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In the past four decades, the frequency of  adverse weather events has 
increased (Parry et al. 2007; IPCC 2007; Hatfi eld et al. 2014). Bad weather 
can result in higher unit- production costs when producers try to mitigate 
heat stress on animals or drought eff ects on crops. It can also widen the 
distance between observed production and the feasible production frontier 
and lower productivity estimates. According to USDA’s US agricultural pro-
ductivity statistics (USDA-ERS 2017), in 2015, farm output was more than 
2.7 times its 1948 level. With little growth in input use, the growth of total 
factor productivity (TFP) accounted for nearly all output growth during that 
period. However, TFP growth rates fl uctuate considerably from year to year 
in response to transitory events (see Wang et al. 2015 for discussion), mostly 
adverse weather. Since there is a growing consensus that climate change is 
occurring and the average daily temperature and the frequency of extreme 
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weather are likely to increase in the future (IPCC 2007; EPA 2018; NASA 
2018), the likely eff ects of climate change or weather fl uctuations on agricul-
tural productivity have gained much attention in recent studies.

In the literature, “weather” is usually used to denote short- term variations 
in temperature or precipitation, while “climate change” refers to changes 
in average levels of  weather outcomes (e.g., degree of  temperature) that 
cover a long period of time. While climate change and weather variation are 
two diff erent issues, one phenomenon of climate change is the increasing 
frequency of weather shocks (extreme weather). Therefore, it is critical to 
consider the case of extreme weather in addressing the eff ect of climate on 
agricultural productivity.

There are three major streams of  literature studying the relationship 
between climate change / weather eff ect and economic activities. One body 
of work focuses on biophysical impacts through examining the relation-
ship between climatic factors and individual commodity production or pro-
ductivity, such as weather and crop yield or livestock production (e.g., St- 
Pierre, Cobanov, and Schnitkey 2003; Schlenker and Roberts 2009; Lobell, 
Schlenker, and Costa- Roberts 2011; Paltasingh, Goyari, and Mishra 2012; 
Mukherjee, Bravo- Ureta, and Vries 2012; Hatfi eld et al. 2014; Key and 
Sneeringer 2014; Burke and Emerick 2016). A second body of work focuses 
on adaptive response at the individual/fi rm level through evaluating how 
an individual farm/fi rm/person reacts to climatic impacts, such as a farm-
er’s behavior under uncertainty (risk management, see Schimmelpfennig 
1996; Kim and Chavas 2003; Di Falco and Veronesi 2013; Yang and Shum-
way 2015.) The third stream of literature addresses impacts at a regional/
national/sectoral scale, considering both biophysical eff ects and adaptation 
or other economic impacts (e.g., land values, see Mendelsohn, Nordhaus, 
and Shaw 1994; agricultural profi t, see Deschênes and Greenstone 2007; 
economic growth, see Dell, Jones, and Olken 2012). They are usually done 
by quantifying the eff ects of climate/weather changes on aggregate economic 
performance using country-  and regional- level data (e.g., Mendelson, Nord-
haus, and Shaw 1994; Sachs and Warner 1997; Dell, Jones, and Olken 2009, 
2012) or sectoral data (e.g., Malcom et al. 2012; Hatfi eld et al. 2014; Mar-
shall et al. 2015; Liang et al. 2017).

In the literature on identifying climatic impacts on aggregate economic 
performance, researchers either employ an empirical approach based on his-
torical data or utilize simulation techniques to project economic responses to 
climate/weather shocks based on baseline projections and scenario analysis, 
especially in agricultural studies. While projecting climatic impacts can be 
useful for informing policy or making policy recommendations, empiri-
cal studies can help identify the relationship between climate/weather and 
economic activities and provide statistical evidence in explaining economic 
phenomena. Empirical studies can rely on either time- series data or cross- 
sectional data. The advantage of using time- series data is that they capture 
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the impacts of climate change and the farmers’ adaption to these changes 
over time. Nevertheless, they could fail to capture varied eff ects across 
regions. Notwithstanding, while the cross- sectional data approach contains 
information on geospatial diff erences, the statistical results may be biased if  
regionally specifi c characteristics are not taken into account, such as irriga-
tion areas (Schlenker, Hanemann, and Fisher 2006). Panel data, on the other 
hand, can both preserve desired features of time- series and cross- sectional 
analyses and avoid their weaknesses, and it has become a preferred approach 
in recent studies.

The literature on the impact of climate change on crop production has 
shown that while moderate warming may benefi t crop and pasture yields in 
temperate regions, further temperature increases can reduce crop yields in 
all regions (Carter et al. 1994; Lobell and Asner 2003; Tubiello and Rosen-
zweig 2008; Schlenker and Roberts 2009). In addition, some studies suggest 
that higher variance in climate conditions leads to lower average crop yields 
and greater yield variability (Semenov and Porter 1995; Ferris et al. 1998; 
McCarl, Villaviencio, and Wu 2008; among others). Weather extremes can 
also cause disease outbreaks and infl uence agricultural production (Yu and 
Babcock 1992; Anyamba et al. 2014). In livestock studies, evidence indicates 
that when an animal’s thermal environment is altered due to climate change, 
the animal’s health and reproduction can be aff ected. The feed conversion 
rate can also be aff ected (St- Pierre, Cobanov, and Schnitkey 2003; Morrison 
1983; Fuquay 1981). Mukherjee, Bravo- Ureta, and Vries (2012) and Key 
and Sneeringer (2014) indicate that an increase in a temperature humidity 
index (THI) could help explain the technical ineffi  ciency of dairy production 
based on stochastic frontier estimates. In an aggregate economy study, Dell, 
Jones, and Olken (2012) use historical cross- country data to identify the rela-
tionship between temperature shocks and economic growth. They fi nd that 
climatic eff ects vary across countries with diff erent economic development 
stages. They suggest that in the long run, countries may adapt to a particular 
temperature, mitigating the short- run economic impacts.

