations to the bias that might result from omitting 
the contribution of new goods in the consumer price index context. Thus 
Rothbarth (1941) attempted to fi nd some bounds for the bias while Hofsten 
(1952, 47–50) discussed a variety of approximate methods to adjust for qual-
ity change in products, which is essentially the same problem as adjusting an 
index for the contribution of a new product. Additional bias formulae were 
developed by Diewert (1980, 498–501; 1987, 779; 1998, 51–54) and Haus-
man (2003, 26–28). Hausman proposes taking a linear approximation to the 
demand curve at the point of consumption and computing the consumer 
surplus gain to a new product under this linear demand curve. Provided that 
the demand curve is convex, then this linear approximation will be a lower 
bound to the consumer surplus gain. We will compare that proposal to other 
methods of dealing with new goods.

Researchers have also relied on some form of econometric estimation in 
order to form estimates of the welfare cost (or changes in the true cost of 
living index) of changes in product availability. The two main contributors 
in this area are Feenstra (1994) and Hausman (1996).3 Feenstra assumes a 
constant elasticity of substitution (CES) utility or cost function, while Haus-
man assumes an almost ideal demand system (AIDS). The CES functional 
form is not fully fl exible (in contrast to the AIDS), so that is one drawback 
of Feenstra’s approach.4 He adopts that case because it has a particularly 
simple form of the reservation prices: in the CES case, the demand curve 
never touches the price axis and so the reservation price is infi nity. As we 
will show in the following sections, however, the area under the demand 
curve is bounded, provided that the elasticity of  substitution is greater 
than unity, and it can be computed with information on the expenditure 

responding to these goods become indeterminate. The p2’s and q2’s are given by the data and 
the q1’s are zero. Nevertheless, although the p1’s cannot be determined from the data, since the 
goods are not sold in the I situation, it is apparent from the preceding argument what p1’s ought 
to be introduced in order to make the index- number tests hold. They are those prices which, in 
the I situation, would just make the demands for these commodities (from the whole commu-
nity) equal to zero.” (Hicks 1940, 114). Hofsten (1952, 95–97) extended Hicks’s methodology 
to cover the case of disappearing goods as well.

2. Rothbarth introduced the term “virtual prices” to describe these hypothetical prices in the 
rationing context: “I shall call the price system which makes the quantities actually consumed 
under rationing an optimum the ‘virtual price system’” (Rothbarth 1941, 100).

3. See also Hausman (1999, 2003) and Hausman and Leonard (2002).
4. See Diewert (1974, 1976) for the defi nition of a fl exible functional form. Feenstra (2010) 

shows that the CES methodology discussed here to measure the gains from new goods can be 
extended to the AIDS case.
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on the new goods and the elasticity. So Feenstra’s methodology sidesteps 
the issue of estimating the reservation prices, but instead requires that we 
estimate the elasticity of  substitution. Feenstra (1994) provides a robust 
double- diff erencing method to estimate that elasticity that can be applied 
to a dataset with many new and disappearing goods, as typically occur with 
scanner data.

To summarize, there are two problems with Feenstra’s CES methodology 
for measuring the net benefi ts of  changes in the availability of products: 
(i) the CES functional form is not fully fl exible; and (ii) the reservation price 
that induces a potential consumer to not purchase a product is equal to plus 
infi nity, which seems high. Thus, the CES methodology may overstate the 
benefi ts of increases in product availability. Against these drawbacks, a ben-
efi t is that the elasticity of substitution can be estimated quite easily using the 
double- diff erencing method, and the elasticity along with the expenditure 
share on the items is suffi  cient information to compute the consumer benefi ts 
from new products.

In section 15.2, we begin with the simple example of a partial equilibrium, 
constant- elasticity demand curve, which has a reservation price of infi nity. 
We show that the consumer surplus under a constant- elasticity demand 
curve is at least twice the consumer surplus under a linear approximation to 
the demand curve. This result is our fi rst illustration of the extent to which 
a constant- elasticity case will lead to greater gains than a linear demand 
curve—that is, by about a factor of  at least two when the elasticity of 
demand is the same for the two demand curves and reasonably high. While 
these results in section 15.2 are suggestive, they are not rigorous because 
they rely on a partial equilibrium demand curve with a single new good. 
Our general goal is to measure total consumer utility (not just consumer sur-
plus) when there are potentially many new and disappearing goods. Accord-
ingly, in section 15.3 we examine a constant elasticity of substitution (CES) 
utility function and show that the exact gains from new goods are still at 
least twice as high as those obtained from a linear approximation to that 
demand curve. In addition to the CES utility function, we also examine the 
quadratic fl exible functional form that was initially due to Konüs and Byush-
gens (1926, 171). That utility function can be used to justify the Fisher (1922) 
price index, and so we will also call it the KBF functional form. The demand 
curves for both the CES and KBF demand curves are convex under weak 
conditions, but the CES demand is more convex.

In section 15.4, we turn to the econometric estimation of the demand 
system for the CES and KBF utility functions, using scanner data for fro-
zen juice in one grocery store, as described in section 15.4.1. The estimation 
of the CES demand curves can be simplifi ed using a double- diff erencing 
method due to Feenstra (1994), which eliminates all unknown parameters 
except the elasticity of substitution. In sections 15.4.2–15.4.3, we show that 
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this method performs very well on the scanner data. In comparison, esti-
mation of the demand curves corresponding to the quadratic utility func-
tion is more diffi  cult because it inherently has more free parameters; that is, 
N (N + 1) /2 free parameters in a symmetric matrix with N goods. We solve 
this degrees of freedom problem by introducing a semifl exible version of  the 
fl exible quadratic functional form.5 This new methodology is explained and 
implemented in sections 15.4.4–15.4.5.

In section 15.4.6, we compare the results obtained from the CES and KBF 
utility functions for the consumer benefi ts from new goods. According to 
our theoretical results in section 15.3, we would expect that the CES gains 
should be not much more than twice as high as the KBF gains (because the 
KBF gains exceed those from a linear approximation), provided that those 
demand curves have the same elasticity at the point of consumption. In fact, 
that is not what we fi nd: the CES gains are about six times the size of the 
KBF gains, and their 95 percent confi dence intervals do not overlap. The 
reason for this result is that the implied elasticities of demand for the two 
preferences systems, evaluated at the same point of  consumption for the 
new goods, are actually quite diff erent: the KBF preferences give demand 
that is about three times as elastic as the CES demand for the new varieties 
of frozen juice. This fi nding highlights an important diff erence between the 
CES and KBF utility functions: because the former has a single estimation 
parameter, and the latter has a whole matrix of parameters, it will not in 
general be the case that they have the same elasticity of demand when esti-
mated. Indeed, this result is implied by the limitation that the CES utility 
function is not fully fl exible.

That theoretical limitation becomes an important simplifi cation for 
estimation, however. We believe that it is practical for statistical agencies 
to implement the double- diff erenced estimation of the CES system, but it 
would be much more challenging for statistical agencies to implement the 
estimation of the KBF system, at least for most datasets. In the end, we are 
left with a trade- off  between the practicality of using the CES system against 
the challenge of estimating a more fl exible utility function to obtain a more 
general measure of gains. Further conclusions are provided in section 15.5.6

15.2  Constant- Elasticity Demand Curve

Consider a constant- elasticity demand curve of the form q1 = kp1 , where 
q1 denotes quantity of good 1, p1 denotes its price, and k > 0 is parameter. In 

5. Our new semifl exible functional form has properties that are similar to the semifl exible 
generalization of the normalized quadratic functional form introduced by Diewert and Wales 
(1987, 1988). In section 15.4.4 below, we also show how the correct curvature conditions can 
be imposed on our semifl exible quadratic functional form.

6. The dataset on frozen juice products is listed in appendix A of our working papers (Diewert 
and Feenstra 2019a, 2019b). Certain results presented here are proved in appendixes B and C 
of Diewert and Feenstra (2019b).
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period t this good is newly available at the price of p1t and the chosen quan-
tity q1t. The demand curve is illustrated in fi gure 15.1 and it approaches the 
vertical axis as the price approaches infi nity, which means that the reserva-
tion price of the good is infi nite. But provided that the elasticity of demand 
σ is greater than unity, the area under the demand curve, as shown by the 
regions A + B + C in fi gure 15.1, is bounded above. Region A is the expendi-
ture on the good, while B + C is the consumer surplus. The consumer surplus 
is calculated as the area to the left of the demand curve between its price 
of p1t and infi nity, and relative to total expenditure Et on all goods it equals

(1) 
B + C

Et

=
1
Et p1t

kp dp =
p1tq1t

Et( 1)
=

s1t

( 1)
, > 1,

where s1t p1tq1t /Et denotes the share of spending on good 1. We see that 
this expression for the consumer gains from the new good shrinks as the 
elasticity of substitution is higher, indicating that the new good is a closer 
substitute for an existing good.

One might worry that calculating the consumer gains this way, with a 
reservation price of infi nity, results in gains that are too large. A suggestion 
given by Hausman (2003) is to use a linear approximation to the demand 
curve, as shown by the dashed line in fi gure 15.1. The linear approximation 
to the demand function goes through the price axis at the reservation price 
p1*, where p1* ≡ p1t + αq1t and α ≡ ( p1* – p1t) / q1t > 0 is the absolute value of the 
slope of the inverse constant- elasticity demand curve evaluated at q1 = q1t. 
Hausman took the area of the triangle below the linear approximation to the 

Fig. 15.1 Constant- elasticity demand 
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true demand curve but above the line p1 = p1t as his lower- bound measure of 
the gain in consumer surplus that would occur due to the new product. That 
consumer surplus area is region B in fi gure 15.1, which is less than the area 
under the constant elasticity demand curve, B + C. Indeed, we now show 
that the consumer surplus B following Hausman’s method is less than one 
half  of the true consumer surplus region B + C.

The consumer surplus B relative to total expenditure on the product Et is 
obtained by computing the area of that triangle,

(2) 
B
Et

=
(p1* p1t)q1t

2Et

=
(q1t)2

2Et

=
(q1t / p1t)p1tq1t

2Et

=
s1t

2
,

where the second equality follows from the defi nition of  the slope α ≡ 
(p1* – p1t) /q1t of  the inverse demand curve; the third equality from algebra; 
and the fourth equality because we have assumed the slope of the constant- 
elasticity demand curve and its linear approximation are equal at the point 
of consumption, so it follows that the inverse elasticity of demand must also 
be equal, α(q1t /p1t) = 1 /σ . Comparing equations (1) and (2), the ratio of the 
consumer surplus from the linear approximation to that from the constant- 
elasticity demand curve is less than one half, B / (B + C ) = (σ – 1) / 2σ  < 1 /2. 
Those two measures of gain are summarized in table 15.1 for s1t = 0.1 and 
various values of σ.

Column two in table 15.1 consists of the constant- demand elasticity gain 
in (1) and column three shows the Hausman approximate gain in (2), while 
column four takes their ratio. While these results give us a fi rst illustration 
of the gains in the constant- demand- elasticity case, they lack rigor by deal-
ing with consumer surplus for a partial equilibrium demand curve with 
only one new good. Accordingly, in the next section we extend our results 
to many new (and disappearing) goods while using a constant- elasticity- of- 
substitution (CES) utility function. We will fi nd that the constant- demand- 
elasticity and CES cases give quite similar results.

