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“Moore’s law” in the semiconductor manufacturing industry is used to 
describe the predictable historical evolution of a single manufacturing tech-
nology platform (“silicon CMOS”) that has been continuously reducing the 
costs of fabricating electronic circuits since the mid- 1960s.1 Some features 
of its future evolution were first correctly predicted by Gordon E. Moore 
(then at Fairchild Semiconductor) in 1965, and Moore’s law became an 
industry synonym for continuous, periodic reduction in both size and cost 
for electronic circuit elements.

Technological innovation for this manufacturing platform was coor-
dinated and synchronized across a variety of different engineering fields, 

1. Complementary metal oxide semiconductor (CMOS) is the most widely used “flavor” of 
semiconductor technology used to manufacture an integrated circuit (IC).
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including materials, optical systems, ultraclean precision manufacturing, 
factory automation, electronic circuit design and simulation, and improved 
computer software for computational modeling in all of these fields. It was 
a self- reinforcing dynamical process, since the largest market for the semi-
conductor manufacturing industry’s products has always been the computer 
industry.2 Cheaper computing hardware meant cheaper modeling and engi-
neering to further reduce the costs of the semiconductors manufactured for 
use in future computers. New public- private institutions and organizations 
were developed to coordinate the simultaneous arrival of the very heteroge-
neous technological building blocks required for this increasingly complex 
semiconductor manufacturing technology platform.

The result was an industrial dynamic that, since the mid- 1960s, had effec-
tively worked as a “virtual shrinking machine” for electronic circuits. On a 
regular basis, new “technology nodes” delivered 30 percent reductions in the 
size of the smallest dimension (“critical feature size,” F) that could be reliably 
manufactured on a silicon wafer. This implied a 50 percent reduction in the 
area occupied by the smallest manufacturable electronic circuit feature (F2) 
and a doubling in density—the number of circuit elements (e.g., transistors) 
per area of silicon in a chip.

Section 11.1 of  this chapter develops some stylized economic facts, 
reviewing why this progression in manufacturing technology delivered a 
20 to 30 percent annual decline in the cost of manufacturing a transistor, 
on average, as long as it continued. It constructs a simple economic frame-
work that explains how improvements in manufacturing technology, which 
resulted in feature size reductions, created manufacturing cost reductions 
for all types of electronic circuits.

Section 11.2 reviews other economically significant benefits (in addi-
tion to increased density and lower cost per circuit element) that would be 
associated with smaller feature sizes. Some of those characteristics would 
be expected to have significant economic value, and historical trends for 
these characteristics are reviewed. Chip speed, in particular, would have 
major impacts on computer performance. Econometric analysis of software 
benchmark data provided in this section of the chapter shows that rates of 
performance improvement in microprocessors fell off dramatically in the 
new millennium, a retreat from very high rates of increase measured in the 
late 1990s. Lower manufacturing costs alone pose no special challenges for 
price and innovation measurement, but these other benefits do, and they 
motivate quality adjustment methods when semiconductor product prices 
are measured.

Section 11.3 analyzes empirical evidence of  recent changes to the his-

2. This defines the computer industry expansively, to include the computer systems embed-
ded in the smart electronic systems and mobile devices whose sales have grown most rapidly 
in recent decades.
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torical Moore’s law trajectory and finds corroborating evidence for a slow-
down of Moore’s law in prices for the highest- volume products: memory 
chips, custom chip designs outsourced to dedicated contract manufacturers 
(foundries), and Intel microprocessors. In this section, in addition to review-
ing price indexes available in the public literature, I construct a new, high- 
frequency hedonic price index for Intel desktop microprocessors utilizing 
very detailed chip characteristics. I use a variety of data sources, including 
both Intel list prices and retail processor transaction prices. My results are 
consistent with the other public data I review and support the notion of a 
marked slowdown in Moore’s law–driven price declines over the last decade.

Section 11.4 reviews evidence to the contrary, which relates primarily to 
Intel microprocessors. It analyzes Intel’s own publicly released information 
on the topic, discusses economic reasons why Intel microprocessor prices 
might behave differently from prices for other types of semiconductor chips, 
and reviews other published studies, one of which came to the opposite con-
clusion: that quality- adjusted price decline for Intel processors continued at 
unchanged high rates in recent years. After investigating a variety of forms 
of evidence in detail, I conclude that the finding of an unchanged rate of 
price decline for Intel microprocessors is most likely an artifact of omitted 
variables in the estimated econometric model.

Section 11.5 dives into Intel microprocessors in even greater depth and 
tests the computer architecture textbook view of how a small set of specific 
chip characteristics affects performance of  microprocessors in executing 
programs. I outline a simple structural model of microprocessor computing 
performance and then estimate that model empirically. Simple econometric 
models, using only a small set of explanatory chip characteristics, explain 
99 percent of variance across processor models in performance on differ-
ent, commonly used CPU performance benchmarks. However, the impact 
of different chip characteristics on performance varies quite dramatically 
across benchmarks.

The economic implication is that these characteristics, which determine 
benchmark scores, should clearly be included in any hedonic price equation. 
Most of  these chip characteristics would also be expected to affect chip 
production cost and therefore have an independent rationale for inclusion 
in a hedonic price equation. It may seem reasonable to assume that a scalar, 
fixed- weight average of different benchmark scores for a chip perfectly cap-
tures the impact of changing chip characteristics on computer performance 
and therefore on user demand (though this is a very strong assumption 
given substantial heterogeneity and change over time in the mix of computer 
applications relevant to different computer market segments). But even if  
it were true that some fixed weighted average of benchmark scores was a 
perfect measure of changes in chip performance relevant to demand shifts, 
inclusion of this variable would not eliminate the need to also include cost- 
shifting product characteristics as additional controls in a hedonic model 
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of market equilibrium chip prices. This argument is actually illustrated by a 
simulation created to depict the impact of perfect collinearity among chip 
characteristics on hedonic price coefficients in section 11.3.