In light of recent developments in the literature, in this chapter we use state 
panel data to study the impact of climate change and extreme weather on US 
agricultural productivity empirically, for the entire farm sector (including 
both crop and livestock production). One major challenge in quantifying 
climatic eff ects on the aggregate sector is constructing appropriate climatic 
variables. While Dell, Jones, and Olken (2012) use historical fl uctuations in 
temperature within countries to identify impacts on aggregate economic 
outcomes and fi nd signifi cant results, our climate variables are not limited 
to temperature and also include precipitation and humidity estimates, as 
precipitation is relevant to crop production. The scientifi c literature suggests 
that a heat stress that exceeds livestock’s optimal thermoneutral zone (THI 
load) can reduce fertility, feed effi  ciency, weight gain, and so on (NRC 1983; 
Fuquay 1981; Hansen and Aréchiga 1999; West, Mullinix, and Bernard 
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2003). THI load has been shown to be an eff ective measure in evaluating 
the environmental eff ects on livestock. The Oury index, on the other hand, 
is an aridity index that combines temperature and precipitation in the mea-
surement and is eff ective in connecting climatic eff ects to crop growth (Oury 
1965; Zhang and Carter 1997). A lower Oury index indicates drier condi-
tions that would be less favorable to crop production. Drawing upon the 
prior literature, we use historical temperature, humidity, and precipitation 
data to form a THI and an Oury index (an aridity index). The mean levels of 
THI and Oury indexes refl ect changes in annual weather outcomes for indi-
vidual states over the study period. Shocks of THI and Oury indexes, which 
measure the degree of unexpected deviations from their historical (1941 to 
1970) means, are used to capture the unexpected extreme weather eff ects.

We use constructed weather variables and aggregate economic data within 
states to examine the relationships between climatic variables and regional 
agricultural productivity. Given that there may be spatial heterogeneity, we 
also include state characteristic variables—including irrigated area, state- 
level R&D, extension, and road infrastructure—in alternative model specifi -
cations in addition to using a fi xed- eff ect approach. We further conduct sce-
nario analyses to project how future temperature and precipitation changes, 
under climate- change expectations, aff ect agricultural productivity using 
2000 to 2010 as the reference period.

In this study, we have four major fi ndings. First, using the THI load and 
Oury indexes, we fi nd that the patterns of climate change varied from region 
to region in the last half  century (1960 to 2010), with some states becoming 
drier or warmer, while some states have little change on average but have 
become more volatile in more recent years. Second, using mean levels of THI 
and Oury indexes, we fi nd that a higher THI load and lower Oury index (much 
drier condition) will lower a state’s productivity. However, some estimated 
coeffi  cients become insignifi cant when more state characteristic variables are 
incorporated into the estimation. Third, when using THI shock and Oury 
shock variables, the results are more robust across model specifi cations in 
both signs and coeffi  cient estimates. Positive THI shocks and negative Oury 
shocks will lower state technical effi  ciency. This suggests that over the long 
run, each state has gradually adapted to state- specifi c climate conditions (the 
average level of temperature and precipitation and the degree of weather 
fl uctuations). It is the unexpected weather shocks that are aff ecting regional 
productivity more profoundly. Fourth, using weather shock variables, we 
project potential impacts of increasing temperature and extreme weather 
(the expected climate- change phenomenon) on US regional productivity. 
Results show that the same degree changes in temperature or precipitation 
will have uneven impacts on regional productivities, with Delta, Northeast, 
and Southeast regions incurring much greater eff ects than the other regions, 
using 2000 to 2010 as the reference period.

This chapter is the fi rst empirical study, we think, to estimate the climatic 
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eff ect on regional agricultural productivity from the perspective of the entire 
farm sector, including both livestock and crop production. The study adds 
new insight into identifying the climatic eff ects on aggregate agricultural 
productivity. Our evidence suggests that weather shocks have more consis-
tent and profound impacts on regional productivity when each state faces 
its particular weather condition. The diverse weather impacts on regional 
productivity from the same degree of changes in temperature or precipita-
tion suggest the need for state- specifi c research programs to help producers 
manage their own climatic situations and future challenges.

We organize the remainder of the chapter as follows: Section 2.1 intro-
duces the empirical approach. Section 2.2 describes the data and variables 
and provides descriptive statistics. Section 2.3 presents patterns of  state 
productivity growth and climate changes. Section 2.4 the empirical results 
and discussion. Section 2.5 reports the projection of regional productivity 
based on climate change scenarios. Section 2.6 provides concluding remarks.

2.1 Empirical Framework

In the literature on climate and its economic impacts, some studies incor-
porate climate variables along with other input variables in one produc-
tion function to test for climatic eff ects on crop yield, livestock produc-
tion, economic performance, or productivity growth. There are also studies 
that model weather variables as factors that impact technical ineffi  ciency 
but aren’t in the production equation (see Key and Sneeringer 2014, for 
example). In a study of climatic eff ects on US dairy productivity, Key and 
Sneeringer (2014) assert that operators in a region under adverse weather 
conditions will operate further from the production frontier (i.e., be less 
technically effi  cient) even when they have technology similar to that of other 
operators in diff erent regions. That study employed a stochastic frontier pro-
duction approach in its estimates, where climate variables were incorporated 
as determinants of a one- sided error that drove farm production from its 
production frontier. In this study, we employ the same approach to evaluate 
the potential impacts of climate change and extreme weather on US regional 
agricultural productivity. To validate our choices of model specifi cations 
and weather variables, we also perform out- of- sample validation tests. We 
divide the data set into estimation sets (80 percent of observations, from 
1961 to 1995) and validation sets (20 percent of observations, from 1996 to 
2004) to evaluate forecasting performances among various model specifi ca-
tions and alternative weather variables (see table 2A.1 in the appendix to this 
chapter for examples). The likelihood-ratio (LR) test results at the bottom 
of table 2A.2 indicate that we reject the hypothesis of no ineffi  ciency for all 
estimated stochastic frontier models. The results show that utilizing THI 
and Oury indexes as determinants of a one- sided ineffi  ciency term along 
with other external control variables under the stochastic frontier model 
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setup leads to better forecast performances. The mean standard errors of 
predictions of  those models are the lowest among estimated models (see 
table 2A.2 for details).