Table 15.1 Consumer gains from a new product with share = 0.1 (% of expenditure)

  (B+C ) / Et  B /Et  Ratio  GCES  GH,CES  Ratio

2 10.0 2.50 0.25 11.1 2.78 0.25
3 5.00 1.67 0.33 5.40 1.85 0.34
4 3.33 1.25 0.37 3.58 1.39 0.39
5 2.50 1.00 0.40 2.66 1.11 0.42
6 2.00 0.83 0.42 2.12 0.93 0.44
10 1.12  0.50  0.45  1.18  0.56  0.47

Notes: Column two computes the constant- demand- elasticity gain in (1); column three com-
putes the Hausman gain (2) as a lower bound to the constant- demand- elasticity case; column 
four computes the ratio of the previous two columns; column fi ve computes the CES gain (15); 
column six computes the Hausman gain (18) as a lower bound to the CES case; and column 
seven computes the ratio of the previous two columns.
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15.3  Utility- Based Approach

15.3.1  Utility Function Approach

We begin with a CES utility function for the consumer,7 defi ned by

(3) Ut = U(qt,It) =
i It

aiqi t
( 1)/

/( 1)

, > 1, t = …,T,1

where ai > 0 are parameters and It {1,…,N} denotes the set of goods or 
varieties that are available in period t = 1, …, T at the prices pit. We will treat 
this set of goods as changing over time due to new or disappearing variet-
ies. The unit- expenditure function is defi ned as the minimum expenditure 
to obtain utility of one. For the CES utility function, the unit- expenditure 
function is

(4) e( pt,It) =
i It

bi pi t
1

1/(1 )
, > 1 , bi ai , t = 1,…,T.

It follows that total expenditure needed to obtain utility of Ut is Et = Ute(pt, It).
From Shephard’s Lemma, we can diff erentiate the expenditure function 

with respect to pit to obtain the Hicksian demand qit for that good:

(5) qi t(pt,Ut) = Ut
i It

bi pi t
1

/(1 )

bi pi t , t = 1,…,T;i It .

Multiplying by pit and dividing by expenditure Et to obtain expenditure 
shares,

(6) si t
pi tqi t

Et

=
bi pi t

1

n It
bn pn t

1
, t = 1,…,T; i It .

Notice that the quantity qit approaches zero as pit → ∞, in which case the 
share in (5) also approaches zero provided that σ > 1. Diff erentiating –ln qit 
from (5) with respect to ln pit, we obtain the (positive) Hicksian own- price 
elasticity corresponding to the CES utility function,

(7) it U
lnqit

ln pit U

= (1 sit).

This elasticity is not constant as was assumed for the partial equilibrium, 
constant- elasticity demand curve in the previous section. Rather, the elastic-
ity in (7) varies between an upper- bound of σ when pit → ∞ and the share 

7. The CES function was introduced into the economics literature by Arrow et al. (1961), and 
in the mathematics literature it is known as a mean of order r ≡ 1 – σ; see Hardy, Littlewood, 
and Polyá (1934, 12–13). Rather than being a utility function for a consumer, equation (1) could 
instead be a production function for a fi rm. In that case, we would replace utility Ut by output Yt.
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in (6) approaches zero, and a lower- bound of zero when the share of this 
product approaches one.8

Initially, we consider the case where there is no change in the set of 
goods over time, so It–1 = It ≡ I. Our goal is to measure the ratio of the unit- 
expenditure functions with a formula depending only on observed prices and 
quantities, which will then correspond to an “exact” price index (Diewert 
1976). We maintain throughout the assumption that the observed quanti-
ties are optimally chosen for the prices; that is, that they correspond to the 
shares given in (6). When these shares are computed over the goods i ∈ I, 
we denote them as

(8) si (I )
pi qi

n I pn qn

, = t 1,t ; i I .

Then dividing sit(I ) by sit–1(I ) from (6), raising this expression to the power 
1 / (σ – 1), making use of (4) and rearranging terms slightly, we obtain:

(9) 
sit(I )

sit 1(I )

1/(1 )
e(pt,I )

e(pt 1,I )
=

pit

pit 1

, i I .

To simplify (9) further, we make use of the weights wi(I ) defi ned by,

(10) wi(I )
[sit(I ) sit 1(I )] / [lnsit(I ) lnsit 1(I )]

n I{[snt(I ) snt 1(I )] / [lnsnt(I ) lnsnt 1(I )]}
,i I .

The numerator in (10) is the logarithmic mean of the shares sit(I ) and sit–1(I ), 
and lies in between these two shares,9 while the denominator ensures that the 
weights wi(I ) sum to unity.

Then we take the geometric mean of both sides of (9), using the weights 
wi(I ) to obtain:

(11) e(pt,I )
e(pt 1,I ) i I

sit(I )
sit 1(I )

wi(I )

=
e(pt,I )

e(pt 1,I )
,since 

i I

sit(I )
sit 1(I )

wi(I )

= 1 ,

= PSV(I )
i I

pit

pit 1

wi(I )

,  using (9).

The result on the fi rst line of (11) that the product shown equals unity fol-
lows from taking the log of this expression and using the weights defi ned 
in (10), along with the fact that ∑i∈I sit–1(I ) = ∑i∈I sit(I ) = 1 from (8). Then it 

8. The fact that the elasticity is close to zero for shares approaching unity suggests that the 
Hicksian CES demand curve cannot be globally convex for all shares: very inelastic demand 
must be concave in a region as prices rise and the demand curve bends toward the price axis. 
Nevertheless, it is shown in appendix C of Diewert and Feenstra (2019b) that the Hicksian 
demand curve in (5) is strictly convex provided sit ≤ 0.5.

9. Treating sit–1(I ) as a fi xed number, it is straightforward to show using L’Hôpital’s rule 
that as sit(I ) → sit–1(I ) then the numerator of (10) also approaches sit–1(I ). So, the Sato- Vartia 
weights are well defi ned even as the shares approach each other. The concavity of the natural 
log function can be used to show that the numerator of the Sato- Vartia weights lies in between 
sit(I ) and sit–1(I ) for all goods i ∈ I.
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follows from (11) that the ratio of the unit- expenditure functions equals the 
term PSV(I ) defi ned as shown, which is the price index due to Sato (1967) 
and Vartia (1967) constructed over the (constant) set of goods I.

With this result in hand, let us now consider the case where the set of 
goods is changing over time but some of the goods are available in both 
periods, so that It 1 It . We again let e( pτ, I ), for τ = t – 1, t, denote 
the expenditure function defi ned over the goods within the set I, which is 
the set of goods available in both periods, I It 1 It . We refer to the set 
I as the “common” set of goods because they are available in both periods.10 
The ratio e(pt,I ) /e(pt–1,I ) is still measured by the Sato- Vartia index as in 
expression (11). Our interest, however, is in the ratio e( pt,It) / e(pt–1,It–1) that 
incorporates new and disappearing goods. To measure this ratio, we return 
to the share equation (6), which applies for all goods i ∈ It. Notice that these 
shares can be rewritten as

(12) si
pi qi

n I pn qn

= si (I ) , = t 1,t;  i It,

with n I pn qn

n I pn qn

.

Now we can proceed in the same fashion as (9), using (4), (6) and (12) to 
form the ratio,

(13) 
sit(I ) t

sit 1(I ) t 1

1/(1 )
e(pt,I )

e(pt 1,I )
=

pit

pit 1

, i I.

Once again, we take the geometric mean of  both sides of  (13) using the 
weights wi(I ), and shifting the terms λt and λt–1 to the right, we obtain in the 
same manner as equation (11):

(14) 
e(pt,It)

e(pt 1,It 1)
= PSV(I ) t

t 1

1/( 1)

.

This result shows that the exact price index for the CES utility and expen-
diture function is obtained by modifying the Sato- Vartia index, constructed 
over the common set of goods, by the ratio of the terms λτ(I ) < 1. Each of 
these terms can be interpreted as the period τ expenditure on the goods in the 
common set I, relative to the period τ total expenditure. Alternatively, λτ(I ) 
is interpreted as one minus the period t expenditure on new goods (not in the 
set I), relative to the period t total expenditure, while λt–1(I ) is interpreted 
as one minus the period t – 1 expenditure on disappearing goods (not in the 
set I), relative to the period t – 1 total expenditure. When there is a greater 

10. Feenstra (1994) shows that we can instead defi ne I as a nonempty subset of the goods 
available in both periods, and obtain the same results as shown below, but we do not pursue 
that generalization here. Later in the paper, we will refer to the price index constructed with 
these common goods as the maximum overlap index.
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expenditure share on new goods in period t than on disappearing goods in 
period t – 1, then the ratio λt(I ) /λt–1(I ) will be less than unity, which leads 
to a fall in the exact price index in (14) by an amount that depends on the 
elasticity of substitution.

The importance of  the elasticity of  substitution can be seen from 
fi gure 15.2, where we suppose that the consumer minimizes the expenditure 
needed to obtain utility along the indiff erence curve AD. If  initially only 
good 1 is available, then the consumer chooses point A with the budget 
line AB. When good 2 becomes available, the same level of utility can be 
obtained with consumption at point C. Then the drop in the cost of living 
is measured by the inward movement of the budget line from AB to the line 
through C, and this shift depends on the convexity of the indiff erence curve, 
or the elasticity of substitution.

To relate the CES result in (14) back to equation (1), suppose that only 
good 1 is newly available in period t so that λt(I ) = 1 – s1t; there are no 
disappearing goods so that λt–1(I ) = 1; and the prices of all other goods do 
not change so that PSV = 1. We follow Hausman (2003) in constructing the 
expenditure that would be needed to give the consumer the same utility level 
Ut even if  good 1 is not available. That expenditure level is Et* Ute(pt,It 1). 
Then taking the diff erence between Et* and Et, we have the compensating 
variation for the loss of good 1:

(15) GCES
Et* Et

Et

=
e(pt,It 1) e(pt,It)

e(pt,It)
= (1 s1t) 1/( 1) 1,

using the formula for e(pt,It–1) /e(pt,It) from (14). Taking a second- order Tay-
lor series expansion around s1t = 0, this gain can be expressed as

Fig. 15.2 CES indiff erence curve
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(16) GCES = (1 s1t) 1/( 1) 1 =
s1t

( 1)
+

s1t
2

2( 1)2
,for0 s1t s1t,

s1t

1( )
, since s1t

2 0.

We see that the second line of (16) is identical to (1), which is therefore a 
lower bound to the CES gains. In the fi fth column of table 15.1, we show 
the CES gains from (15), which are slightly above the constant- demand- 
elasticity gains from (1). Our results in this section show that the CES gains 
with many new (and disappearing) goods give a generalization of the simple, 
consumer surplus calculation of section 15.2. In the next section we compare 
these CES gains to an approximation of the measure of total consumer utility 
gain due to Hausman (2003).