A sixth and final section of  the chapter points to some economically 
important conclusions that can be drawn from this evidence. Available 
empirical evidence, on balance, suggests that Moore’s law–related historical 
declines in chip manufacturing cost have clearly been greatly attenuated over 
the last decade, resulting in much more slowly declining quality- adjusted 
chip prices. If  we accept earlier economic research showing a strong link 
between technological innovation in semiconductors and IT and produc-
tivity growth across the broader economy, then a slowdown in semicon-
ductor manufacturing innovation, inducing slower quality- adjusted price 
declines for both chips and IT utilizing those chips, will affect measures of 
productivity growth in industrialized economies. Finally, the winding down 
of Moore’s law means that much of the continuing hardware cost decline 
driving ever more intensive use of IT across the economy over the last 50 
years will no longer hold and that computing costs—including energy use 
per computation, the principal variable cost—will decline much more slowly 
in the future than was true in the past. Improvement in software, rather than 
dramatically cheapening hardware, may well emerge as the main focus for 
IT innovation over the next 50 years.

11.1  Stylized Facts about Semiconductor Manufacturing Innovation

In 1965, five years after the integrated circuit’s invention, Gordon E. 
Moore (who would shortly move on to cofound Intel) predicted that the 
number of transistors (circuit elements) on a single chip would double every 
year.3 Later modifications of that early prediction—Moore’s law—became 
shorthand for semiconductor manufacturing innovation.

Moore’s prediction requires other assumptions in order to create eco-
nomically meaningful connections to the information age’s key economic 
variable: the cost (or price) of electronic functionality on a chip (embodied 
in the 20th century’s supreme electronic invention, the transistor).4 Chip 
fabrication requires coordinating multiple technologies, combined in very 
complex manufacturing processes.

The pacing technology has been the photolithographic process used to 
pattern chips. From the 1970s through the mid-1990s, a new “technology 
node”—a new generation of photolithographic and related equipment and 
materials required for successful use—was introduced roughly every three 
years or so. Starting in the mid- 1970s, this three- year cycle coincided with the 
time interval between introductions of next- generation DRAM computer 

3. G. Moore (1965).
4. Jorgenson (2001); Flamm (2003, 2004); Aizcorbe, Flamm, and Khurshid (2007).
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memory chips, storing four times the bits in the previous- generation chip.5 
This observed 18- month “doubling period” became a new de facto “revised” 
Moore’s law.6

The close early fit of DRAM product development cycles with leading- 
edge chip manufacturing technology introductions was no coincidence. 
DRAMs at that time were the highest- volume standardized commodity chip 
product manufactured, and a rapidly expanding computer market drove 
leading- edge chip manufacturing technology development. Moore’s predic-
tion morphed into an informal—and later, formal—technology coordina-
tion mechanism (the International Technology Roadmap for Semiconduc-
tors, or ITRS) for the entire global semiconductor industry—equipment 
and material producers, chip makers, and their customers.

Relationships between Moore’s law and fabrication cost7 trends for inte-
grated circuits can be described by the following identity, giving cost per 
circuit element (e.g., transistor):

(1) 
$

element
=

$processing cost
area “yielded” good silicon chips

silicon wafer area
chip

elements
chip

.

Moore’s original “law” described only the denominator—a prediction 
that elements per chip would quadruple every two years. Back in 1965, 
Moore hadn’t originally anticipated rapid future advances in technology 
nodes. Acknowledging that an integrated circuit (IC) containing 65,000 ele-
ments was implied by 1975, Moore wrote, “I believe that such a large cir-
cuit can be built on a single wafer. With the dimensional tolerances already 
being employed . . . 65,000 components need occupy only about one- fourth 
a square inch.”8

Rewriting this more concisely without relying on Moore’s prediction 
about numbers of  elements per chip (therefore eliminating the need for 
assumptions about chip size) yields

(2) 
$

element
= $processing cost

area “yielded” silicon
silicon area

element
,

5. DRAM (dynamic random access memory) was invented in 1968 by Robert Dennard at 
IBM and first commercialized by Moore’s newly founded company, Intel, in 1970. DRAM 
chips are the most common type of IC used for “main” memory storage in modern computer 
systems and, until the early 21st century, were the type of IC semiconductor chip produced in 
the highest production volume. DRAMs are a type of “volatile” memory chip—information 
stored on the chip in binary (0,1) form disappears when electrical power is turned off.

6. A decade later, Moore himself  revised his prediction to a doubling every two years.  
G. Moore (1975), 11–13.

7. Analysis of  fabrication costs, which account for most of  chip costs, ignores assembly, 
packaging, and testing.

8. G. Moore (1965). The largest wafer sizes in use then were comparable in diameter to a 
modern minipizza appetizer.
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which depends directly on the defining characteristic of a new technology 
node, the smallest patternable feature size, as reflected in chip area per tran-
sistor. This “Moore’s law” variant came into use in the semiconductor indus-
try as a way of analyzing the economic impact of new technology nodes. 
New technology nodes increased the density of transistors fabricated in a 
given area of silicon in a readily predictable way. Time between new nodes—
and a new node’s impact on wafer- processing costs—jointly determined 
decline rates in transistor fabrication cost.

Through 1995, new technology nodes were introduced at roughly three- 
year intervals. Each new node reduced the smallest planar dimension (“criti-
cal feature size,” F) in circuit elements by 30 percent, implying 50 percent 
smaller silicon areas (F2) per circuit element.

Completing the economic story, the cost per silicon wafer area pro-
cessed, averaged over long periods, increased only slowly.9 At new tech-
nology nodes, processing cost per silicon wafer area indeed increased. But 
episodically, larger wafer sizes were introduced, sharply reducing processing 
costs per area. The net effect was nearly constant long- run costs with only 
slight increases. Figure 11.1, presented in 2005 by Intel’s chief  manufactur-
ing technologist, shows new wafer sizes “resetting” wafer- processing costs. 
Significantly, larger diameter wafer sizes (450mm) were expected at the 22 
nanometer (nm) node. However, 450mm wafers were not introduced as Intel 
adopted 22nm technology in 2012 and had not been introduced by 2020, and 
even future introduction now seems highly uncertain. The most recent wafer 

9. Over 1983–98, wafer- processing cost/cm2 silicon increased 5.5 percent annually. Cun-
ningham et al. (2000), 5. This estimate relates to total silicon area processed (including defec-
tive chips). Since defect- free chips’ share of total processed area increased historically (chip 
fabrication yields increased), wafer- processing cost per good silicon area rose even more slowly, 
approximating constancy.