2.1.1 Stochastic Frontier Production Function

The stochastic frontier approach was fi rst developed by Aigner, Lovell, 
and Schmidt (1977) and Meeusen and van den Broeck (1977) and has been 
applied to numerous studies. In earlier applications, researchers tried to 
explain those ineffi  ciency eff ects by conducting a two- step approach that 
requires predicting the ineffi  ciency scores fi rst and then running a regression 
model that relates the ineffi  ciency scores and the explanatory variables in a 
second step. Using cross- section data, Kumbhakar, Ghosh, and McGuckin 
(1991), Reifschneider and Stevenson (1991), and Huang and Liu (1994) later 
proposed models that allow the estimation of technical ineffi  ciency eff ects 
with parameters simultaneously estimated in the stochastic frontier func-
tion and ineffi  ciency model. Battese and Coelli (1995) further proposed a 
model to estimate the technical ineffi  ciency eff ects in a stochastic frontier 
production function for panel data. Since Wang and Schmidt (2002) have 
theoretically explained that two- step procedures are biased, in this study we 
follow Key and Sneeringer (2014) to employ a one- step procedure to test 
the climatic eff ects on regional productivity using a state panel data of 48 
contiguous states for the period from 1960 to 2004. Each state is treated as 
an individual producer facing its particular climate patterns, state- specifi c 
characteristics, and resources.

Under the stochastic frontier production function framework, the model 
can be expressed as

(1) ln(yit) = f (xit, 𝛃) + vit − uit,

where yit is the observed aggregate output of state i at time t, and f(xit, 𝛃) 
is the maximum output that can be produced with a technology described 
by parameters 𝛃 (to be estimated) and a vector of inputs xi. The deviations 
(εit) from the frontier are composed of a two- sided random error (vit) and 
a one- side error term (uit ≥ 0). vit is a random error that can be positive or 
negative and is assumed to be normally and independently distributed, with 
a zero mean and constant variance of v

2. uit is assumed to be half- normally 
and independently distributed, uit ~ N+(0, u

2).
In a one- step approach, we assume the technical ineffi  ciency component 

is heteroskedastic, that the variance ui
2  depends on a vector of exogenous 

variables zi and a set of parameters 𝛄 (to be estimated), such as climate vari-
ables and state- specifi c characteristics that can aff ect the individual state’s 
ability to adopt the best technology given its input level:

(2) ui
2 = exp(zi ).
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Therefore, zi aff ects the mean and variance of the ineffi  ciency term ui. If  
ui = 0, then state i is at the production frontier and is technically effi  cient. If  
ui > 0, then state i is deviated from the frontier and is technically ineffi  cient. 
The technical effi  ciency of state i (TEi) is defi ned as the ratio of the ith state’s 
observed output to its feasible output (the maximum output it can produce 
with given inputs). Once the technical ineffi  ciency ui is estimated, technical 
effi  ciency (TEit) can be obtained by the following formula:

(3) TEit =
yi

exp( f (xit, ) + vit)
= exp( uit).

TEit ranges between 0 and 1, with 1 being on the frontier. In this study, the 
empirical stochastic frontier production function to be estimated is

(4) ln yit = 0 +
k = 1

K

k lnxkit + tt +
j = 1

J

jDj +
m = 1

M

mDm + vit uit,

where yi is an implicit quantity of  state i’s total output; xki’s are implicit 
quantities of state i’s k inputs, including labor, capital, land, and intermedi-
ate goods; t is a time trend to capture natural technical changes driven by 
research and development from both public and private sectors (public R&D 
and private R&D) over time; Dj’s are state dummy variables ( j = 1 . . . 47), 
and Dm’s are time dummy variables (m = 1 . . . 43) to capture cross- state, 
time- invariant, unobserved heterogeneity. The time dummy can also help 
refl ect part of  the development of  technical change eff ects driven by the 
aggregate knowledge stock that are not captured by the time trend but could 
have shifted the production frontier unevenly across years. Equation (4) can 
be viewed as a log- linearized form of the Cobb- Douglas (C- D) production 
function.1 We estimate an ineffi  ciency variance regression model simultane-
ously with equation (4)—that is,

(5) ln uit
2 = 0 +

n = 1

N

nznit + it,

where ωit is a disturbance term with standard normal distribution, z’s include 
climate variables, irrigation- ready land density that may help mitigate the 
impacts of  adverse weather, and other control variables that capture the 
heterogeneity of individual states.

We include various forms of climate variables in our estimation, including 
the THI load (for livestock) and the Oury index (an aridity index for crops), 
in their mean or “shock” (the unit of standard deviation from its historical 

1. We choose the C- D functional form to approximate the underlying technology of the 
production frontier in this study because it is easy to interpret the estimated coeffi  cients directly, 
and fewer parameters must be estimated.
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norm) measures. We also include state- specifi c characteristic variables that 
may aff ect each state’s technical effi  ciency, including R&D stock, extension 
capacity, and road density, as these variables are suggested to have impacts 
on state- level productivity in the literature (Alston et al. 2010; Wang et al. 
2012; Jin and Huff man 2016, among others). We will explain how we con-
struct those variables in the next section. The stochastic frontier is estimated 
by a maximum likelihood (ML) procedure.

2.2 Variables, Data Sources, and Descriptive Analysis

We employ a panel of state- level aggregate agricultural output, as well as 
inputs of labor, capital, land, and intermediate goods, to form the stochas-
tic frontier production function. To identify the impacts of climate change 
on technical ineffi  ciency changes, we construct climate variables that can 
capture the impacts on either crops or livestock production. We also con-
struct measures of the share of irrigated land area and other local public 
good variables—R&D, extension, capacity, and road density—as control 
variables to test for the robustness of the climatic eff ects on state ineffi  ciency.

2.2.1 Agricultural Output and Inputs

We draw state- specifi c aggregates of output and capital, labor, interme-
diate goods, and land input from the USDA state productivity accounts. 
Agricultural output and the four inputs are implicit quantity measurements 
based on the Törnqvist index approach over detailed output and input infor-
mation. A full description of the underlying data sources and aggregation 
procedures can be found in Ball et al. (1999) and the USDA Economic 
Research Service (ERS) website (USDA-ERS 2017).