15.3.2  Hausman Lower Bound to the Welfare Gain

Hausman (1999, 191; 2003, 27) proposed a very simple methodology for 
calculating a lower bound to the gain from the appearance of a new good. 
We illustrated that approach for a demand curve with elasticity of σ in sec-
tion 15.2, but Hausman argues that it holds more generally for any Hicksian 
demand curves with constant utility. Letting 1t U denote the (positive) com-
pensated demand derivative for good 1 when it fi rst appears, we obtain the 
generalization of (2) by replacing σ with the Hicksian elasticity:

(17) GH =
s1t

2 1t U

.

For the CES demand curve, we can calculate the lower bound to the wel-
fare gain using the elasticity of demand for the CES system, as calculated 
in (7), and we obtain

(18) GH,CES =
s1t

2 (1 s1t)
.

In column six of table 15.1 we calculate the Hausman lower- bound gains in 
(18) using the Hicksian elasticities for CES demand, and in column seven 
we show the ratio of the CES gain in (15) and the Hausman lower bound in 
(18). Similar to what we found for the constant- demand- elasticity case in the 
previous section, the Hausman lower- bound calculation in (18) is less than 
one half  of the CES gains in (15) and approaches one half  of those gains 
for elasticities of substitution that are reasonably high.

We next derive the formula for the Hausman lower- bound formula in 
(17) for a general form of  utility even when the Hicksian demand curves are 
not well behaved and diff erentiable. That will turn out to be the case for the 
quadratic utility that we consider in the next section, which will give rise to 
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well- behaved inverse demand curves (prices as a function of quantities), but 
not necessarily well- behaved direct demand curves (quantities as a function 
of  prices). So, this derivation focusing on inverse demand curves will be 
important for the rest of the paper.

Denote the utility function by U = f (q) ≥ 0, where f (q) is nondecreasing, 
concave and homogeneous of degree one for q ≡ (q1, …, qN) ≥ 0N, and twice 
continuously diff erentiable for q ≫ 0N. We suppose that the consumer faces 
positive prices pt ≡ (p1t, …, pNt) ≫ 0N in period t and maximizes utility:

(19) maxq≥0{ f (q): pt ⋅ q ≤ Et},

where pt ⋅ q is the inner product. The fi rst- order necessary conditions for an 
interior maximum11 with the period t quantity vector qt ≫ 0N solving (19) are

(20) ∇f (qt) = λtpt ,

(21) pt ⋅ qt = Et,

where ∇f (qt) is the vector of partial derivatives fi(qt) ≡ ∂f (qt) /∂qi evaluated at 
qt, and λt is the Lagrange multiplier on the budget constraint. Take the inner 
product of both sides of (21) with qt and solve the resulting equation for λt 
= qt ⋅ ∇f (qt) / pt ⋅ qt = qt ⋅ ∇f (qt) /Et where we have used (21). Euler’s Theorem 
on homogeneous functions implies that qt ⋅ ∇f (qt) = f (qt) and so λt = f (qt) /
Et. Using this result in equation (21), we obtain the fi rst- order condition:

(22) ∇f (qt) / f (qt) = pt /Et.

To simplify the notation in the rest of this section, we consider only N = 2 
commodities: good 1 is potentially new in period t, and good 2 represents all 
other expenditure. In addition, for this section we also scale the utility level 
so that it equals expenditure for period t :

(23) f (q1t, q2t) = Et.

It follows that the fi rst- order condition (22) becomes ∇f (qt) = pt, and special-
izing to the case of two goods these conditions become:

(24) pit = fi(q1t, q2t) ≡ ∂f (q1t, q2t) /∂qi, i = 1, 2.

We will derive a second- order Taylor series approximation to the utility loss 
if  good 1 were removed and compare that approximation to the Hausman 
measure defi ned by (17).

To make this calculation we reduce purchases of q1 down to 0 in a linear 
fashion, holding prices fi xed at their initial levels, p1t, p2t. Thus, we travel 
along the budget constraint until it intersects the q2 axis. Hence q2 is an 

11. Since f (q) is a concave function of q over the feasible region, these conditions are also 
suffi  cient for an interior maximum. In the following sections we will characterize the conditions 
for a maximum on the boundary of the feasible region, with some quantities equal to zero.
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endogenous variable; it is the following function of  q1 where q1 starts at 
q1 = q1t and ends up at q1 = 0:

(25) q2(q1) ≡ (Et – p1tq1) / p2t.

The derivative of q2(q1) evaluated at q1t is q2(q1t) ≡ ∂q2(q1t) / ∂q1 = –( p1t /p2t), 
a fact which we will use later. Defi ne utility as a function of q1 for 0 ≤ q1 ≤ 
q1t, holding expenditures on the two commodities constant at Et, as follows:

(26) U = u (q1) ≡ f (q1,q2(q1)) = f (q1, [Et – p1tq1] /p2t).

We use the function u(q1) to measure the consumer loss of utility as we 
move q1 from its original equilibrium level of q1t to 0. Alternatively, the dif-
ference between the utility levels u(q1t) and u(0) is the gain of utility due to 
the appearance of product 1, defi ned as a share of expenditure:

(27) GU ≡ [u (q1t) – u(0)] / Et.

We express u (0) by a second- order Taylor series expansion around the 
point q1t:

(28) u(0) = u(q1) + u (q1)(0 q1) +
1
2

u (q1t)(0 q1t)2.

The term u′(q1t) is computed as

(29) u′(q1t) = f1(q1t,q2t) + f2(q1t,q2t)∂q2(q1t) / ∂q1, diff erentiating (26)

= f1(q1t,q2t) + f2(q1t,q2t)(–p1t/p2t), diff erentiating (25)

= 0, using (24),

so this term vanishes as an envelope theorem result. It follows from (28) and 
(29) that a second- order approximation to the consumer gain from good 1 
in (27) is

(30) GH =
1
2

u (q1t)q1t
2 /Et .

In appendix B of Diewert and Feenstra (2019b), we calculate the second 
derivative u″(q1t) and we show that it is nonpositive, so that the fi rst term on 
the right of (30) is a nonnegative gain. Furthermore, we defi ne an inverse 
demand function, p1 = D1(q1) that is consistent with our model; that is, hold-
ing other variables constant. The variables that Hausman holds constant 
are the utility level Ut and the price of product 2, p2t. Endogenous variables 
are q1, q2 and E while the driving variable is p1, which goes from p1t to the 
reservation price p1* = D1(0) when q1 goes from q1t to 0. Because utility is 
held constant, we regard this derived inverse demand curve as a Hicksian 
demand curve. We show that the slope of this inverse demand curve at q1t 
equals D′(q1t) = u″(q1t) and so the inverse demand curve is convex if  and 
only if  u (q1) 0. Convexity of the demand curve implies that the Haus-



450    W. Erwin Diewert & Robert C. Feenstra

man approximation in (30) is a lower bound to the consumer gain from the 
introduction of good 1.

Substituting the result that D′(q1t) = u″(q1t) in (30), we have therefore 
established that the Hausman gain GH due to the availability of good 1 is

(31) GH =
1
2

q1t
2D (q1t) /Et .

=
1
2

s1t[D (q1t)(q1t / p1t)],

where the fi nal term appearing in brackets in (31) is the elasticity of the 
constant- utility inverse demand curve. In appendix B of Diewert and Feenstra 
(2019b), we solve for this elasticity for particular utility functions, and in the 
CES case we fi nd that it is precisely the inverse of  the price elasticity of 
the Hicksian demand curve 1t U , as shown in (7). More generally, we like-
wise expect that [D′(q1t(q1t / p1t)]) equals the inverse of 1t U whenever the 
Hicksian demand is well behaved and diff erentiable. Our results in this sec-
tion are therefore an alternative proof of the Hausman approximation in 
(17), but we have obtained these results even in cases where the Hicksian 
demand elasticity does not exist and instead the inverse demand functions 
are well behaved and diff erentiable. This result will be very useful as we 
explore a quadratic utility function in the next section.

15.3.3  Konüs- Byushgens- Fisher (KBF) Utility Function

The functional form for the consumer’s utility function f (q) that we will 
consider next is the following quadratic form:12

(32) U = f (q) = (qTAq)1/2,

where the N by N matrix A ≡ [aik] is symmetric (so that AT = A) and thus has 
N(N + 1) /2 unknown aik elements. We also assume that A has one positive 
eigenvalue with a corresponding strictly positive eigenvector and the remain-
ing N – 1 eigenvalues are negative or zero.13 These conditions ensure that the 
utility function has indiff erence curves with the correct curvature.

Konüs and Byushgens (1926) showed that the Fisher (1922) “ideal” quan-
tity index QF(pt–1, pt, qt–1, qt) ≡ [(pt–1 ∙ qt /pt–1 ∙ qt–1)(pt ∙ qt /pt ∙ qt–1)]1/2 is exactly 
equal to the aggregate utility ratio f (q1) / f (q0), provided that the consumer 
maximizes the utility function defi ned by (32) in periods t – 1 and t, where pt–1 
and pt are the price vectors with chosen quantities qt–1 and qt. Diewert (1976) 
elaborated on this result by proving that the utility function defi ned by (32) 

12. We assume that vectors are column vectors when matrix algebra is used. Thus qT denotes 
the row vector which is the transpose of q.

13. Diewert and Hill (2010) show that these conditions are suffi  cient to imply that the utility 
function defi ned by (32) is positive, increasing, linearly homogeneous and concave over the 
regularity region S ≡ {q: q ≫ 0N and Aq ≫ 0N}.
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was a fl exible functional form; that is, it can approximate an arbitrary twice 
continuously diff erentiable linearly homogeneous function to the accuracy 
of a second- order Taylor series approximation around an arbitrary positive 
quantity vector q*. Since the Fisher quantity index gives exactly the correct 
utility ratio for the quadratic functional form defi ned by (32), he labeled the 
Fisher quantity index as a superlative index and we shall call (32) the KBF 
functional form.

Assume that all products are available in period t and consumers face the 
positive prices pt ≫ 0N. The fi rst order conditions (22) to maximize the utility 
function in (32) become

(33) pt = EtAqt / (qt
TAqt).

While these are the conditions for an interior maximum with qt ≫ 0N, we 
can obtain the condition for a zero optimal quantity qit = 0 if  we impose that 
value on the right of (33) and then defi ne the left- hand side for good i as the 
reservation price pit*. Then for all prices pit ≥ pit*, the consumer will optimally 
choose qit = 0. We see that an advantage of the quadratic functional form is 
that the corresponding reservation price can be calculated very easily from 
(33), for any good where the quantity happens to equal 0 in the period under 
consideration.