Fig. 11.1 Wafer size conversions offset Intel’s increased wafer-processing cost
Source: Holt (2005).
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size “reset,” adoption of 300mm diameter wafers, occurred at the 130nm 
technology node, around 2002.

Using these stylized trends—wafer-processing cost per area of  silicon 
roughly constant and silicon area per circuit element halved, with new tech-
nology nodes introduced every three years—equation (2) above predicts that 
every three years, the cost of producing a transistor would fall by 50 percent, 
a 21 percent compound annual decline rate.

In reality, leading- edge computer chips—like DRAM memory (the pri-
mary product originally produced at Intel after Moore and others founded 
that company, which immediately became the largest- volume product in 
the semiconductor industry and the primary product driving Intel’s initial 
growth)—dropped in price substantially faster than 20 percent pre- 1985. 
The steeper decline rate in part reflected further increases in density due 
to circuit design improvements (e.g., reduction in memory cell footprint),10 
3D interconnect layers enabling tighter packing of circuit elements,11 and 
gradual introduction of 3D into physical designs of transistors and other 
circuit elements.12 In addition, operating characteristics of a given circuit 
design—in particular, switching speed and power requirements—improved 
with new manufacturing technology and made additional contributions to 
quality- adjusted price. Finally, smaller and cheaper transistors made it eco-
nomical to add ever greater electronic functionality to chips, and more and 
more of a complete electronic system was progressively integrated onto a 
single chip, which greatly improved system reliability.13

In the mid- 1990s, the semiconductor manufacturing industry arrived at 
a significant technological inflection point.14 New technology nodes began 

10. Flamm (2010), figure 2, documents a 62 percent decline in minimum memory bit cell 
footprint between 1995 and 2004.

11. Anticipated by Moore back in 1965: “no space wasted for interconnection . . . using 
multilayer metallization patterns separated by dielectric films.” G. Moore (1965).

12. Recent examples of 3D transistor structures include RCAT (recessed cell array transis-
tor) and FinFET (fin field effect transistor) structures; 3D capacitor designs have been used in 
DRAM since the late 1990s.

13. Electrical interconnections between components have historically been the most frequent 
point of failure in electronic systems.

14. Industry road maps originally dated this transition to two- year node rollouts to 1995; 
post- 2004 road maps revised that date to 1998. Aizcorbe, Oliner, and Sichel (2008) have per-
suasively argued that the turning point was closer to the mid- 1990s than late in the decade.

The mid- 1990s were also a technological inflection point for Intel’s manufacturing capa-
bilities. Intel had exited the DRAM business in 1985, which previously had been driving its 
leading- edge manufacturing technology development, and refocused its R&D on logic circuit 
design (Burgelman 1994, 32–46). As a consequence, by the late 1980s, Intel manufacturing 
capability was trailing well behind the leading edge of the manufacturing technology it had 
once pioneered.

In order to catch up, Intel began adopting new nodes every two years, even as the rest of the 
industry continued at the historical three- year pace. Comparing launch dates for Intel proces-
sors at new technology nodes with initial use of those nodes by DRAM makers, Intel was two 
years behind in 1989 (at 1000nm); three years behind in 1991 (800nm); and one year behind in 
1995 (350nm). Intel caught up with the DRAM makers in 1997, at 250nm, and remained on a 
roughly two- year cycle through 2014. Author’s calculations based on Intel (2008), IC Knowl-
edge (2004), and http:// ark .intel .com.
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arriving at two- year intervals, replacing three- year cycles. (Intel’s perception 
of this trend, as of 2005, is documented in figure 11.2.) The origins of this 
change lie in the early 1990s, when the US SEMATECH R&D consortium 
sponsored a road map coordination mechanism in pursuit of an accelera-
tion in the introduction of new manufacturing technology, intended to ben-
efit the competitiveness of US chip producers. By the mid- 1990s, with the 
increasing reliance of semiconductor manufacturing on a global industrial 
supply chain, the American national road map evolved into the Interna-
tional Technology Roadmap for Semiconductors (ITRS).15 Explicitly coor-
dinating the simultaneous development of the many complex technologies 
required to enable a new manufacturing technology node every two years 
apparently succeeded in raising the tempo of semiconductor manufacturing 
innovation for over a decade.16

Using equation (2) but adopting shorter two- year cycles for new technol-
ogy nodes implies rates of annual decline in transistor costs accelerating to 
almost 30 percent. In short, if  the historic pattern of 2-  to 3- year technology 
node introductions, combined with a long- run trend of wafer- processing 
costs increasing very slowly, were to have continued indefinitely, a minimum 
floor of perhaps a 20 to 30 percent annual decline in quality- adjusted costs 
for manufacturing electronic circuits would be predicted due solely to these 
“Moore’s law” fabrication cost reductions. On average, over long periods, 
the denser, “shrunken” version of the same chip design fabricated a year 

15. Flamm (2009); Spencer and Seidel (2004).
16. The last (incomplete) official road map prepared by ITRS was released in 2012. Intel and 

others reportedly withdrew from ITRS around this time.

Fig. 11.2 Feature size scaling as observed by Intel in 2005
Source: Holt (2005).
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earlier would be expected to cost 20 to 30 percent less to manufacture purely 
because of the improved manufacturing technology.

It now appears that this two- year cycle for technology nodes definitively 
ended in 2014 with deployment of the 14nm node. The most historically 
prominent adopter of leading- edge chip manufacturing technology, Intel, 
currently projects a delayed introduction of its next 10nm processor prod-
ucts to no earlier than late 2019.17 This means that the time between intro-
ductions of new technology nodes now is approaching five years for Intel, a 
dramatic change from its two- year cadence through 2014.18

At Intel, the post- 1995 two- year technology development cycle had been 
explicitly incorporated into marketing efforts and was dubbed the Intel 
“tick- tock” development model in 2007.19 Every two years, there would be 
a new technology node introduced (“tick”), with the existing microproces-
sor computer architecture ported to the new node (effectively, “die shrinks” 
using the new process), followed by an improved architecture fabricated with 
the same technology the following year (“tock”). The death of the “tick- 
tock” model was officially acknowledged by Intel in its 2016 annual report.20