2.2.2 Weather Variables

Since our purpose is to estimate an overall impact of  climate changes 
on the agricultural sector, we need to consider weather variables that have 
strong relationships with livestock or crops. However, there is no single mea-
surement that can capture the weather impacts on both livestock and crops, 
as livestock production is more related to animals’ year- round thermal envi-
ronment, while crop production is aff ected by precipitation and temperature 
during the growing seasons. In addition, researchers have found nonlinear 
temperature eff ects for agriculture (Deschênes and Greenstone 2007; Schlen-
ker and Roberts 2009). To meet our objective, we construct two diff erent 
weather measures to capture their eff ects on either livestock or crops. One 
is the THI, a combined measure of temperature and relative humidity that 
has been shown to have signifi cant impacts on livestock production, and 
another is the Oury index, an aridity index that combines temperature and 
precipitation information that can capture more impacts on crop production 
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than a single measure of temperature or precipitation. We draw monthly 
temperature and precipitation data at the county level from a weather data 
set produced by Oregon State University’s PRISM2 Climate Group (Daly 
et al. 2008). Since PRISM interpolates between weather stations to gener-
ate climate estimates for each 4 km grid cell in the United States, we are 
able to link county- level weather information and agricultural production 
to construct climate variables that could explain climate variations across 
regions and over time.

Livestock scientists have found that livestock productivity is related to cli-
mate through a THI measure (Thom 1958; St- Pierre, Cobanov, and Schnit-
key 2003; Zimbelman et al. 2009). THI can be measured using the following 
equation:

(6) THI = (dry bulb temperature °C) 

  + (0.36 × dew point temperature °C) + 41.2.

When animal stress is above a certain THI threshold, productivity 
declines. Following St- Pierre, Cobanov, and Schnitkey (2003) and Key and 
Sneeringer (2014), we generate a minimum and maximum THI for each 
month and location based on minimum and maximum dry- bulb tempera-
tures and dew- point data from PRISM. To estimate the THI load—the num-
ber of hours that the location has a THI above the threshold—we employ a 
method proposed by St- Pierre, Cobanov, and Schnitkey (2003) to estimate a 
sine curve between the maximum and minimum THI over a 24- hour period. 
We then estimate the number of hours and degree to which the THI is above 
threshold3 (See Key and Sneering 2014 appendix for more details). To con-
struct a state- level THI load, we aggregate up the county- level4 monthly 
calculations to the state- level using county animal units derived from the 
Census of Agriculture (USDA- NASS 2002) as the weight.

Weather is a critical factor infl uencing the production of crops. While 
precipitation and temperature are mostly considered in previous studies due 
to lack of information on other factors such as sunshine and wind velocity, 
Oury (1965) recommended the use of  an aridity index in identifying the 
relationship between crop production and weather. Oury asserted that it 
is hard to defi ne a meaningful relationship between crop production and 

2. The PRISM Climate Group gathers climate observations from a wide range of monitor-
ing networks, applies sophisticated quality- control measures, and develops spatial climate data 
sets to reveal short-  and long- term climate patterns. The PRISM data can be accessed at http:// 
www .prism .oregonstate .edu.

3. We employ a THI load threshold of 70 for dairy cows, as it is the lowest threshold among 
a broad category of livestock production (St- Pierre, Cobanov, and Schnitkey 2003).

4. Climate estimates were limited only to cropland areas as defi ned by the combination of 
the Cultivated Crops and the Pasture/Hay classes in the National Land Cover Dataset (NLCD 
2006). Therefore, it eliminates the eff ect of urban heat islands, mountains, etc.
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weather based only on one weather factor, since they are interrelated. The 
proposed aridity index, which is termed the Oury index, is defi ned (Oury 
1965; Zhang and Carter 1997) as

(6) Ws =
Ps

1.07Ts
,

where W represents the aridity index (Oury index), s is the month (s = 
1 . . . 12), Ps  is the total precipitation for month s in millimeters, and Ts  is the 
mean temperature for month s in degrees Celsius. The Oury index can be 
viewed as rainfall normalized with respect to temperature. We draw county- 
level monthly temperature and precipitation data from PRISM to aggre-
gate up to a state- level Oury index, using county cropland density drawn 
from the National Land Cover Database (NLCD 2006) as the weight. The 
NLCD cropland pixels are composed of the combination of NLCD classes 
81 (pasture/hay) and 82 (cultivated crops), with the notion that pasture/
hay is a potentially convertible land cover to cultivated crops. The cropland 
area in the weight data is therefore a representation of current and potential 
cultivated cropland.

While all months of the year were considered for the THI measures, only 
the primary growing season months, approximately April through August, 
were considered for the Oury aridity index. Both THI and Oury measures 
were generated for a 30- year span from 1941 to 1970 and for individual years 
from 1961 to 2004 (our study period).

To measure the impacts of  unexpected weather shocks or potential 
weather extremes on regional productivity, we construct Oury shock and 
THI shock variables as

(7) Oury shocki,t = (Ouryi,t – Ouryi,LR)/Stdv of Ouryi,LR

(8) THI shocki,t = (THIi,t – THIi,LR) /Stdv of THIi,LR,

where Ouryi,t is the Oury mean of year t for state i, Ouryi,LR is the long- run 
Oury mean for state i calculated using historical Oury mean data between 
1941 and 1970, THIi,t is the THI load of year t for state i, THIi,LR is the long- 
run THI mean calculated using historical THI mean data between 1941 
and 1970, and Stdvi,LR is the standard deviation of historical Oury means or 
historical THI means. Since each state has its unique weather variation pat-
tern, a same- level change in Oury mean or THI mean may result in diff erent 
Oury shock or THI shock estimates given that the long- run values of Oury 
mean, THI mean, and long- run standard deviations of those indexes vary 
from state to state. We suspect that even with the same degree of deviations 
from historical Oury mean (OuryLR) or TH mean (THILR), some states may 
perform better than others if  they have expected and adapted to a larger 
weather variation climatic pattern in the past.

We compared Oury and THI indexes with other potential weather vari-
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ables (see table 2A.1 for examples) using out- of- sample validation tests. 
We report the mean standard errors of prediction statistics for each model 
in table 2A.2. Since the good weather index (dd830) has a “wrong” sign 
(negative) in most of the estimates, coeffi  cients of Palmer index are mostly 
insignifi cant, and the bad weather index (dd30) has a similar result to the 
maximum temperature variable (see table 2A.1 for weather variable descrip-
tions), we only report out- of- sample test results of those using maximum 
temperature, precipitation, Oury mean, THI mean, Oury shock, and THI 
shock weather variables (see table 2A.2). The results show that stochastic 
frontier model estimates with Oury and THI weather variables have better 
forecast performances among estimated models.