In order to characterize demand, it is useful to work with the expenditure 
function. Assume for the moment that the matrix is of full rank and denote 
A* = A–1. Then the minimum expenditure to obtain one unit of utility when 
the optimal qt ≫ 0N is

(34) e (pt) = (pt
TA*pt)

1/2,

The total expenditure function is then Et = Ute( pt), and Hicksian demand 
is obtained by diff erentiating with respect to pit,

(35) qit( pt,Ut) = Ut
n=1
N ain*pnt

(pt
TA*pt)1/2

, i = 1,…,N,

where ain* are the elements of A*. Diff erentiating –ln qit with respect to ln pit, 
we obtain the (positive) Hicksian elasticity,

(36) it U
lnqit

ln pit U

=
aii*pit

n=1
N ain*pnt

+
pit n=1

N ain*pnt

pt
TA*pt

=
aii*pit

n=1
N ain*pnt

+ sit ,

where sit is the share of expenditure on good i. Notice that the denomina-
tor of the fi rst ratio on the right of (36) must be positive to obtain positive 
demand in (35), but it approaches zero as the quantity qit approaches zero 
in a neighborhood of the reservation price as pit → pit* and qit → 0. Because 
the share then approaches zero, it follows that the Hicksian elasticity of 
demand in (36) remains positive if  and only if  aii* < 0, i = 1, …, N, which we 
assume is the case.
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The fact that the KBF utility function has fi nite reservation prices suggests 
that it lies in between the demand curves for the CES utility function (which 
have infi nite reservation prices) and the linear approximation illustrated in 
fi gure 15.1. That conjecture can be established more formally, as we show in 
appendix C of Diewert and Feenstra (2019b). We compute the second deriv-
atives of the Hicksian demand curves for the quadratic utility function and 
show that so long as the demand curve is downward sloping, then it will be 
convex. In appendix C of Diewert and Feenstra (2019b) we also compare the 
second derivative of the demand curve in the KBF case with that obtained 
in the CES case. Provided that the fi rst derivatives of the demand curves are 
equal at the point of consumption (pit, qit), and that the expenditure share 
satisfi es sit < 0.5, then the second derivative of the CES Hicksian demand 
curves will exceed the second derivatives of those quadratic demand curves. 
This means that the demand curves for the quadratic utility function lie in 
between the constant- elasticity demand curves considered in the previous 
section and the straight- line Hausman approximation.14

Using the expenditure function (34) with coeffi  cients A* = A–1, where A is 
the matrix of coeffi  cients for the direct utility function in (32), requires that 
the matrix A has full rank so that it is invertible. It is quite possible that A can 
have less than full rank, however, which means that there are certain goods 
in the utility function (or linear combinations of  goods) that are perfect 
substitutes with other goods (or their combinations). In that case, at certain 
prices the demand for goods will not be uniquely determined, so we cannot 
work with demand as a function of prices or with the expenditure function. 
Instead, it makes sense to go back to the utility function in (32) and work 
with the inverse demand functions which are defi ned by (33), where prices 
(on the left) are a function of quantities and expenditure (on the right). The 
matrix of coeffi  cients A will be of less than full rank in our empirical appli-
cation of the KBF utility function, as we shall explain in section 15.4, so we 
shall use the inverse demand functions in (33) for estimation. Fortunately, 
even in this case we can defi ne a constant- utility Hicksian inverse demand 
curve, as we denoted by p1t = D(q1t) in section 15.3.2. Then our analysis of 
the Hausman approximation in that section continues to hold. Indeed, we 
show in appendix B of Diewert and Feenstra (2019b) that in this case the 
elasticity of the inverse demand curve is:

(37) 
ln D1(q1t)

lnq1t

=
s1t

(1 s1t)2

a11

p1
2

1 ,

which can be used in (31) to obtain the Hausman approximation to the gain 
from good 1 in the KBF case:

14. While we formally establish this result in appendix C of Diewert and Feenstra (2019b) 
in a neighborhood of the consumption point, we expect that it will hold for all prices up to 
the reservation price, which is fi nite for the quadratic demand curves but infi nite for the CES 
demand curve.
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(38) GH, KBF =
1
2

s1t

1 s1t

2
a11

p1
2

1 .

15.4  Empirical Illustration Using CES and KBF Utility Functions

15.4.1  Scanner Data for Sales of Frozen Juice

We use the data from store number 515 in the Dominick’s Finer Foods 
Chain of 100 stores in the Greater Chicago area on 19 varieties of frozen 
orange juice for three years in the period 1989–1994 in order to test out the 
CES and quadratic utility functions explained in the previous two sections. 
The micro data from the University of Chicago (2013) are weekly quantities 
sold of each product and the corresponding unit value price. However, our 
focus is on calculating a monthly index and so the weekly price and quantity 
data need to be aggregated into monthly data. Since months contain vary-
ing amounts of days, we are immediately confronted with the problem of 
converting the weekly data into monthly data. We decided to sidestep the 
problems associated with this conversion by aggregating the weekly data 
into pseudo- months—which we simply refer to as “months”—that consist 
of four consecutive weeks.

Expenditure or sales shares, sit ≡ pitqit / n=1
19  pntqnt, were computed for prod-

ucts i = 1, . . . ,19 and months t = 1, . . . , 39. We computed the sample average 
expenditure shares for each product. The bestselling products were products 
1, 5, 11, 13, 14, 15, 16, 18, and 19. These products had a sample average share 
that exceeded 4 percent or a sample maximum share that exceeded 10 per-
cent. There is tremendous volatility in product prices, quantities, and sales 
shares for both the bestselling and least popular products. There were no 
sales of products 2 and 4 for months 1–8 and there were no sales of product 
12 in month 10 and in months 20–22. Thus, there is a new and disappearing 
product problem for 20 observations in this dataset.

In the following sections, we will use this dataset to estimate the elasticity 
of substitution σ for the CES utility and unit- expenditure functions, making 
diff ering assumptions on the errors underlying the price and expenditure 
share data.

15.4.2. Estimation of the CES Utility Function with Error in Prices

In this section and the next, we will use the double diff erencing approach 
that was introduced by Feenstra (1994) to estimate the elasticity of substitu-
tion. His method requires that product shares be positive in all periods. In 
order to implement his method, we drop the products that are not present 
in all periods. Thus, we drop products 2, 4, and 12 from our list of 19 frozen 

15. This store is located in a northeast suburb of Chicago.
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juice products because products 2 and 4 were not present in months 1–8 
and product 12 was not present in months 20–22. Thus, in our particular 
application the number of always present products in our sample will equal 
16. We also renumber our products so that the original product 13 becomes 
the Nth product in this section. This product had the largest average sales 
share. If  we assume that purchasers are choosing all 19 products by maximiz-
ing CES preferences over the 19 products, then this assumption implies that 
they are also maximizing CES preferences restricted to the always present 
16 products.

There are 3 sets of variables in the model (i = 1, …, N; t = 1, …, T ):

• qit is the observed amount of product i sold in period t;
• pit is the observed unit value price of product i sold in period t and
• sit is the observed share of sales of  product i in period t that is con-

structed using the quantities qit and the corresponding observed unit 
value prices pit.

In our particular application, N = 16 and T = 39. We aggregated over weekly 
unit values to construct pseudo- monthly unit value prices. Since there was 
price change within the monthly time period, the observed monthly unit 
value prices will have some time aggregation errors in them. Any time aggre-
gation error will carry over into the observed sales shares. Interestingly, as 
we aggregate over time, the aggregated monthly quantities sold during the 
period do not suff er from this time aggregation bias. We therefore allow for 
measurement error in the log shares due to the measurement error in prices, 
treating the quantities as accurate.16

Our goal is to estimate the elasticity of substitution for a CES direct utility 
function (3) that was discussed in section 15.3.1 above. The system of share 
equations that corresponds to this consumer utility function was shown as 
(6) when expressed as a function of prices. An alternative expression for 
the shares as a function of quantities can be obtained by denoting the CES 
utility function by f (qt) and using the fi rst- order condition (22) for good i 
multiplied by qit to obtain the share equations:

(39) sit
pitqit

Et

=
aiqit

( 1)/

n It
anqnt

( 1)/
, i = 1,…, N; t 1,…,T ,

where T = 39 and N = 16. This system of share equations corresponds to the 
consumers’ system of inverse demand equations for always present products, 
which give monthly unit value prices as functions of quantities purchased. 
We take natural logarithms of both sides of the equations in (39) and add 
error terms uit to refl ect the measurement error in prices and therefore in 
shares,

16. See our working paper, Diewert and Feenstra (2019b), for other methods. We discuss there 
the more general technique from Feenstra (1994) that corrects for errors in prices, quantities, 
and expenditure shares.
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(40) lnsit = lnai +
( 1)

lnqit ln
n=1

N

anqnt
( 1)/

+uit , i = 1,…, N; t = 1,…,T ,

where by assumption the qit are measured without error and the error terms 
uit have 0 means and a classical (singular) covariance matrix for the shares 
within each time period and the error terms are uncorrelated across time 
periods. The unknown parameters in (40) are the positive parameters ai and 
the elasticity of substitution σ > 1.

The Feenstra double- diff erenced variables are defi ned in two stages. First, 
for any variable xit we diff erence the logarithms of  xit with respect to time; 
that is, defi ne ∆ ln xit as follows:

(41) ∆ ln xit ≡ ln(xit) – ln(xit–1), i = 1, …, N; t = 2, 3, …, T.

Now pick product N as the numeraire product and diff erence the ∆ ln xit 
with respect to product N, giving rise to the following double diff erenced log 
variable, ∆2 ln xit:

(42) ∆2 ln xit ≡ ∆ ln xit – ∆ ln xNt, i = 1, …, N – 1; t = 2, 3, …, T

= ln(xnt) – ln(xnt–1) – ln(xNt) + ln(xNt–1) .

We apply this technique to obtain the double- diff erenced log share ∆2 ln sit, 
the double- diff erenced log quantity ∆2 ln qit, and the double- diff erenced error 
variables ∆2uit. Then using equation (40), it can be verifi ed that the double- 
diff erenced log shares ∆2 ln sit satisfy the following system of (N – 1)(T – 1) 
estimating equations:

(43) 2 lnsit =
( 1) 2 lnqit + 2uit , i = 1,…, N 1; t = 2,3,…,T ,

where the new residuals, ∆2uit, have means 0 and a constant covariance 
matrix with 0 covariances for observations that are separated by two or more 
time periods. Thus, we have a system of linear estimating equations with only 
one unknown parameter across all equations—namely, σ. This is almost17 
the simplest possible system of estimating equations that one could imagine.

We have 15 product estimating equations of the form (43) that are esti-
mated with STATA.18 The resulting estimate for (σ – 1) /σ was 0.849 (with 
a standard error of 0.006) and thus the corresponding estimated σ is equal 
to 6.62. The standard error on (σ – 1) /σ was tiny using the present regres-
sion results so σ was very accurately determined using this method. The 

17. The variance covariance structure is not quite classical due to the correlation of residuals 
between adjacent time periods. We did not take this correlation into account in our estimation 
of this system of equations; that is, we just used a standard systems nonlinear regression pack-
age that assumed intertemporal independence of the error terms.

18. The STATA code to obtain the results in this paper is available on request.
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equation- by- equation R2 for the 15 products i = 1, …, N – 1 were as follows: 
0.998, 0.996, 0.997, 0.990, 0.995, 0.994, 0993, 0.993, 0.990, 0.997, 0.991, 
0.995, 0.997, 0.991, and 0.995. The average R2 is 0.994, which is very high for 
share equations or for transformations of share equations. The results are all 
the more remarkable considering that we have only one unknown parameter 
in the entire system of (N – 1)(T – 1) = 570 observations.19 This double dif-
ferencing method for estimating the elasticity of substitution worked much 
better than any other method that we tried.