Intel publicly disclosed a version of equation (2) to its shareholders in 
2015, purged of sensitive cost numbers by indexing all variables to equal 
one at the 130nm technology node—the technology node at which the tran-
sition to a larger wafer size occurred.21 The 2015 Intel decomposition of 
manufacturing cost per transistor, using equation (2), is shown as figure 
11.3 and in table 11.1. Generally, Intel’s average silicon area per transis-
tor did not decline by the predicted 50 percent between technology nodes, 
primarily because of the increasing complexity of interconnections in pro-
cessor designs.22 If  accurate, these numbers indicate that the average chip 
area per transistor shrank by 38 percent at each new node from 130nm 
through 22nm.23 Nor did Intel’s wafer- processing costs stay constant over 
the post- 130nm period as a whole, since the adoption of 450mm wafers, and 
the subsequent cost reset, never happened at 22nm as had been predicted 
back in 2005. However, as long as the average area per transistor declined at 

17. See Moammer (2017).
18. Intel chip manufacturing competitor TMC was said in early 2017 to be manufactur-

ing a “10nm” node in volume for Apple (see Merritt 2017), but it is widely believed in the 
industry that its current technology is physically equivalent to a half- node advancement over 
the previous- generation Intel technology node. See https:// www .semiwiki .com /forum /f293 /
intel -  tsmc -  samsung -  10nm -  update -  8565 .html; Pirzada (2016); Rogoway (2018); Cutress and 
Shilov (2018).

19. See Intel (2017).
20. Intel (2016), 14.
21. Intel actually produced microprocessors in volume on both 200mm (8″) and 300mm (12″) 

wafers using its 130nm manufacturing process technology. See Natrajan et al. (2002), 16–17.
22. See Flamm (2017), 34, for a more detailed explanation.
23. Absolute constancy in reported decline rates for average area per transistor over five gen-

erations of new Intel manufacturing technology is puzzling, suggesting long- run trend- based 
estimates rather than actual averages computed from empirical manufacturing data.
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faster rates than processing costs per area increased, transistor costs would 
continue to decline. Intel’s cost- per- transistor estimates are revisited below.

How would reductions in production cost translate into price declines? 
One very simple way to think about it would be in terms of a “pass- through 
rate,” defined as dP/dC (incremental change in price per incremental change 
in production cost). The pass- through rate for an industry- wide decline in 
marginal cost is equal to 1 in a perfectly competitive industry with constant 
returns to scale but can exceed or fall short of  1 in imperfectly competi-
tive industries. Assuming the perfectly competitive case as a benchmark for 
long- run pass- through in “relatively competitive” semiconductor product 

Fig. 11.3 Intel 2015 version of equation (2)
Source: Holt (2015).

Table 11.1 Decomposing Intel transistor cost declines into wafer cost and transistor size changes

Year Intel 
1st shipped 
product at 
new tech 
node

Compound annual percentage change

 

Tech 
node 
(nm)  

Wafer 
processing 

cost ($/mm2) ×

Silicon 
area (mm2 
/transistor) =

$ cost/
transistor  

Wafer 
processing 

cost ($/mm2)  

Silicon 
area (mm2/ 
transistor)  

$ Cost/
transistor

2002 130 1 1 1
2004 90 1.09 0.62 0.68 5% −21% −18%
2006 65 1.24 0.38 0.47 7% −21% −16%
2008 45 1.43 0.24 0.34 7% −21% −15%
2010 32 1.64 0.15 0.24 7% −21% −16%
2012 22 1.93 0.09 0.18 8% −21% −14%
2014  14  2.49  0.04  0.11  14%  −31%  −22%

Source: Holt (2015), slide 6, graph digitized using WebPlotDigitizer. Year node introduced from ark .intel .com.



Measuring Moore’s Law: Evidence from Price, Cost, and Quality Indexes    413

markets, this would then imply an expectation of 20 percent to 30 percent 
annual declines in price due solely to Moore’s law.

Historically, most semiconductor chip production ultimately seems to 
have migrated to more advanced technology nodes.24 Other kinds of inno-
vations in semiconductor manufacturing, or innovations in the design and 
functionality going into electronic circuits, might be expected to stimulate 
even greater rates of quality- adjusted price declines. Thus the 20 percent to 
30 percent annual decline in manufacturing cost associated with Moore’s 
law could be interpreted as a floor on the quality- adjusted price declines in 
the most competitive segments of the semiconductor market.

11.2  Other Benefits from “Moore’s Law” Manufacturing Innovation

Impressive declines in transistor manufacturing cost accompanying 
denser chips with smaller feature sizes at more advanced technology nodes 
measure only a part of the economic benefits of the Moore’s law innova-
tion dynamic. With smaller transistor sizes also came faster switching times 
and lower power requirements.25 The complementary benefits of speed and 
power improvements were highly significant for chip consumers (like com-
puter makers) and their customers.

This was particularly true for chip makers manufacturing microproces-
sors. Existing computer architectures running at faster speeds run existing 
software faster and enable more data processing in any given time. Until 
2004, computer processor clock rates increased rapidly, as did performance 
of computers incorporating these faster microprocessors. Figure 11.4 shows 
clock rates for Intel desktop microprocessors in computers tested on industry 
standard benchmark programs over the last 20 years as well as benchmark 
scores for these computers. As clock rates increased, so did performance.26 
Cheaper processors were also faster, stimulating increased demand for new 
computers in offices, homes, and workplaces.

The logarithmic scale used in figure 11.4 obscures a fairly dramatic slow-
down in improvement in CPU performance after the millennium. Table 11.2 
shows compound annual growth rates in performance over time of Intel desk-

24. At SEMATECH, the US semiconductor industry consortium (with which the author 
worked as a consultant in the first decade of the 2000s), the planning rule of thumb was that 
a fab would be a candidate for an upgrade to a new technology node no more than twice over 
its lifetime and then would be shut down as uneconomic.

25. The underlying theory (“Dennard scaling”) suggested that a 30 percent reduction in 
transistor length and a 50 percent reduction in transistor area would be accompanied by a 
30 percent reduction in delay (40 percent increase in clock frequency) and a 50 percent reduc-
tion in power. Esmaeilzadeh et al. (2013), 95.