2.2.3 Irrigation- Ready Land Density (Irrigation Density) Variable

Irrigation infrastructure can help mitigate the impact of adverse weather. 
We construct an irrigation- ready land density (share of irrigated land area, 
irrigation density thereafter) variable to capture the impact of irrigation- 
system availability in production. The variable is constructed as the ratio of 
irrigated land area to total cropland. The cropland and irrigated land area 
are available for the census of agriculture years (USDA- NASS, 2013) for 
each state. We employ a cubic spline technique to interpolate the information 
between census years. The expanded irrigated areas and cropland areas are 
used to construct a panel of irrigation density variables across states and 
over time.

2.2.4 R&D, Extension, and Roads

To capture specifi c state characteristics that could have also impacted 
the state’s technical ineffi  ciency, we included state- level variables on public 
agricultural R&D stock, extension, and roads. Annual data on public agri-
cultural research expenditures and a research price index used to defl ate 
expenditures are provided by Huff man (see Jin and Huff man 2016 for data 
construction details.) The extension variable is a measure of extension capac-
ity calculated as the total full- time equivalent (FTE) extension staff  divided 
by the total number of  farms. Data on FTEs by state were drawn from 
the Salary Analysis of the Cooperative Extension Service from the Human 
Resource Division at the USDA (USDA-NIFA). Road infrastructure is a 
road- density index constructed by dividing total road miles excluding local 
(e.g., city street) miles by total land area.

2.3 Patterns of State Productivity Growth and Climate Changes

We summarize state- level TFP growth from 1960 to 20045 (USDA-ERS 
2017) as well as the mean and standard deviation of the normal THI index 

5. USDA’s state productivity indexes only cover the period of 1960 to 2004.

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



52    S. L. Wang, E. Ball, R. Nehring, R. Williams, and T. Chau

and Oury index over the historical period from 1941 to 1970 in table 2A.3 
to provide some background information on state- specifi c characteristics. In 
general, TFP growth varied across and within USDA’s production regions. 
Given the variances in geoclimate conditions and natural resources, states 
tend to have notable diff erences in their composition of livestock and crop 
production. For example, states in the Northeast region tend to have a higher 
ratio of livestock production, while the Corn Belt and Pacifi c regions tend 
to produce more crops than livestock. Usually, a higher THI indicates more 
intensive heat stress and can hinder livestock productivity growth. On the 
other hand, a lower Oury index indicates a much drier condition that would 
lower crop production. If  the Oury index is lower than 20, it indicates a 
very dry situation that could be seen as a drought condition, and if  the 
Oury index is less than 10, it implies a “desert- like” state (Zhang and Carter 
1997).

While the relative THI and Oury index levels could result in geospatial 
diff erences in technical ineffi  ciency, an unexpected climate “shock,” such 
as extreme weather, could cause more of an impact, as farmers will have 
expected climate patterns to be similar to the past. Farmers could have 
already invested in appropriate facilities, such as irrigation systems or cool-
ing systems, in areas with a low Oury index or high THI loads. It is the 
un expected weather changes that result in ineffi  cient input use as yields 
decline (or a waste of inputs when crops cannot be harvested) as well as a 
decrease in livestock production due to unexpected heat stress. According 
to table 2A.3, some regions may have much higher variation in their Oury 
index than in their THI index, such as the mountain and Pacifi c regions. If  
farmers expect dramatic variation from year to year in advance, they may 
have already invested in an irrigation system to dampen the impacts of cli-
mate changes on farm production.

TFP growth estimates usually move closely with output growth. Accord-
ing to ERS’s US agricultural productivity accounts (USDA-ERS 2017), in 
1983 and 1995, the dramatic impacts from adverse weather events caused 
signifi cant drops in both output and TFP (see Wang et al. 2015 for more 
discussion). In fi gure 2.1, we map the normal Oury index (Ouryi,LR) (based on 
1941–1970 data) and Oury indexes in 1983 and 1995 at the state level. We fi nd 
that the Oury index varied for many states in 1983 and 1995, while the shocks 
(fi gure 2.2) from its norm show a diff erent picture regarding climate changes.

Figure 2.3 presents the normal THI load (THIi,LR) (based on 1941–1970 
data) as well as the THI indexes in 1983 and 1995 across states. When com-
pared with the Oury index, however, THI load shows less variation over 
time. Nevertheless, if  we look at the maps of shock indexes in diff erent years 
(fi gure 2.4), we may fi nd that there are noticeable diff erences over the years.

If  bad weather is expected and farmers invest in facilities to reduce 
the potential damage from adverse weather conditions, then the impacts 
of  extreme weather on farm production could decline. Figure 2.5 shows 
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Fig. 2.1 Oury index comparison, the norm (1941 to 1970), 1983, and 1995
Source: Authors’ calculation.
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irrigation- density changes over time. In general, Pacifi c regions and moun-
tainous regions have more intensive irrigation systems than other regions.

2.4 Empirical Results

We fi rst estimate equation (4) and test the hypothesis of no ineffi  ciency eff ect 
that H0: u

2 = 0, against the alternative hypothesis of H1: u
2 > 0. The L-R test 

result shows that the null hypothesis is rejected at the 1 percent signifi cance 
level, indicating that the stochastic frontier approach is valid in our study. We 
then estimate the stochastic frontier model (equation [4]) and the ineffi  ciency 
determinants regression model (equation [5]) simultaneously using alter-

A

B

Fig. 2.2 The climate- shocks comparison using the Oury index: 1983 versus 1995
Source: Authors’ calculation.
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Fig. 2.3 THI load comparison, the norm, 1983, and 1995
Source: Authors’ calculations.
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native weather variables and model specifi cations as a robustness check.6 
Empirical results of both production regression and ineffi  ciency determi-
nant regression are presented in table 2.1. Models 1 and 2 evaluate climatic 
eff ects on state ineffi  ciency by including only weather and irrigation den-

6. There is a challenge estimating production functions given that inputs can be endogenous. 
While we have done some experiments using inputs from previous year (a common approach 
used in the literature) as an instrument in the estimation, we only report the results based on 
the output and input variables from the same year. There are two reasons behind this choice: 
fi rst, the coeffi  cients in the production function are similar given that input uses are rather stable 
from one year to another (not like output); second, we want to capture the concurrent eff ects 
so that the ineffi  ciency component can capture both output changes and input changes (not 
endogeneity- adjusted) in the same year. Still, future studies can consider applying some other 
IV techniques (e.g., Levinsohn and Petrin 2003; Shee and Stefanou 2014; Amsler, Prokhorov, 
and Schmidt 2014) for comparison purpose.