15.4.3  Estimation of the Changes in the CES CPI Due to Changing 
Product Availability

Recall that the Feenstra methodology to measure the exact CES price 
index used the Sato- Vartia PSV(I ) in (11), expressed over the common prod-
ucts, and multiplied that index by the terms ( t / t 1)

1/( 1) in (14) that cap-
tures new and disappearing products. This term will diff er from unity if  the 
available products change from the previous period. For our dataset, the 
term λt is less than unity for months 9 (products 2 and 4 become available), 
11 (product 12 becomes available), and 23 (product 12 again becomes avail-
able). The term λ t–1 is greater than unity for months 10 (product 12 becomes 
unavailable) and 20 (product 12 again becomes unavailable). Computing 
( t / t 1)

1/( 1) using our estimate of σ = 6.62 gives the results shown in the 
third column of table 15.2. In the fi nal column, we can invert this term to 
obtain the gain in CES utility (or loss if  less than one) due to the availability 
of goods, which is reported along with its bootstrapped 95 percent confi -
dence interval:20

(44) GCES = ( t / t 1) 1/( 1).

Recall that in month 9, products 2 and 4 make their appearance, and 
table 15.2 tells us that the eff ect of  this increase in variety is to lower the 
price level and increase utility for month 9 by 0.83 percentage points. In 
month 10, when product 12 disappears from the store, this has the eff ect 
of  increasing the price level and lowering utility by 0.40 percentage points. 
That product comes in and out of  the dataset, and the overall eff ect on the 
price level of  the changes in the availability of  products is equal to 0.9918 
× 1.0040 × 0.9951 × 1.0044 × 0.9965 = 0.9918, for a decrease in the price 
level and increase in utility over the sample period of 0.83 percentage points. 
Notice that this overall eff ect just refl ects the introduction of products 2 and 
4 in month 9, since the net impact of  the disappearance and reappearance 
of  product 12 cancels out when cumulated. That canceling of  the impact 
of  availability of  product 12 is a highly desirable feature of  these CES 

19. The results are dependent on the choice of the numeraire product. Ideally, we want to 
choose the product that has the largest sales share and the lowest share variance.

20. In our bootstrap, we resample with replacement the monthly observations across all 
products 500 times.
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results, but it is not a necessary outcome because it depends on the shares 
of  product 12: it just so happens that these shares are nearly equal when it 
exits and reenters, leading to zero net impact. We will explore in later sec-
tions whether this desirable result continues to hold with other functional 
forms for utility.

These results in table 15.2 are our fi rst estimates of  the gains from 
increased product availability in our frozen juice data. While they are prom-
ising results, as we mentioned in section 15.1, there are two potential prob-
lems with the Feenstra methodology: (i) the CES functional form is not fully 
fl exible; and (ii) the reservation prices that induce consumers to demand 0 
units of products that are not available in a period are infi nite, which a priori 
seems implausible. Thus, in the following section, we will introduce a fl exible 
functional form that will generate fi nite reservation prices for unavailable 
products, and hence will provide an alternative methodology for measuring 
the net benefi ts of new and disappearing products.

15.4.4  Estimation of the KBF Utility Function

The quadratic or KBF utility function was introduced in section 15.3.3 
above. Multiplying both sides of equation i in (33) by qit and dividing by pt 
– qt = Et, we obtain the following system of inverse demand share equations:

(45) sit
pitqit

pt qt

=
qit n=1

N ainqnt

qt
TAqt

, i = 1,…,N ,

where ain is the element of A that is in row i and column n for i, n = 1, …, N. 
These equations will form the basis for our system of estimating equations 
in this and the following section. Note that they are nonlinear equations in 
the unknown parameters aik. It turns out to be useful to reparameterize the 
A matrix as follows:

Table 15.2 Changes in the price level and CES gains due to the availability of 
products, 𝛔 = 6.62

  Availability  (λt /λt – 1)1 / (σ – 1)  GCES

9 2 and 4 new 0.9918 1.0083
[1.0075, 1.0091]

10 12 disappears 1.0040 0.9960
[0.9955, 0 .9963]

11 12 reappears 0.9951 1.0049
[1.0045, 1.0054]

20 12 disappears 1.0044 0.9956
[0.9952, 0.9960]

23 12 reappears 0.9965 1.0035
[1.0032, 1.0039]

Cumulative Gain 0.9918 1.0083
      [1.0075, 1.0091]
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(46) A = bbT + B; b ≫ 0N; B = BT; B is negative semidefi nite; Bq* = 0N,

where q* is a positive vector. The vector bT ≡ [b1, …, bN] is a row vector of 
positive constants and so bbT is a rank 1 positive semidefi nite N by N matrix. 
The symmetric matrix B has N(N + 1) /2 independent elements bnk but the N 
constraints Bq* reduce this number of independent parameters by N. Thus, 
there are N independent parameters in the b vector and N(N – 1) / 2 inde-
pendent parameters in the B matrix so that bbT + B has the same number of 
independent parameters as the A matrix. Diewert and Hill (2010) showed 
that replacing A by bbT + B still leads to a fl exible functional form.

The reparameterization of A by bbT + B is useful in our present context 
because we can use this reparameterization to estimate the unknown param-
eters in stages. Thus, we will initially set B = 0N×N, a matrix of 0’s. The result-
ing utility function becomes f (q) = (qTbbTq)1/2 = (bTqbTq)1/2 = bTq , a linear 
utility function. Thus, this special case of (32) boils down to the linear utility 
function model, which means that the goods are perfect substitutes for each 
other. We will add the matrix B into our estimation as described below but 
restrict it to be of less than full rank, so the matrix A will also be of less than 
full rank. As anticipated earlier (see the end of section 15.3.3), this means 
that A cannot be inverted and it will be necessary to work with the inverse 
demand curves of the KBF system, rather than the expenditure function or 
the associated Hicksian or Marshallian demand curves.

The matrix B is required to be negative semidefi nite. We can follow the 
procedure used by Wiley, Schmidt, and Bramble (1973) and Diewert and 
Wales (1987) and impose negative semidefi niteness on B by setting B equal 
to –CCT where C is a lower triangular matrix.21 Write C as [c1, c2, …, cN ] 
where ck is a column vector for k = 1, …, N. If  C is lower triangular, then 
the fi rst k – 1 elements of ck are equal to 0, k = 2, 3, …, N. Thus, we have the 
following representation for B:

(47) B = CCT = CkCkT

k=1

19

,

where we impose the following restrictions on the vectors ck in order to 
impose the restrictions Bq* = 0N on B:22

(48) ckTq* = 0; k = 1, …, N.

If  the number of products N in the commodity group under consider-
ation is not small, then typically, it will not be possible to estimate all the 

21. C = [cnk] is a lower triangular matrix if  cnk = 0 for k > n; that is, there are 0’s in the upper 
triangle. Wiley, Schmidt, and Bramble (1973) showed that setting B = -CCT where C was lower 
triangular was suffi  cient to impose negative semidefi niteness while Diewert and Wales showed 
that any negative semidefi nite matrix could be represented in this fashion.

22. The restriction that C be lower triangular means that cN will have at most one nonzero 
element, namely . However, the positivity of q* and the restriction cNTq* = 0 will imply that 
cN = 0N. Thus, the maximal rank of B is N – 1. For additional materials on the properties of 
the KBF functional form, see Diewert (2018).



Estimating the Benefi ts of New Products    459

parameters in the C matrix. Furthermore, typically nonlinear estimation is 
not successful if  one attempts to estimate all the parameters at once. Thus, 
we estimated the parameters in the utility function f (q) = (qTAq)1/2 in stages. 
In the fi rst stage, we estimated the linear utility function f (q) = bTq . In the 
second stage, we estimate f (q) = (qT[bbT – c1c1T ]q )1/2 where c1T ≡ [c1

1
, c1

2
, …, c1

N
] 

and c1Tq* = 0. For starting coeffi  cient values in the second nonlinear regres-
sion, we use the fi nal estimates for b from the fi rst nonlinear regression and 
set the starting c1 ≡ 0N.23 In the third stage, we estimate f (q) = (qT[bbT – c1c1T – 
c2c2T ]q)1/2 where c1T ≡ [c1

1
, c1

2
, …, c1

N
], c1Tq* = 0, c2T ≡ [0, c2

2
, …, ] and c2Tq* = 0. 

The starting coeffi  cient values are the fi nal values from the second stage with 
c2 ≡ 0N. In the fourth stage, we estimate f(q) = (qT[bbT – c1c1T – c2c2T – c3c3T]
q)1/2 where c1T ≡ [c1

1
, c1

2
, …, c1

N
], c1Tq* = 0, c2T ≡ [0, c2

2
, …, ], c2Tq* = 0, c3T ≡ 

[0, 0, c3
3
, …, c3

N
] and c3Tq* = 0. At each stage, the log likelihood will generally 

increase.24 We stop adding columns to the C matrix when the increase in the 
log likelihood becomes small (or the number of degrees of freedom becomes 
small). At stage k of  this procedure, it turns out that we are estimating the 
substitution matrices of rank k – 1 that is the most negative semidefi nite 
that the data will support. This is the same type of procedure that Diewert 
and Wales (1988) used to estimate normalized quadratic preferences and 
they termed the fi nal functional form a semifl exible functional form. The 
above treatment of the KBF functional form also generates a semifl exible 
functional form.

15.4.5  The Estimation of KBF Preferences Using Price Equations

We considered two methods for estimating the KBF utility function. The 
fi rst used a stochastic version of the share equations (45).25 When we applied 
that method to predict prices for products that were actually available, it per-
formed rather poorly, giving us little confi dence that the reservation prices 
for products not available would be reliable. Accordingly, we switched from 
estimating share equations to the estimation of price equations. We con-
sidered the system of estimating equations using prices as the dependent 
variables, as was shown in (33):

(49) pit Et j=1
19 aijqjt / [ n=1

19
m=1
19 anmqntqmt] + it, t = 1,…, 39; i = 1,…,18,

where the A matrix was defi ned as A = bbT – c1c1T – c2c2T – c3c3T – c4c4T and 
the vectors b and c1 to c4 satisfy the same restrictions as the last model in the 
previous section. We stack up the estimating equations defi ned by (49) into 
a single nonlinear regression and we drop the observations that correspond 
to products i that were not available in period t.

23. We also use the constraint c1Tq* to eliminate one of the cn
1 from the nonlinear regression.

24. If  it does not increase, then the data do not support the estimation of a higher rank 
substitution matrix and we stop adding columns to the C matrix. The log likelihood cannot 
decrease because the successive models are nested.

25. See our working paper, Diewert and Feenstra (2019b).
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We used the fi nal estimates for the components of the b, c1, c2, c3 and c4 
vectors from the previous model as starting coeffi  cient values for the pres-
ent model. The initial log likelihood of our new model using these start-
ing values for the coeffi  cients was 415.6. The fi nal log likelihood for this 
model was 518.9, an increase of 103.5 as compared to using shares as the 
dependent variable. Thus, switching from having shares to having prices as 
the dependent variables did signifi cantly change our estimates. The single 
equation R2 was 0.945. We used our estimated coeffi  cients to form predicted 
prices pit* using equations (49) evaluated at our new parameter estimates. The 
equation- by- equation R2 comparing the predicted prices for the 19 products 
with the actual prices were as follows: 0.830, 0.862, 0.900, 0.916, 0.899, 
0.832, 0.913, 0.035, 0.244, 0.275, 0.024, 0.007, 0.870, 0.695, 0.421, 0.808, 
0.618, 0.852, and 0.287. The average R2 was 0.594. Of particular concern 
is product 12, which comes in and out of the sample and has a very low R2 
of only 0.007.