26. For given software and computer architecture, time required for programs to execute 
is inversely proportional to processor clock rate, assuming data transfer does not constrain 
performance. Lower rates of performance improvement after 2004, as processor clock rates 
plateaued, were obvious to computer designers. See Fuller and Millett (2011), chap. 2; Hen-
nessey and Patterson (2012), chap. 1.



Fig. 11.4 Processor clock rate and performance for Intel desktop processors run-
ning SPEC CPU benchmarks, by first availability date of tested hardware
Source: Author’s analysis of  SPEC submissions, SPEC .org. Performance scores for 1995, 
2000, and 2006 SPEC benchmarks have different values for same processor, and different 
vintage benchmark scores are not directly comparable. “minhdate” is date on which first 
SPEC benchmark for computer system with that processor is run. “log_SPECyyxx” is log of 
median SPEC year yy benchmark xx score, by processor model. SPEC06xx results include 
separate scores with compiler autoparallelization turned on (autop) and off (noautop) for 
same model, when reported.
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top processors on standard CPU benchmark software (the Standard Perfor-
mance Evaluation Corporation [SPEC] benchmarks; see appendix 11.A1).

Three different versions of  the SPEC CPU test suite were released—
one around 1995, one in 2000, and the most recent in 2006. Each suite 
contains a selection of “integer” application tests (e.g., programming and 
code processing, artificial intelligence, discrete- event simulation and opti-
mization, gene sequence search, video compression) and a set of “floating 
point” math- intensive application tests (e.g., solution of systems modeling 
problems in physics, fluid dynamics, chemistry, and biology; finite element 
analysis; linear programming; ray tracing, weather prediction; speech rec-
ognition). These test suites are designed to test single- process (programming 
task) performance on a CPU.27

27. The overall benchmark score is calculated as a geometric mean of scores on the individual 
programs within the benchmark.

Table 11.2 Annual growth in processor performance improvement over different time 
periods and benchmarks

Coeff. Robust
 SPEC CPU benchmark CAGR  SE  

1995m5–2000m3
int95 .583 .018
fp95 .640 .023
int95_rate .624 .027
fp95_rate .723 .033

2000m11–2004m11
int2000 .330 .017
fp2000 .343 .024
int2000_rate .470 .051
fp2000_rate .399 .035

2005m2–2007m1
int2000 .322 .016
fp2000 .337 .022
int2000_rate .465 .048
fp2000_rate .399 .033

2005m6–2012m11
int2006 .171 .007
fp2006 .247 .008
int2006_rate .247 .013
fp2006_rate .254 .010

2013m1–2016m5
int2006 .169 .006
fp2006 .241 .007
int2006_rate .242 .012

 fp2006_rate  .248  .009  

Source: Author analysis of  SPEC benchmark performance of Intel desktop processors.
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In addition, so- called rate versions of these test suites, which run multiple 
versions of the single- process benchmarks simultaneously on a single CPU, 
are available. The “rate” benchmarks are intended to show how the CPU 
would perform as a server running multiple independent jobs or, alterna-
tively, running an “embarrassingly parallel” programming problem—a task 
that could be divided up into multiple software processes not requiring any 
communication or coordination between processes.28

Changes in trends over time in the SPEC benchmark performance scores 
for Intel desktop processors are quite dramatic.29 Over the 1995–2000 
period, integer computing performance increased by about 58 percent annu-
ally and floating point performance by 64 percent. The suite was revised in 
2000, and from the end of 2000 through 2004, both integer and floating- 
point performance improvement rates were almost halved, to an increase of 
about 33 percent to 34 percent per year.30 Finally, over the most recent time 
period, after the 2006 revision of the SPEC benchmarks, from 2005 through 
2016, annual performance gains were reduced substantially again, to rates of 
17 percent (integer) and 25 percent (floating point) annual improvement.31

11.3  An End to Moore’s Law?

Unfortunately, the golden age of  more rapidly cheapening transistors 
(which were also faster and drew less power) that began in the late 1990s 
did not survive unchallenged past the new millennium.

2004: The End of Faster. The first casualty was the “faster thrown in 
for free,” along with smaller, cheaper, and greener. Around 2003–4, higher 
clock rates stalled (see figure 11.4), as disproportionately greater power was 
required to run processors reliably at ever higher frequencies. With tinier 
transistors drawing higher power in denser chips, dissipating heat gener-
ated by higher power density became impossible without expensive cooling 
systems. (The highest processor speed shipped by Intel until very recently 
was 4 GHz; IBM’s fastest z-series mainframe CPU, with advanced cooling, 
hit 5.5 GHz in 2012, but subsequent CPUs ran at lower frequencies.32) Intel 
and others abandoned architectures reliant on frequency scaling to achieve 

28. Unfortunately, there is no SPEC rule about how many instances of the single benchmark 
programs should be run for the rate benchmarks on a multicore CPU. It could be as many 
as the number of  cores in the CPU or twice that number (the number of  threads that can 
be run simultaneously on a CPU with additional processor hardware supporting symmetric 
multithreading—a feature called hyperthreading by Intel) or some number of instances less 
than either of those bounds.

29. Pillai analyzed the apparent slowdown in microprocessor quality improvement (as mea-
sured by software benchmarks) from 2001 to 2008. See Pillai (2013), figure 1.

30. There was a statistically significant—but substantively insignificant—additional decline 
of under a percent per year after 2004 through 2007.

31. There was another statistically significant, but substantively insignificant, decline by a 
fraction of a percent in performance improvement rates after 2012.

32. Raley (2015), 23.
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better processor performance after 2004. Clock rates in subsequent proces-
sor architectures actually fell, and processing more instructions per clock 
tick became the focus for improved computing performance.