A

B

Fig. 2.4 The climate- shocks comparisons using the THI index: 1983 versus 1995
Source: Authors’ calculation.
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sity variables as ineffi  ciency determinants. Models 3 and 4 add state- specifi c 
variables—public R&D stock, extension capacity, and road density—as 
control variables to check the robustness of the estimated climatic impacts on 
state ineffi  ciency. Models 1 and 3 use mean levels of THI and Oury indexes, 
while model 2 and 4 use THI shocks and Oury shocks as weather variables. 
Since outputs and inputs are all in natural logarithms, the input coeffi  cients 
can be interpreted as output elasticities. According to the estimates of pro-
duction function on the top section of table 2.1, the output elasticities for 
specifi c input across four models are consistent, with the output elasticity of 
intermediate goods at its highest, about 0.6, and capital’s output elasticity at 
its lowest, about 0.07 to 0.08. Since the hypothesis of constant return to scale 
is rejected, we can infer a decreasing return to scale with input coeffi  cients 
totaling less than one.

The signs of  the coeffi  cients of  weather variables are as expected and 
consistent no matter the measures. Results of the ineffi  ciency determinants 
regressions indicate that the combined eff ects of  higher temperature and 
lower precipitation that result in a higher THI load or a lower Oury index 
measure can drive state production away from its best performance. How-
ever, without controlling for state- specifi c variables, the coeffi  cient of the 
THI load becomes insignifi cant in model 1. According to the results, one 
unit increase in the THI load could result in a worse ineffi  ciency, with the 
ineffi  ciency term (ln u

2) increasing by 0.00002 percent in model 1 and 0.00006 
percent in model 3. On the other hand, one unit decrease in the Oury index 
(drier conditions) could cause further ineffi  ciency, with the ineffi  ciency term 
increasing by 0.026 percent in model 1 and 0.02 percent in model 3. Using 
“shock” measures (units of standard deviations relative to historical norms) 
of the THI load and Oury index as weather variables in model 2 and model 
4, the estimates are all signifi cant, and the magnitudes of those coeffi  cients 
are consistent between the two models. According to both models, a single 
unit shock of the THI load will result in about a 0.3 percent deterioration in 
the ineffi  ciency term, while a unit of negative shock (drier conditions) will 
result in about a 0.18 percent deterioration in the ineffi  ciency term.

The results show that the “unexpected” deviation from the state’s his-
torical norm in weather variations have more consistent impacts on state 
production effi  ciency than the mean- level changes of weather variables. It 
implies that farmers in a region with more temperature or precipitation 
variations may have adapted more to the environment by adopting tech-
nologies or practices that can mitigate the damages from adverse weather. 
For example, drier regions, such as California and Nevada, usually have 
higher irrigation- ready land density than other regions, and that may par-
tially off set the negative impacts of bad weather. The negative coeffi  cients 
of irrigation density indicate that a state with a higher density in irrigation- 
system- ready land areas tends to be closer to its best production perfor-
mance when holding other factors constant. After controlling for state- 
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specifi c characteristics, the irrigation density’s impacts on ineffi  ciency are 
also larger in models 3 and 4.

The signs of the coeffi  cient estimates of state- specifi c control variables—
R&D stock, extension, road density—are consistent with the literature, 
wherein higher knowledge capital (R&D stock), extension capacity, and 
road density can enhance an individual state’s productivity and push its 
production toward its best performance using given inputs and the best tech-
nology. Since R&D, extension, and road- density variables are all in natural 
log (Ln) form, a 1 percent increase in road density and extension capacity 
may have higher impacts on improving technical ineffi  ciency than a 1 percent 
increase in local R&D stock. This implies that while public R&D stock can 
contribute to overall technical changes by pushing up the general production 
frontier for all states, its contribution in improving a local state’s ineffi  ciency 
may be less than that of other local public goods. The state extension activity 
and intensifi ed road infrastructure can help disseminate knowledge, reduce 
transportation costs, and improve a state’s technical effi  ciencies by catching 
up with others.

Based on the results from model 4, we estimate box and whisker plots of 
individual states’ ineffi  ciencies. The mean and distribution of states’ inef-
fi ciency scores and rankings are presented in fi gure 2.6. We fi nd that over 
the study period, California ranks fi rst in productivity performance (least 
ineffi  ciency), making it the most productive state among all 48 contiguous 
states. The top six most effi  cient states also include Arizona, Florida, New 
Jersey, Massachusetts, and New York. According to the predicted ineffi  -
ciency scores, individual states’ productivity is strongly aff ected by their 
state- specifi c characteristics such that even with similar weather patterns 
and natural resources, productivity can diff er signifi cantly.7

2.5  Potential Impacts of Future Climate Change on US Agricultural 
Production: Scenario Analysis

To estimate the heat- stress-  and drought- related production losses attrib-
utable to climate change (mean level changes) and extreme weather (weather 
shock), we simulate the climate change projections in temperature and pre-
cipitation in the 2030s that result in various THI load and Oury index esti-
mates. There are many global models projecting future climate changes, 
and while the magnitudes of  future temperature or precipitation may be 
diff erent from one projection to another, the direction of the projections 
consistently point toward more frequent heat waves, warmer temperatures, 

7. The results could also imply that if  the major federal/state water storage and allocation 
system that helped support the high- valued irrigated agricultural sector in California is not to be 
as resilient in future years under prolonged drought conditions due to an absence of signifi cant 
new capital investment, California may not be as effi  cient as in the past.
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and increasing incidences of extreme weather. Key and Sneeringer (2014) 
project the potential impacts of climate change on US dairy production in 
2030 based on four climate- change scenarios drawn from the projections of 
four general circulation models—CNR, ECH, CSIRO, and MORPC (see 
Key and Sneeringer 2014 data appendix for details). Under their scenarios, 
temperature change during the period of 2010 to 2030 ranges from 0.65°C to 
1.38°C. According to the Environmental Protection Agency,8 earth’s average 
temperature has risen by 0.83°C over the past century and is projected to 
rise another 0.3°C to 4.8°C over the next hundred years. According to the 