Since the predicted prices are still not very close to the actual prices, we 
decided to press on and estimate a new model, which added another rank 1 
substitution matrix to the substitution matrix; that is, we set A = bbT – c1c1T – 
c2c2T – c3c3T – c4c4T – c5c5T, where c5T = [0, 0, 0, 0, c5

5, …, c19
5 ] and the additional 

normalization c19
5 = n=5

18 cn
5. We used the fi nal estimates for the components 

of the b, c1, c2, c3 and c4 vectors from the previous model as starting coef-
fi cient values for the present model, along with cn

5 = 0.001 for n = 5, 6, …, 18. 
The initial log likelihood of our new model using these starting values for 
the coeffi  cients was 518.9. The fi nal log likelihood for this model was 550.3, 
an increase of 31.4. The single equation R2 was 0.950.

Since the increase in log likelihood for the rank 5 substitution matrix over 
the previous rank 4 substitution matrix was fairly large, we decided to add 
another rank 1 matrix to the A matrix. Thus, for our next model, we set A = 
bbT – c1c1T – c2c2T – c3c3T – c4c4T – c5c5T – c6c6T where c6T = [0, 0, 0, 0, c6

6, …, c19
6 ] 

with the additional normalization c19
6 = n=6

18 cn
6.We used the fi nal estimates 

for the components of the b, c1, c2, c3, c4 and c5 vectors from the previous 
model as starting coeffi  cient values for the new model along with cn

6 = 0.001 
for n = 6, 7, …, 18. The fi nal log likelihood for this model was 568.9, an 
increase of 18.5. The single equation R2 was 0.953. The present model had 
111 unknown parameters that were estimated (plus a variance parameter). 
We had only 680 observations and it was becoming increasingly diffi  cult 
to converge to the maximum likelihood estimates. Thus, we stopped our 
sequential estimation process at this point.

The parameter estimates for the rank 6 substitution matrix are listed 
below in table 15.3.

The estimated bn in table 15.3 for n = 1, …, 18 plus b19 = 1 are proportional 
to the vector of fi rst order partial derivatives of the KBF utility function 
f (q) evaluated at the vector of ones, ∇q f (119). Thus, the bn can be interpreted 
as estimates of the relative quality of the 19 products. Viewing table 15.3, 
it can be seen that the highest- quality products were products 6, 17, and 4 
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(b6 = 2.09, b17 = 1.58, b4 = 1.57) and the lowest quality products were products 
9, 10, and 15 (b9 = 0.57, b10 = 0.59, b15 = 0.71).

With the estimated b and c vectors in hand (denote them as b̂ and ĉk for k = 1, 
…, 6), form the estimated A matrix as Â b̂b̂T ĉ1ĉ1T ĉ2ĉ2T ĉ3ĉ3T ĉ4ĉ4T 

ĉ5ĉ5T ĉ6ĉ6T, and again denote the ij element of Â as âij for i, j = 1, …, 19. 
The predicted price for product i in month t is calculated using the new âij 
estimates. The equation- by- equation R2 that compares the predicted prices 
for the 19 products with the actual prices were as follows: 0.827, 0.868, 0.900, 
0.917, 0.896, 0.854, 0.905, 0.034, 0.328, 0.424, 0.052, 0.284, 0.865, 0.7280, 

Table 15.3 Estimated parameters for KBF preferences

Coef  Estimate  t Stat  Coef  Estimate  t Stat  Coef  Estimate  t Stat

b1 1.35 11.39 c3
2 –0.08 –0.11 c9

4 0.16 0.26
b2 1.31 10.77 c4

2 –0.71 –0.72 c10
4 –0.03 –0.05

b3 1.43 11.31 c5
2 –0.10 –0.24 c11

4 –0.61 –0.81
b4 1.57 11.54 c6

2 –0.64 –1.28 c12
4 –1.59 –1.13

b5 1.37 11.23 c7
2 –0.61 –1.38 c13

4 –0.23 –0.31
b6 2.09 11.89 c8

2 1.15 1.81 c14
4 –0.16 –0.24

b7 1.42 11.40 c9
2 –0.39 –1.35 c15

4 –0.67 –1.69
b8 0.82 9.02 c10

2 –0.54 –1.73 c16
4 –0.22 –0.30

b9 0.57 9.67 c11
2 1.00 2.14 c17

4 3.27 3.55
b10 0.59 9.48 c12

2 1.90 1.67 c18
4 –0.35 –0.44

b11 0.80 10.01 c13
2 –0.46 –1.48 c5

5 –0.06 –0.11
b12 1.10 9.16 c14

2 –0.73 –1.46 c6
5 –0.04 –0.12

b13 1.24 11.14 c15
2 –0.32 –0.80 c7

5 –0.10 –0.06
b14 1.61 11.12 c16

2 0.26 0.84 c8
5 –0.25 –0.04

b15 0.71 10.12 c17
2 0.02 0.01 c9

5 –0.62 –0.89
b16 1.34 11.47 c18

2 –0.50 –1.13 c10
5 –0.56 –0.80

b17 1.58 7.97 c3
3 1.36 5.41 c11

5 –0.11 –0.03
b18 1.37 11.40 c4

3 1.72 4.41 c12
5 –0.31 –0.04

c1
1 1.98 10.03 c5

3 1.03 5.10 c13
5 0.63 0.12

c2
1 1.66 6.65 c6

3 –0.43 –1.09 c14
5 0.05 0.01

c3
1 –0.25 –1.19 c7

3 0.90 2.43 c15
5 –0.08 –0.02

c4
1 0.13 0.55 c8

3 –0.46 –0.81 c16
5 0.76 0.13

c5
1 0.013 0.09 c9

3 –0.01 –0.04 c17
5 0.61 0.23

c6
1 –0.01 –0.05 c10

3 –0.08 –0.28 c18
5 0.48 0.05

c7
1 –0.38 –1.92 c11

3 –0.59 –1.06 c6
6 –0.01 –0.03

c8
1 –0.43 –1.86 c12

3 –0.14 –0.14 c7
6 0.18 0.38

c9
1 –0.02 –0.11 c13

3 –0.02 –0.09 c8
6 –0.76 –0.30

c10
1 –0.28 –1.58 c14

3 –0.45 –1.18 c9
6 –0.08 –0.02

c11
1 –0.96 –4.48 c15

3 –0.46 –2.03 c10
6 0.08 0.02

c12
1 –0.88 –2.69 c16

3 –0.01 –0.06 c11
6 –0.44 –0.27

c13
1 0.11 1.52 c17

3 –2.16 –2.38 c12
6 –0.95 –0.23

c14
1 –0.22 –1.02 c18

3 0.01 0.03 c13
6 –0.60 –0.11

c15
1 –0.13 –0.85 c4

4 –0.50 –0.71 c14
6 0.47 0.98

c16
1 0.14 1.25 c5

4 0.49 1.34 c15
6 0.39 0.34

c17
1 –0.68 –1.54 c6

4 0.27 0.47 c16
6 0.66 0.10

c18
1 0.08 0.45 c7

4 0.38 0.63 c17
6 0.12 0.00

c2
2  0.72  1.58  c8

4  –0.11  –0.12  c18
6  1.02  0.26
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0.487, 0.814, 0.854, 0.848, and 0.321. The average R2 was 0.642, which is a 
noticeable increase from the rank 4 model (average R2 = 0.594), and now 12 
of the 19 equations had an R2 greater than 0.70, while fi ve of the equations 
had an R2 less than 0.40 (product 12 had R2 = 0.284).26

15.4.6  The Gains and Losses Due to Changes in Product Availability

In this section, we consider a framework for measuring the gains or losses 
in utility due to changes in the availability of products that can be applied 
to the KBF (or any other) utility function. We suppose that we have data on 
prices and quantities on the sales of N products for T periods. The vectors of 
observed period t prices and quantities sold are pt = (p1t, …, pNt) ≥ 0N and qt 
= (q1t, …, qNt) ≥ 0N, respectively, for t = 1, …, T. Sales or expenditures on the 
N products during period t are Et ≡ pt ∙ qt for t = 1, …, T.27 We assume that 
a linearly homogeneous utility function, f (q1, …, qN) = f (q), has been esti-
mated where q ≥ 0N.28 If  product i is not available (or not sold) during period 
t, the corresponding price and quantity, pit and qit, are set equal to zeros.

We calculate reservation prices for the unavailable products. We refer to 
these as predicted prices for the available commodities, where the predicted 
prices are consistent with our econometrically estimated utility function and 
the observed quantity data, qt. The period t reservation or predicted price for 
product i, pit*, is defi ned as the prices satisfying the fi rst- order conditions (22) 
using partial derivatives of the estimated utility function f (q) :

(50) pit* ≡ Et[∂f (qt) / ∂qi] / f (qt), i = 1, …, N; t = 1, …, T.

The prices defi ned by (50) are also Rothbarth’s (1941) virtual prices; they 
are the prices that rationalize the observed period t quantity vector as a 
solution to the period t utility maximization problem. Since f (q) is nonde-
creasing in its arguments and Et > 0, we see that pit* ≥ 0 for all i and t. If  the 
estimated utility function fi ts the observed data exactly (so that all errors in 
the estimating equations are equal to 0),29 then the predicted prices, pit*, for 
the available products will be equal to the corresponding actual prices, pit.

Imputed expenditures on product i during period t are defi ned as pit*qit for 
i = 1, …, N. Note that if  product n is not sold during period t, qit = 0 and 
hence pit*qit = 0 as well. Total imputed expenditures for all products sold dur-
ing period t, Et*, are defi ned as the sum of the individual product imputed 
expenditures:

26. The sample average expenditure shares of these low R2 products were 0.026, 0.026, 0.043, 
0.025, and 0.050, respectively. Thus, these low R2 products are relatively unimportant compared 
to the high expenditure share products.

27. We also assume that i=2
19 pitqit > 0 for t = 1, …, T.

28. We assume that f (q) is a diff erentiable, positive, linearly homogeneous, nondecreasing 
and concave function of q over a cone contained in the positive orthant. The domain of defi ni-
tion of the function f is extended to the closure of this cone by continuity and we assume that 
observed quantity vectors qt are contained in the closure of this cone.

29. This assumes that observed prices are the dependent variables in the estimating equations.
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(51) Et* i=1
N pit*qit, t = 1,…,T

= i=1
N qitEt[ f (qt) / qi] / f (qt), using definition (50)

= Et ,

where the last equality follows using the linear homogeneity of f (q) since by 
Euler’s Theorem on homogeneous functions, we have f (q) = i=1

N  qi∂f (q) / ∂qi. 
Thus, period t imputed expenditures, Et*, are equal to period t actual expen-
ditures, Et.