Two-year node introductions continued to produce smaller and cheaper 
transistors, though. Ever- cheaper transistors were utilized to create more 
CPUs—“cores”—per chip, thus processing more instructions per clock at 
lower clock frequencies. This new “multicore” strategy’s weakness was that 
application software required “parallelization” to run on multiple cores 
simultaneously, and software applications vary greatly in the extent to which 
they can be easily parallelized. Further, improving software was more costly 
than simply adopting the cheaper hardware delivered by new technology 
nodes: quality-adjusted prices for software historically have fallen much 
more slowly than quality-adjusted prices for processors.33

The difficulty and cost of parallelization of software is an economic fac-
tor limiting utilization of  cheap multicore CPUs on hard-to-parallelize 
applications.34 In addition, a fundamental result in computer architecture 
(Amdahl’s law) maintains that if  there is any part of a computation that 
cannot be parallelized, then there will be diminishing returns to adding more 
processors to the task—and in many applications, decreasing returns are 
noticeable fairly quickly. One widely used computer architecture textbook 
summarized the challenges in utilizing multicore processors: “Given the 
slow progress on parallel software in the past 30-plus years, it is likely that 
exploiting thread-level parallelism broadly will remain challenging for years 
to come.”35

2012: The End of Rapid Cost Declines? Until roughly 2012, transistor 
fabrication costs continued falling at rapid rates. At the 22/20nm technol-
ogy node, which went into volume production around 2012 (at Intel), con-
tinuing cost declines began to look uncertain. Figure 11.5 shows contract 
chip maker GlobalFoundries’ 2015 transistor manufacturing costs at recent 
technology nodes.36

Numerous fabless chip design companies, which outsource chip produc-
tion to contract manufacturing “foundries,” began to publicly complain that 
transistor manufacturing costs had actually increased at the 20/22nm node.37 

33. Economic studies of  mass- market, high- volume packaged software prices have typi-
cally found quality adjusted rates of annual price decline in the 6 percent to 20 percent range. 
See, e.g., Gandal (1994); Oliner and Sichel (1994); White et al. (2005); Copeland (2013); and 
Prudhomme and Yu (2005).

34. The opposite—software problems easily divided up across processors and run with little 
or no interprocessor communication or management required—is described in the computer 
engineering literature as “embarrassingly parallel.”

35. Hennessey and Patterson (2012), 411.
36. Like table 11.1, this figure probably does not include R&D costs.
37. Fabless chipmakers Nvidia, AMD, Qualcomm, and Broadcom all publicly complained 

about a slowdown or even halt to historical decline rates in their manufacturing costs at found-
ries. Shuler (2015), Or- Bach (2012) (2014), Hruska (2012), Lawson (2013), Qualcomm (2014), 
Jones (2014, 2015).
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(Fabless companies accounted for 25 percent of world semiconductor sales 
in 2015; foundries, which also build outsourced designs for semiconductor 
companies with fabs, had a 32 percent share of global production capacity.38) 
Charts like figure 11.6, showing increased costs at sub-28nm technology 
nodes, were frequently published between 2012 and 2016. Figure 11.6 is 
not inconsistent with figure 11.5, since figure 11.6 likely includes the fab-

38. Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016). 
Charts like figure 11.6 should be viewed cautiously, as underlying assumptions about products, 
volumes, and costs are rarely spelled out in published sources.

Fig. 11.5 GlobalFoundries’ transistor manufacturing cost at recent technol-
ogy nodes
Source: McCann (2015).

Fig. 11.6 Cost per logic gate, with projection for 10nm technology node
Source: Jones (2015).
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less customer’s nonrecurring fixed costs for designing a chip and making a 
set of photolithographic masks used in fabrication, while figure 11.5—the 
foundry’s processing costs—would not.39 These fixed costs have grown expo-
nentially at recent technology nodes and create enormous economies of 
scale.40 Some foundries have publicly acknowledged that recent technology 
nodes now deliver higher density or performance at the expense of higher 
cost per transistor.41

Because of  these trends, fabless graphics chip specialists Nvidia and 
AMD actually skipped the 20/22nm technology node, waiting a high-tech 
eternity—five years—after launch of 28nm graphics processors in 2011 to 
move to a new technology node (14/16nm) for their 2016 products.

2018: “Dark Silicon” and Limits on Green? The microprocessor industry’s 
response to the end of frequency scaling was to use ever- cheaper transistors 
to build more cores on a chip. Though limited by software advances in paral-
lelizing different kinds of applications, this strategy at first seemed effective. 
More recently, continued future improvement of CPU performance on even 
easy-to-parallelize applications has been questioned.

As transistors get very small, power requirements to switch these transis-
tors are not reduced at the same rate as transistor size. The “green,” lower- 
power benefit of smaller transistors diminishes. Furthermore, as the power 
density of chips increases, heat dissipation becomes an issue. Thus the heat 
problem that blocked further frequency scaling returns in a new guise and 
prevents the increasing numbers of smaller cores squeezed into a multicore 
chip from simultaneously operating at a chip’s fastest feasible clock rate.

The fraction of  a chip’s cores that must be powered off at all times in 
order for a chip to operate within thermal limits, dubbed “dark silicon” by 
researchers modeling the problem, had been projected to grow as large as 50 
percent by 2018.42 Indeed, current PC users are already seeing their multicore 
machines “throttling” with attempts to use all cores for intensive computa-
tions at the highest clock rates, hitting thermal limits and then either falling 
back to lower clock rates or idling cores. Continued reductions in power 
requirements are still feasible but no longer are a free benefit of Moore’s 
law—they now come at the cost of reduced speed and additional on- chip 
circuitry needed to turn off power to unused portions of a processor chip.

39. Historically, a set of 10 to 30 different photomasks was typically employed in manu-
facturing a chip design. For a low-  to moderate- volume product, acquisition of a mask set is 
effectively a fixed cost.

40. Brown and Linden (2009), chap. 3. McCann (2015) cites a Gartner study showing design 
costs for an advanced system chip design rising from under $30 million at the 90nm node in 
2004, to $170 million at 32/28nm in 2010, to $270 million at the 16/14nm node in 2014.

41. Samsung’s director of foundry marketing said, “The cost per transistor has increased in 
14nm FinFETs and will continue to do so” (Lipsky 2015). “GlobalFoundries believes the 10nm 
node will be a disappointing repeat of 20nm, so it will skip directly to a 7nm FinFET node that 
offers better density and performance compared with 14nm” (Kanter 2016).