8. See https:// www3 .epa .gov /climatechange /basics/ for more details.

Fig. 2.6 Box and whiskers plots of state effi  ciency estimates and rankings based on 
model 4
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US Global Change Research Program Report (USGCRP 2014),9 the overall 
temperatures will continue to warm over the century in the United States, 
with a projected average increase by the end of the century of approximately 
3.9°C to 6.1°C under the high- emission scenario and 2.2°C to 3.6°C under 
the low- emission scenario. We draw information from various projected 
trends in future temperature and precipitation changes to form three sce-
narios from mild to extreme. The scenarios are as follows:

Scenario 1: We assume a mild climate change during the growing season of 
the 2030s, with a 1°C increase relative to 1940–1970 temperature levels.

Scenario 2: We assume a more serious climate change scenario in the 2030s, 
with a 2°C increase relative to 1940–1970 temperature levels.

Scenario 3: We assume an extreme- weather scenario during the 2030s, with 
a 2°C temperature increase and one- inch decrease in monthly average 
precipitation relative to 1940–1970 levels.

We estimate the production response as if  there are no changes in prices, 
input use, technology, or farm practices.10 The projections are conducted 
using model 4 estimates, where the weather variables are shocks of the THI 
load and the Oury index with state- specifi c control variables kept constant 
as in the following equation:

(9) ln uit
2 = 0 + 1zTHI_shock,it + 2zOury_shock,it + r3zirrigation_density,it + r4 lnRDit

+ r5 lnETit + r6 lnROit + it; it ~ N(0, 2 ).

Since each state has its own genuine pattern of historical climatic variations, 
each could have adjusted its farm production by adopting various produc-
tion practices or technologies to adapt to the weather it is facing (Yang and 
Shumway 2015; Huang, Wang, and Wang 2015; Marshall et al. 2015; Heisey 
and Day- Rubenstein 2015). Therefore, the unexpected same- degree change 
in temperature and precipitation may have diff erent impacts on an individ-
ual state’s THI shock and Oury index shock estimates, resulting in varying 
eff ects on state production effi  ciency estimates. The impact of temperature 
changes on estimated state ineffi  ciency can be derived by taking the fi rst 
derivative of equation (9) with respect to temperature changes as follows:

9. Established under the Global Research Act of 1990, the US Global Change Research 
Program (USGCRP) has provided strategic planning and coordination to 13 participating 
federal agencies working to advance the science of global environmental change. The third 
National Climate Assessment, released by USGCRP in May 2014, is the most comprehensive 
and authoritative report on climate change and its impacts in the United States. See http:// 
nca2014 .globalchange .gov/ for more details.

10. This is the so- called dumb farmer (a naïve case) assumption (Mendelsohn, Nordhaus, 
and Shaw 1994; Key and Sneeringer 2014), where farm operators are assumed not to anticipate 
or respond to changing environmental conditions. The impacts may be reduced by allowing for 
some level of adaptation by the producer.
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(10) ln ui
2

T
=

ln ui
2

ZTHI_shock,i

ZTHI_shock,i

T
+

ln ui
2

ZOury_shock,i

ZOury_shock,i

T

1
ZTHI_shock,i

T
+ 2

ZOury_shock,i

T
.=

The impact of precipitation changes on state ineffi  ciency can be derived 
by taking the fi rst derivative of equation (9) with respect to precipitation 
changes as follows:

(11) 
ln ui

2

P
=

ln ui
2

ZOury_shock,i

ZOury_shock,i

P
= 2

ZOury_shock,i

P
.

The total impact of  projected temperature changes and precipitation 
changes is the sum of equations (10) and (11):

(12) 
ln ui

2

T
+

ln ui
2

P
= 1

ZTHI_shock,i

T
+ 2

ZOury_shock,i

T
+

ZOury_shock,i

P
.

We predict the potential impacts of three climate- change scenarios in the 
2030s on state production ineffi  ciency using the average weather conditions 
from 2000 to 2010 as the baseline. The results are reported in table 2.2 and 
are grouped by production region (see notes in table 2.2 for region details). 
All regions will move further away from the production frontier with increas-
ing temperature and declining precipitation. On average, a 1°C increase in 
temperature will cause the production effi  ciency to decrease by 0.38 percent 
in the Pacifi c region and 1.31 percent in the Delta region relative to the 
2000–2010 mean ineffi  ciency level (ln u

2 ; see table 2.2). When temperature 
increases by 2°C, the production effi  ciency will decrease further, ranging 
from 0.73 percent in the Pacifi c region to 3.23 percent in the Delta region 
relative to the 2000–2010 mean ineffi  ciency level (ln u

2 ).
The results imply that the impacts of temperature changes on production 

effi  ciencies are not linear and vary across regions. According to the coeffi  -
cient of variation (CV) estimates, the weather impacts are more consistent 
within the Lake States region and the Northern Plains region than in other 
regions. While the temperature changes seem to cause a more serious impact 
on the Delta region, the variation is also the largest within that region. 
Several factors can cause these diff erences, including diff erent historical 
climate patterns in those states and varying degrees of irrigation develop-
ment. Under scenario 3 (extreme weather), the temperature increases by 2°C 
and precipitation decreases by 1 inch on average, and the impacts are more 
consistent for states within the same region, as the CV declines in almost 
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all regions when compared to scenario 2 (medium weather impact). This 
indicates that extreme weather, which is beyond the expected climatic change 
pattern, can have more disastrous eff ects on all states.