The above material sets the stage for the main acts: namely, how to mea-
sure the welfare gain if  product availability increases and how to measure 
the welfare loss if  product availability decreases. Suppose that in period 
t – 1, product 1 was not available (so that q1t–1 = 0), but in period t it becomes 
available, and a positive amount is purchased (so that q1t > 0). Our task is to 
defi ne a measure of the increase in consumer welfare that can be attributed 
to the increase in commodity availability.

Defi ne the vector of  purchases of  products during period t, excluding 
purchases of product 1 as q~1t ≡ [q2t, q3t, …, qNt]. Thus qt = [q1t, q~1t]. Since 
by assumption, an estimated utility function f (q) is available, we can use 
this utility function in order to defi ne the aggregate level of consumer utility 
during period t, Ut, as follows:

(52) Ut ≡ f (qt) = f (q1t, q~1t).

Now exclude the purchases of product 1 and defi ne the (diminished) util-
ity, U~1t, the utility generated by the remaining vector of purchases, q~1t, as 
follows:

(53) U~1t ≡ f (0, q~1t)

≤  f (q1t, q~1t) since f (q) is nondecreasing in the components of q

= Ut using defi nition (52).

Defi ne the period t imputed expenditures on products excluding product 1, 
E 1t* , as follows:

(54) E 1t* i=2
N pit*qit

= Et p1t*q1t using (51)

Et since p1t* 0 and q1t > 0.

It will be useful to work with the ratio of E 1t*  to Et, defi ned as

(55) λ1 ≡ E 1t* / Et ≤ 1 using (54).

Notice that the scalar λ1 is exactly the same as the term λt defi ned in (12), 
provided that we use the “common” set of goods I ≡ {2, …, N } in (12). In 
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other words, this is the period t expenditure on the set of goods {2, …, N} 
that were also available in period t – 1, relative to total expenditure. Then 
divide the vector of period t purchases excluding product 1, q1t, by the scalar 
λ1, and calculate the resulting imputed expenditures on the vector q~1t / λ1 
as equal to Et:

(56) i=2
N pit*qit / 1 = (1/ 1) i=2

N pit*qit

= (1/ 1)E1t* using definition (54)

= (Et / E 1t* )E 1t*  using definition (55)

= Et .

Using the linear homogeneity of  f (q ) in the components of  q , we are 
able to calculate the utility level, UA1t, that is generated by the vector q~1t /
λ1 as follows:

(57) UA1t ≡ f (0, q~1t / λ1)

= (1 / λ1) f (0, q~1t) using the linear homogeneity of f

= (1 / λ1)U~1t using defi nition (53).

Note that λ1 can be calculated using defi nition (55) and U~1t can be calculated 
using defi nition (53). Thus, UA1t can also be readily calculated.

Consider the following (hypothetical) consumer’s period t aggregate util-
ity maximization problem where product 1 is not available and consumers face 
the imputed prices pit* for products 2, …, N and the maximum expenditure on 
the N – 1 products is restricted to be equal to or less than actual expenditures 
on all N products during period t, which is Et:

(58) maxq s{ f (0,q2,q3,…,qN): i=2
N pit*qit Et} U1t

UA1t ,

where UA1t is defi ned by (57). The inequality in (58) follows because (56) 
shows that q~1t / λ1 is a feasible solution for the utility maximization prob-
lem defi ned by (58). We also know that the actual utility level in period t , 
Ut exceeds the maximized utility level U1t when good 1 is not available, so 
that we have

(59) Ut ≥ U1t ≥ UA1t.

We regard UA1t as an approximation (and lower bound) to U1t. Given that an 
estimated utility function f (q) is in hand, it is easy to compute the approxi-
mate utility level UA1t when product 1 is not available. The actual constrained 
utility level, U1t, will in general involve solving numerically the nonlinear 
programming problem defi ned by (58). For the KBF functional form, 
instead of maximizing (qTAq)1/2, we could maximize its square, qTAq , and 
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thus solving (58) would be equivalent to solving a quadratic programming 
problem with a single linear constraint. For the CES functional form, it 
turns out that there is no need to solve (58) because the strong separability 
of the CES functional form will imply that U1t = UA1t. In other words, for the 
CES utility function, when good 1 is not available, then the consumer will 
optimally choose to infl ate the purchases q~1t by (1 / λ1) in order to exhaust 
the budget Et.

A reasonable measure of the gain in utility due to the new availability of 
product 1 in period t, G1t, is the ratio of the completely unconstrained level 
of utility Ut to the product 1 constrained level U1t—that is, defi ne the product 
1 utility gain in period t as

(60) G1t ≡ Ut / U1t ≥ 1,

where the inequality follows from (59). The corresponding product 1 approxi-
mate utility gain is defi ned as

(61) GA1t ≡ Ut / UA1t ≥ G1t ≥ 1,

where the inequalities follow again from (59). Thus, in general the approxi-
mate gain is an upper bound to the true gain in utility due to the new avail-
ability of product 1 in period t.

Note that for the CES utility function we have GA1t = G1t since U1t = UA1t. 
Furthermore, using the shares in (39) assumed no measurement error in 
prices, so that pit = pit*, and we have

(62) GA1t =
Ut

UA1t

= 1t
Ut

U~1t

from definitions (57) and (61)

= i=2
N pit*qit

Et

Ut

U~1t

from definition (55)

= i=2
N aiqit

( 1)/

i=1
N aiqit

( 1)/

Ut

U~1t

from (39) with pit = pit*

= i=1
N aiqit

( 1)/

i=2
N aiqit

( 1)/

1/( 1)

from (3) with
1

1 =
1

1

= 1
i=2

N

sit

1/( 1)

from (39) once again.

So, for the CES case, the approximate measure of gain GA1t equals the true 
gain G1t, and these are exactly equal to the CES gain we defi ned earlier in (44) 
when applied to the case of new product 1. In other words, the earlier CES 
gain is identical to the approximate measure of gain that we have proposed 
in this section when applied to that functional form. But our defi nitions in 
this section also apply to any other functional form for utility, including 
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the KBF form, while recognizing that we are using the approximation (and 
upper bound) GA1t rather than G1t.

Now consider the case where product 1 is available in period t but it 
becomes unavailable in period t + 1. In this case, we want to calculate an 
approximation to the loss of utility in period t + 1 due to the unavailability 
of product 1. It turns out, however, that our methodology will not provide 
an answer to this measurement problem using the price and quantity data 
for period t + 1; we have to approximate the loss of utility that will occur 
in period t due to the unavailability of product 1 in period t + 1 by instead 
looking at the loss of utility that would occur in period t if  product 1 became 
unavailable. Once we redefi ne our measurement problem in this way, we can 
simply adapt the inequalities that we have already established for period t 
utility to the loss of  utility from the unavailability of product 1 from the 
previous analysis for the gain in utility.

A reasonable measure of the hypothetical loss of utility due to the unavail-
ability of product 1 in period t is the ratio of the product 1 constrained level of 
utility U1t to the completely unconstrained level of utility Ut to the product 1. 
We apply this hypothetical loss measure to period t + 1 when product 1 
becomes unavailable—that is, defi ne the product 1 utility loss that can be 
attributed to the disappearance of product 1 in period t + 1 as

(63) L1,t+1 ≡ U1t / Ut ≤ 1,

where the inequality follows from (59). The corresponding product 1 approxi-
mate utility loss is defi ned as

(64) LA1,t+1 ≡ UA1t / Ut ≤ L1,t+1 ≤ 1,

where the inequalities again follow from (59). Thus, in general the approxi-
mate loss is a lower bound to the “true” loss L1,t+1 in utility that can be 
attributed to the disappearance of product 1 in period t + 1. As was the 
case with our approximate gain measure, if  f (q) is a CES utility function, 
then LA1,t+1 = L1,t+1.

It is straightforward to adapt the above analysis from product 1 to product 
12 and compute the approximate gains and losses in utility that occur due 
to the disappearance of product 12 in period 10, its reappearance in period 
11, its disappearance in period 20, and its fi nal reappearance in period 23. 
These approximate losses and gains for the KBF utility function are listed in 
the third column of table 15.4. It is also straightforward to adapt the above 
analysis to situations where two new products appear in a period, which is 
the case for our products 2 and 4, which were missing in periods 1–8 and 
make their appearance in period 9. The approximate utility gain due to the 
new availability of these products in the KBF case is also listed in the third 
column of table 15.4. In the fourth column of table 15.4 we repeat the CES 
gain in utility from table 15.2 for period 9 due to the introduction of products 
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2 and 4, and the various impacts of the exit and entry of product 12. Thus, 
table 15.4 compares the gains and losses in utility for the KBF and CES mod-
els for the fi ve months in which there was a change in product availability.

In month 9, when products 2 and 4 become available, the CES model 
implies that the enhanced product availability increases consumers’ utility 
by 0.83 percentage points, while the KBF model implies a much smaller 
increase of  0.13 percentage points. Following that product introduction, 
we have the disappearance and reappearance of product 12 over all several 
months.

Recall that in our earlier calculation of the CES gain (see table 15.2), the 
net eff ect on utility of the entry and exit of product 12 canceled out, so that 
the overall utility gains came only from the initial entry or products 2 and 4. 
That result roughly holds in the KBF case, too, where product 12 now has 
only a very small impact on overall utility, increasing the utility gain from 
1.0013 (fi rst row of the third column in table 15.4) to 1.0014 (fi nal row of 
the third column).

So, product 12 has only a very minor eff ect on utility, and the principal 
impact comes from the month 9 introduction of products 2 and 4, where 
the CES gains are six times higher than the KBF gains in table 15.4 (and 
their bootstrapped 95 percent confi dence intervals do not overlap). That is 
a surprising result because our argument throughout this paper has been 
that the CES gains are at least twice as high as the Hausman gains obtained 
from a linear approximation to the demand curve. We have noted in section 
15.3.3 that the demand curves of the KBF utility function are convex, and 
since these convex demand curves lie above their linear approximation, the 
utility gain from a new product with KBF utility should exceed the utility 

Table 15.4 The gains and losses of utility due to changes in product availability

Month  Availability  
GA,KBF

LA,KBF  

GCES

(σ = 6.62)

9 2 and 4 new 1.0013
[1.0009, 1.0040]

1.0083
[1.0075, 1.0091]

10 12 disappears 0.9975 0.9959
[0.9935, 0.9996] [0.9955, 0.9963]

11 12 reappears 1.0030 1.0049
[1.0005, 1.0088] [1.0045, 1.0054]

20 12 disappears 0 .9988 0.9956
[0.9968, 0.9998] [0.9952, 0.9960]

23 12 reappears 1.0008 1.0035
[1.0001, 1.0020] [1.0032, 1.0039]

Cumulative Gain 1.0014 1.0083
    [1.0011, 1.0047]  [1.0075, 1.0091]
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gain along linear approximation. It follows that CES gains should be not 
much more than twice as high as the KBF gains, provided that those demand 
curves have the same elasticity at the point of consumption. Instead, we are 
fi nding in our estimation that we must divide the CES gain by about six to 
get the estimated KBF gain.