42. Esmaeilzadeh et al. (2013), 93–94.
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2021+: An End to Smaller in Conventional Silicon? Even some manufac-
turing technologists from Intel now believe that the Moore’s law cadence of 
technology nodes, with ever- smaller feature sizes in conventional silicon, 
will end sometime in the next five years. Intel’s Bill Holt put it in these terms 
recently: “Intel doesn’t yet know which new chip technology it will adopt, 
even though it will have to come into service in four or five years. He did 
point to two possible candidates: devices known as tunneling transistors 
and a technology called spintronics. Both would require big changes in how 
chips are designed and manufactured, and would likely be used alongside 
silicon transistors.”43

11.3.1  Can We See a Slowing Down of Moore’s Law Cost Declines in 
Price Statistics?

If  Moore’s law has slowed or even stopped, we would expect to see it in 
economic metrics, like prices and manufacturing costs.44

11.3.1.1  Prices

An obvious place to look is in the price statistics for computer memory 
chips, which remained the mass- volume semiconductor product par excel-
lence through the end of the 20th century. DRAMs were later superseded 
by flash memory as the technology driver for new memory manufacturing 
technology. After the millennium, new technology nodes were first adopted 
in flash memory chips before DRAMs; flash had become the highest- volume 
commodity chip by sales around 2012.45

Table 11.3 shows changes in price indexes for high- volume memory chips. 
The DRAM “composite” index is a matched- model, chain- weighted price 
index based on consulting firm Dataquest’s quarterly average global sales 
price for different density (bits per chip) DRAM components available in 
the market over the years 1974–1999.46 These data have no longer been 
available in recent years.

In the mid- 1980s, Korean producers Samsung and Hynix entered the 
DRAM business and, along with US producer Micron Technology, now 
account for the vast bulk of current DRAM sales.47 The Bank of Korea’s 
export price index (based on dollar- basis contracts) and the Bank of Korea’s 

43. Bourzac (2016).
44. A very useful bibliography of prior matched- model and hedonic studies of semiconduc-

tor prices may be found in Aizcorbe (2014), 107–8.
45. See IC Insights (2012).
46. The data prior to 1990 are the same data used in Flamm (1995), figure 5- 2. From 1990 

on, the data are taken from Aizcorbe (2002).
47. Taiwanese firms entered the DRAM market in force in the early 1990s but have since 

largely exited, as have all Japanese producers (US producer Micron acquired Japanese DRAM 
fab facilities). The last remaining European producer (Qimonda) filed for bankruptcy in early 
2009. By 2011, the top three producers (Samsung, Hynix, and Micron) accounted for between 
80 percent and 90 percent of global sales. See Competition Commission of Singapore (2013).
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producer price index (PPI, converted to a dollar basis using quarterly aver-
age exchange rates) for DRAM and flash memory chips are available.48

Finally, since 2000, the Bank of Japan has published a chain- weighted 
“MOS memory PPI” with weights that are updated annually. This index is 
likely to be predominantly a mix of DRAM and flash memory, tilting more 
toward flash in recent years. Generally, except for the period from 1985 
to 1995, when a string of  trade disputes (between the United States and 
Europe and Japanese, Korean, and Taiwanese memory chip producers) had 
significant impacts on global chip prices;49 prices for DRAMs and flash fell 
at average rates exceeding 20 percent to 30 percent annually.

It is notable that rates of decline in memory chip prices in the last five 
years generally have been half  or less of their historical decline rates over 
the previous decades. Korean price indexes (which track the majority of 
the DRAM manufactured and sold) have basically been flat for the last 
five years. US memory chip manufacturer Micron (like other flash memory 
manufacturers) is no longer planning to invest in new technology nodes 
beyond 16nm in its leading- edge flash memory production. Instead, a new 
device design built vertically (3D NAND50) using existing manufacturing 
process technology is more cost effective than the continued planar scal-
ing of components at new technology nodes described by the Moore’s law 
dynamic.51 In DRAM, the mantra that “technology- driven growth slows 
due to scaling limits” (“scaling limits” being industry jargon for a slowing or 
ending of Moore’s law manufacturing cost reductions) had become a staple 
in Micron’s investor conferences.52

Another “commodity- like” price in the semiconductor industry in recent 
years has been the cost that chip design houses face in having their chips 

48. These are not well documented but are believed to be fixed- weight Laspeyres indexes, 
with weights updated every five years, that have been spliced together (2010 is the current base 
year). The export indexes are actually measured in dollars, while the Korean won- denominated 
and Japanese yen- denominated producer price indexes have been converted to dollars at current 
exchange rates. As a practical matter, except for a brief  period during the 1980s when export 
controls related to the US- Japan Semiconductor Trade Agreement were put in place, DRAM 
prices historically and through the present have been set and quoted in dollars in a highly 
integrated global market. See Flamm (1993), 163–64, 167–68. Flamm (1995), chapter 5, ana-
lyzes empirical evidence that regional price differentials in DRAM briefly appeared and then 
disappeared when restrictive trade policies were applied and then removed in the 1980s. With 
minuscule transport costs relative to product value, zero tariff costs globally for most countries 
(under the Information Technology Agreement, concluded in 1996 and bound into the WTO), 
and a large number of active global distributor/broker arbitrageurs, the global DRAM market 
has always been the poster child for the relevance of a “law of one price.”

49. See Flamm (1995).
50. Since the early 21st century, the highest- volume semiconductor chips produced have been 

so- called flash memory chips, and in particular flash memory using Not- AND (NAND) logic 
(a type of logic circuit) to store binary data. Flash memory is a nonvolatile storage medium—
information stored on the chip is maintained after electric power is turned off.

51. Micron 2015 Winter Analyst Conference (2015).
52. Micron’s Raymond James Institutional Investor Conference (2016); Micron Analyst 

Conference (February, 2017).
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manufactured on their behalf  at so- called foundries. The outsourced manu-
facturing of semiconductors designed at “fabless” semiconductor compa-
nies at foundries accounted for about 25 percent of world semiconductor 
sales in 2015. Foundries, which also build outsourced designs for semicon-
ductor companies with fabs, held 32 percent of global production capacity 
in that year.53

A recent study of quality- adjusted fabricated wafer prices (the form in 
which manufactured chips are sold to the semiconductor design houses 
that have outsourced their production) by Byrne, Kovak, and Michaels 
(2017) portrays a slowing decline in fabricated wafer prices prior to 2012. 
(See table 11.4.) While the pattern seems consistent with a slowing down of 
Moore’s law prior to 2012, this study unfortunately ends with data from 2010 
and thus cannot be used as a check against the claims of the most vocal US 
fabless designers (see above) that the prices they pay for having their transis-
tors manufactured in foundries were no longer declining significantly at new 
technology nodes post- 2012.