Responses of  agricultural productivity to climate change (mean level 
changes of Oury index and THI load) and extreme weather shocks (devia-
tions from historical average variations of Oury index and THI load) can 
inform agricultural policy decisions. For example, while farmers are expected 
and sometimes observed to adapt to the shifting long- run climate pattern, 
Dell, Jones, and Olken (2014) argue that certain governmental agricultural 
support programs (such as subsidized crop insurance) could have reduced 
farmers’ incentives to adapt. Therefore, there could be a tradeoff  between 
reducing farmers’ revenue risk and increasing agricultural productivity. The 
diverse weather impacts on regional productivity from a certain degree of 
temperature and precipitation changes suggest the need for state- specifi c 
research programs to help producers manage their state- specifi c climatic 
situations and future climate- change challenges. To help agriculture adapt 
to climate change, Heisey and Day- Rubenstein (2015) suggest the use of 
genetic resources to develop new crop varieties that are more tolerant to 
both abiotic and biotic stresses. However, they also indicate that given the 

Table 2.2 Potential impacts of climate changes and extreme weather on regional productivity 
in 2030–2040: Scenario analysis relative to 2000–2010 mean ineffi  ciency level 
(ln u

2)

Regions  

Temperature increases by 
1°C

Temperature increases by 
2°C

Temperature increases by 
2°C; precipitation 
declines by 1 inch

Mean  
Standard 
deviation  CV  Mean  

Standard 
deviation  CV  Mean  

Standard 
deviation  CV

Appalachian 0.45 0.15 0.33 1.19 0.39 0.33 1.26 0.38 0.30
Corn Belt 0.68 0.35 0.51 1.73 0.77 0.45 1.80 0.77 0.43
Delta 1.31 0.93 0.71 3.23 2.48 0.77 3.28 2.48 0.75
Lake States 0.61 0.04 0.06 1.70 0.05 0.03 1.79 0.04 0.02
Mountain 0.41 0.24 0.58 0.91 0.30 0.32 1.04 0.31 0.30
Northeast 0.42 0.19 0.45 1.78 0.97 0.55 1.85 0.97 0.52
Northern Plains 0.66 0.11 0.16 1.66 0.31 0.19 1.74 0.32 0.19
Pacifi c 0.38 0.08 0.20 0.73 0.13 0.18 0.84 0.12 0.15
Southeast 0.77 0.25 0.33 1.85 0.68 0.37 1.92 0.68 0.35
Southern Plains  0.69  0.22  0.32  1.51  0.63  0.42  1.57  0.62  0.40

Notes: States according to region: Appalachian: WV, TN, NC, VA, KY; Corn Belt: OH, IA, MO, IN, IL; 
Delta: LA, AR, MS; Lake States: MN, MI, WI; Mountain: CO, UT, AZ, NM, WY, NV, ID, MT; North-
east: NH, PA, ME, MD, RI, MA, DE, CT, VT, NY, NJ; Northern Plains: ND, SD, KS, NE; Pacifi c: OR, 
CA, WA; Southeast: SC, AL, GA, FL; Southern Plains: TX, OK.
Sources: Authors’ calculation.
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public- goods characteristics of genetic resources, there can be obstacles for 
private research and development. Creating incentives for the private sector 
through intellectual property rules for genetic resources and international 
agreements governing genetic resource exchanges could promote greater use 
of genetic resources for climate- change adaptation.

2.6 Summary and Conclusions

This chapter employs state panel data from 1960 to 2004 to identify the 
role of climate change on US agricultural productivity using a stochastic 
frontier production function method. Climate/weather variables are mea-
sured using the THI load and Oury index at both their mean levels and the 
degree of deviation from the historical variation norms (from 1941 to 1970) 
at the state level. We also incorporate irrigated land area density and mea-
sures of local public goods—R&D, extension, and road infrastructure—to 
capture the eff ects of state characteristics and check for the robustness of 
the estimate of climate variable impact.

The state production data and climate information show noticeable varia-
tions across and within production regions. Some regions seem to have faster 
overall TFP growth—the Northeast, Corn Belt, and Delta regions—than 
others during the study period. Results indicate that a higher THI load can 
drive farm production away from its best performance. However, a higher 
Oury index, irrigated land area density, local R&D, Extension, and road 
density can enhance state farm production and move it closer to the pro-
duction frontier. Although the relative levels of the THI and Oury index 
could result in geospatial diff erences in technical ineffi  ciency, the unexpected 
extreme weather “shock” seems to have more robust impacts on estimated 
ineffi  ciency, and this could be because farmers expect some degree of weather 
variation based on past experience and would have already made prepara-
tions. Therefore, it is the unexpected climatic shocks that result in either an 
increased use of inputs or a drop in production.

While most studies evaluating the climatic eff ect on agricultural produc-
tivity focus on specifi c crop or livestock commodities, it is also important to 
identify the climatic eff ect on regional agricultural productivity through its 
impacts on technical ineffi  ciency. Responses of agricultural productivity to 
climate change at the state level can then inform state- specifi c agricultural 
policy decisions.
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Appendix

Table 2A.1 Summary statistics of potential weather variables

Weather variables  Variable description  N  Mean  Std. dev.  Min.  Max.

dd830 Good- weather index: degree- 
days between 8°C and 30°C 
between March and August

2,112 1,804.25 512.06 920.45 3,098.31

dd30 Bad- weather index: degree- 
days when temperature is 
above 30°C between March 
and August

2,112 27.44 47.48 0.00 376.15

prec Total precipitation in inches 
between March and August

2,112 8.01 3.65 0.48 18.61

max_5_8 Average max temperature 
between May and August

2,112 27.88 3.17 21.55 39.45

Palmer3_8 Palmer index between April 
and August

2,112 0.00 1.10 –4.11 5.98

THI_mean Annual mean of THI load 
index

2,112 4,964.61 5,251.69 0.87 25,566.66

THI_mean_norm Average THI mean between 
1940 and 1970

2,112 5,044.42 5,165.42 195.48 20,328.13

THI_stdv_norm Average THI dev between 
1940 and 1970

2,112 1,306.33 1,099.55 223.34 6,012.63

THI_shock (THI mean − THI norm) / 
THI_stdv_norm

2,112 –0.02 1.16 –6.12 8.72

Oury_mean Annual mean of Oury index 
between March and August

2,112 25.34 10.93 0.51 58.91

Oury_mean_norm Average Oury_mean between 
1940 and 1970 between March 
and August

2,112 24.47 8.69 2.37 35.54

Oury_stdv_norm Average Oury dev between 
1940 and 1970 between March 
and August

2,112 16.32 3.78 4.08 24.66

Oury_shock (Oury mean − Oury norm) / 
Oury_stdv_norm

2,112 0.25 1.34 –1.91 12.81

Source: Authors’ calculation.
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