The resolution to these surprising empirical results is that the KBF and 
CES demand curves must have diff erent slopes at the point of consumption. 
But there is nothing in our estimation that will guarantee that result, and in 
fact our KBF utility function has more elastic demand on average for any 
products—including products 2 and 4 when they are introduced—than the 
estimated CES utility function. To illustrate the more elastic demand for the 
KBF function, we compute the Hausman approximation to the KBF gain 
as shown in (38) and to the CES gain as shown in (18). To be more specifi c, 
we single out each product and regard it as a product 1 in the approximate 
formulae (18) and (38). The remaining products are aggregated into product 
2. The share of this aggregate product 2 is simply s2t ≡ 1 – s1t.

30 With these 
modifi cations, we can calculate GH,KBF and GH,CES for each product and time 
period. That is, we pretend that each product is newly introduced in each 
time period and calculate the corresponding gains. Then we take the mean of 
these measures for each product over the 39 time periods for our estimated 
KBF and CES functional forms, as reported in table 15.5, together with the 
bootstrapped 95 percent confi dence intervals.31

From table 15.5, it can be seen that averaging over all products and all time 
periods, the approximate gain in utility from the introduction of a product is 
about 0.17 percentage points using our estimated KBF utility function and 
about 0.46 percentage points using our estimated CES utility function. So, 
the CES functional form gives a high estimate of the welfare gain by nearly 
a factor of three. The diff erence between them is explained entirely by the 
diff ering estimates of the inverse demand elasticities, as can be seen from 
equation (31). In order to have the Hausman approximation to the CES 
gains that are about three times as high on average as the Hausman approxi-
mation to the KBF gains, it must be that the elasticity of demand for the 
KBF function is about three times as high as for the CES.32 With the results 
shown in table 15.5, it is not surprising that the CES gains (from products 2 
and 4) are six times higher than the KBF gains in table 15.4: about three times 

30. The KBF shares that we use for this exercise are fi tted shares; that is, we use the actual 
quantities that are observed in period t, qit, and the estimated prices pit* ≡ f1(qt)Et / f (qt) where 
f (q) is the estimated utility function. In the CES case, we use the observed shares for simplicity.

31. The bootstrap uses 500 draws with replication. In some cases, the estimated coeffi  cient was 
below the 95 percent confi dence interval obtained by dropping the top and bottom 2.5 percent 
of observations. In those cases, we dropped fewer observations at the bottom and more at the 
top (still dropping 5 percent in total), so that the coeffi  cient was within the confi dence interval.

32. In appendix B of Diewert and Feenstra (2019b), table B1, we report some average elastici-
ties for each product that are quite similar to the elasticities of inverse demand.
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within this diff erence comes from having more elastic demand for the KBF 
than for the CES utility functions (so that the Hausman linear approxima-
tion to the gains in the CES case are nearly three times as high as in the KBF 
case), while the other two times comes from CES demand curves being more 
convex (with gains about twice higher) than KBF demand.

15.5  Conclusions

Determining how to incorporate new goods into the calculation of price 
indexes is an important, unresolved issue for statistical agencies. That issue 
becomes particularly important with the increased availability of scanner 
data to measure prices and quantities, because new and disappearing prod-
ucts at the barcode level occur frequently in such data. Our goal in this paper 
has been to compare several empirical methods to deal with new and disap-
pearing products: the proposal by Hausman (1999, 191; 2003, 27) to use a 
linear approximation to the demand curve to compute a lower bound to the 
consumer surplus, assuming that the true demand curve is convex; and with 
the estimation of two utility functions, the CES case and a quadratic utility 
function that we refer to as the KBF case. We have extended the approach 
of Hausman to apply to the analysis of  inverse demand curve (prices as 

Table 15.5 Gains from the appearance of each product for the estimated KBF and CES utility 
functions

Product  GH,KBF  GH,CES  Product  GH,KBF  GH,CES

1 0.0041 0.0042 11 0.0034 0.0034
[0.0029, 0.0139] [0.0039, 0.0046] [0.0011, 0.0129] [0.0031, 0.0037]

2 0.0008 0.0017 12 0.0021 0.0019
[0.0006, 0.0052] [0.0015, 0.0018] [0.0004, 0.0057] [0.0018, 0.0021]

3 0.0006 0.0026 13 0.0056 0.0221
[0.0004, 0.0038] [0.0024, 0.0029] [0.0039, 0.0108] [0.02037, 0.0239]

4 0.0008 0.0021 14 0.0009 0.0057
[0.0004, 0.0020] [0.0020, 0.0023] [0.0004, 0.0108] [0.0053, 0.0062]

5 0.0033 0.0095 15 0.0009 0.0017
[0.0026, 0.0091] [0.0088, 0.0103] [0.0003, 0.0075] [0.0016, 0018]

6 0.0001 0.0027 16 0.0031 0.01012
[0.0001, 0.0013] [0.0025, 0.0029] [0.0016, 0.0121] [0.0093, 0.0110]

7 0.0005 0.0030 17 0.0019 0.0021
[0.0005, 0.0040] [0.0028, 0.0033] [0.0003, 0.0034] [0.0020, 0.0024]

8 0.0010 0.0020 18 0.0011 0.0039
[0.0002, 0.0069] [0.0018, 0.0022] [0.0007, 0.0047] [0.0036, 0.0042]

9 0.0008 0.0020 19 0.0004 0.0041
[0.0006, 0.0038] [0.0019, 0.0022] [0.0004, 0.0165] [0.0037, 0.0044]

10 0.0005 0.0014 Mean 0.0017 0.0046
  [0.0003, 0.0031]  [0.0013, 0.0016]    [0.0017, 0.0041]  [0.0042, 0.0049]
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functions of  quantities) rather than direct demand curves (quantities as 
functions of prices), as needed in the KBF case.33 Then we have illustrated 
our results using the barcode data for frozen juice from one grocery store. 
While obviously limited in its scope, there are several tentative conclusions 
that can be drawn from the computations undertaken in this paper:

• The Feenstra CES methodology for dealing with changes in product 
availability is dependent on having accurate estimates for the elasticity 
of substitution. The gains from increasing product availability are very 
large if  the elasticity of substitution σ is close to one and fall rapidly as 
the elasticity increases, as discussed in section 15.3.1.

• It is not a trivial matter to obtain an accurate estimate for σ. Section 
15.4.2 developed one methodological approach to the estimation of the 
elasticity of substitution if  purchasers of products have CES prefer-
ences. These methods adapt Feenstra’s (1994) double log- diff erencing 
technique to the estimation of σ in a systems approach, where only one 
parameter needs to be estimated for an entire system of transformed 
CES demand functions.

• A major purpose of the present paper was the estimation of Hicksian 
reservation prices for products that were not available in a period. In 
the CES framework, these reservation prices turn out to be infi nite. But 
typically, it does not require an infi nite reservation price to deter a con-
sumer from purchasing a product. Thus, in section 15.3.3 we discussed 
the utility function f (q) ≡ (qTAq)1/2, which was originally introduced by 
Konüs and Byushgens (1926). They showed that this functional form 
was exactly consistent with the use of Fisher (1922) price and quantity 
indexes, so we called this the KBF functional form. The use of  this 
functional form leads to fi nite reservation prices, which can be readily 
calculated once the utility function has been estimated.

• We indicated how the correct curvature conditions on this functional 
form could be imposed and we showed that it is a semifl exible functional 
form that is similar to the normalized quadratic semifl exible form intro-
duced by Diewert and Wales (1987, 1988).

• In section 15.4.5 we estimated the unknown parameters in the A matrix 
using prices as the dependent variables. This approach generated sat-
isfactory point estimates for the KBF functional form, but because of 

33. Generally, it is challenging to estimate direct demand functions when there are new goods 
because the reservation prices for goods not available—which will infl uence the demand for 
available goods—are unknown. In some cases, the reservation prices can be solved as a function 
of observed prices and quantities for available goods, and therefore included in the estimation 
(see Feenstra and Weinstein (2017) for an application to a symmetric translog expenditure func-
tion). This problem does not arise when the inverse demand functions are estimated instead, 
because then the quantity for goods that are not available is simply zero, which can be used in 
the inverse demand equations for all goods that are available.
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the large number of parameters, many of the individual estimates are 
insignifi cantly diff erent from zero.

• The results presented in section 15.4.6 indicate that the Feenstra CES 
methodology for measuring the benefi ts of increases in product variety 
may overstate these benefi ts as compared to our semifl exible methodol-
ogy. We fi nd that the CES gains are about six times greater than the KBF 
gains: in rough terms, about three times within this diff erence comes 
from having more elastic demand for the KBF than for the CES utility 
functions (so that the Hausman linear approximation to the gains in the 
CES case are three times as high as in the KBF case), while the other 
two times comes from CES demand curves being more convex (with 
gains about twice higher) than KBF demand. Furthermore, the confi -
dence intervals for these estimates of gains in the KBF and CES cases 
do not overlap.

There is one other functional form that we have not explored in this paper, 
but which deserves more attention when examining new goods, and that is 
the translog expenditure function. In its most general form this function 
is fl exible, and under additional conditions the demand curves are convex 
with fi nite reservation prices for new goods. Feenstra and Shiells (1997) have 
examined the case of a single new good, and assuming that the translog and 
CES demand curves are tangent at the point of consumption, they argue 
that the gains from the new good in the translog case is one half as large as 
the CES gains. Feenstra and Weinstein (2017) have examined a simplifi ed 
symmetric translog expenditure function that has the same number of free 
parameters as the CES; that is, it is not a fully fl exible functional form. With 
that simplifi cation, they confi rm that the translog case is about one half  as 
large as the CES gains on a large dataset involving new imported products 
into the United States: they fi nd that the gains from new imports are about 
one half  as large in the translog case as what Broda and Weinstein (2006) 
fi nd in the CES case.34 Applying the translog functional form to scanner 
datasets would be a valuable exercise to see whether that method might be 
an alternative to the CES functional form, and we expect that the adjust-
ment for new and disappearing goods will be about one half  as large in the 
translog case as for the CES.

Our approach can be compared to the recent work of Redding and Wein-
stein (2020), who also use a CES utility function. They assume that this func-
tional form represents the “true” preferences, so that any observed deviation 

34. Note, however, that Feenstra and Weinstein (2017) fi nd another source of gains from 
new goods in the translog case, and that is a procompetitive eff ect on lowering the markups on 
existing goods. This procompetitive eff ect does not occur under a CES utility function because 
then markups are fi xed. When this procompetitive eff ect is added to the gains from new products 
in the translog case, the total gains are comparable in size to what Broda and Weinstein (2006) 
estimate as the gains from new products in the CES case,
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from the CES demand curves must represent a shift in tastes. For example, 
a good with a falling price and a very large increase in demand—a greater 
increase than what would be implied by the elasticity of substitution—must 
have a shift in tastes toward that good. They argue that the consumer gain 
from that price reduction is greater than what we would compute using 
constant tastes (which is the usual assumption of exact price indexes). So, 
in addition to the CES correction for new goods, they would propose a fur-
ther correction to allow for taste change. Our results in this paper show, in 
contrast, that once we move away from the CES case and consider alterna-
tive utility functions such as the KBF (or the translog case just mentioned), 
then the gains from new products will be less than that found for the CES 
utility function.
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