Price Indexes for Intel Processors. Since their invention in the 1970s, 
microprocessor sales have grown rapidly and since the 1980s have consti-
tuted another huge market segment. Official government statistics show a 
tremendous slowdown in the rate at which microprocessor prices have been 
falling after the millennium as well as a significant attenuation in the rate 
at which prices of the desktop and laptop PCs that make use of these pro-
cessors have declined. The US Producer Price Indexes for microprocessors 
show annual (January- to- January) changes in microprocessor prices steadily 
falling from 60 percent to 70 percent peak rates during the “golden age” of 
the late 1990s and early 2000s to a low of about 1 percent annual decline for 
the year ending in January 2015. (The Bureau of Labor Statistics stopped 
reporting its PPI for microprocessors in April 2015, apparently because of 
confidentiality concerns.) A parallel fall in price declines for laptop and 
desktop computers seems also to have occurred, from peak annual decline 

53. Foundry share calculations based on Yinug (2016), Rosso (2016), and IC Insights (2016).

Table 11.4 A quality- adjusted price index for fabricated “foundry” wafers

   Annual index  % rate of change  

2004 100
2005 83.90 −16.10
2006 74.76 −10.89
2007 65.94 −11.80
2008 57.89 −12.20
2009 52.95 −8.53

 2010 48.67  −8.09  

Source: Byrne, Kovak, and Michaels (2017).
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rates of  40 percent in the late 1990s to rates mainly in the 10 percent to 
20 percent range in the last few years.

Table 11.5 shows compound annual decline rates in the PPI for micropro-
cessors (including microcontrollers) as constructed by the Bureau of Labor 
Statistics (BLS), along with similarly defined indexes for the commodity 
“microprocessors.” Annual decline rates slow from a rate near 50 percent 
in the late 1990s and the first half  decade of the new millennium, to a little 
over 10 percent in the second half  of that first decade, to about 3 percent 
annually in recent years. This too is consistent with a substantial slowing 
down in the impact of Moore’s law manufacturing technology innovation.

The Bureau of Labor Statistics had historically been somewhat opaque 
about its methodology in constructing its microprocessor price series (there 
is no published methodology describing precisely how these numbers were 
constructed).54 It is believed that these were matched- model indexes based 
on some weighted selection of products appearing on Intel list price sheets 
(the same data source I utilize below),55 but this is not entirely certain. There 
is also some evidence that the BLS may have experimented with several dif-
ferent methodologies for measuring its microprocessor price indexes over 
the 1995–2014 periods56 before ceasing publication of the index for confi-
dentiality reasons in 2015.

54. Ironically, the BLS is now much more open about the details of how it constructs the 
current (unpublished) microprocessor price index than it was about some previous (published) 
versions. See Sawyer and So (2017).

55. Based on a brief  conversation with BLS officials, Cambridge, MA, July 2014. See also 
Sawyer and So (2017).

56. The BLS website showed three different “commodity” price indexes (as opposed to its 
single microprocessor producer price index) for microprocessors over this period. The most 
recent microprocessor “commodity” price index is based in December 2007 but is only reported 
monthly from September 2009 through 2015. There are also two discontinued microprocessor 
commodity price indexes, one based in December 2004 and running through June 2005 and 
another based in December 2000 and running from 1995 through December 2004. One might 
speculate that the BLS changed its methodology for measuring microprocessor prices three 
times during this period.

Table 11.5 Annualized decline rates for microprocessors per the BLS

Microprocessors (including microcontrollers)

Commodity price Producer price

  Index (discontinued)  Index (current)  Index

1995:1−1999:4 −50.0 −50.5
1999:4−2004:4 −48.6 −49.2
1999:4−2005:1 −47.8
2005:1−2007:4 −37.7
2007:4−2011:4 −10.8 −10.8
2011:4−2015:1   −3.0  −3.0

Author’s calculation. Middle month for quarter used, except December 2007 used for 2007:4.
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As an alternative to the BLS measure, I have previously constructed alter-
native price indexes for Intel desktop microprocessors, tracing the contours 
of change over time in microprocessor prices using a unique, highly detailed 
dataset I have collected over the last two decades.57 Since the mid- 1990s, 
Intel has periodically published, or posted on the web, current list prices 
for its microprocessor product line in 1,000- unit trays. These list prices are 
available at a very disaggregated level of  detail—distinguishing between 
similar models manufactured with different packaging, for example—and 
were typically updated every four to eight weeks, though price updates have 
sometimes come at much shorter or longer intervals.58 By combining these 
detailed prices with detailed attributes of different processor models, it is 
possible to construct a very rich dataset relating processor prices to proces-
sor characteristics, over time.

This permits the construction of both “matched- model” price indexes, the 
traditional means by which government statistical agencies measure indus-
trial prices, and so- called hedonic price indexes, which relate processor prices 
to processor characteristics. It is now well understood in the price index 
literature that there is a close relationship between matched- model indexes 
and hedonic price indexes.

The Intel dataset permits measuring differences in processor character-
istics down to individual models of processors, controlling for such things 
as processor speed, clock multiplier, bus speed, differing amounts of level 1 
(L1), level 2 (L2), and level 3 (L3) cache memory, architectural changes, and 
particular new processor features and instructions. The latter have become 
particularly important recently—beginning in mid- 2004, Intel dropped 
processor clock speed as the principle characteristic used to differentiate 
processors in its marketing and introduced more complex “processor model 
number” systems that distinguish between very small and arguably minor 
differences between processors that proliferated at more recent product 
introductions.

For comparison purposes, I begin by constructing a matched- model price 
index for Intel desktop processors. Since I do not have sales or shipment 
data at the individual processor model level, I weight each observed model 
equally by taking the geometric mean of price relatives for adjoining periods 
in which the models are observed.59 A price index based on the simple geo-
metric mean of individual product price relatives (dubbed the Jevons price 
index) is chained across pairs of adjacent time periods and depicted in figure 
11.8. It has the same qualitative behavior as the official government producer 

57. See Flamm (2007).
58. My data initially (over the 1995–98 period) made use of compilations of these data col-

lected by others and posted on the web; since 1998–99, most of these data were collected and 
archived directly from the Intel website.

59. Since there occasionally were multiple price sheets issued within a single month, I have 
averaged prices by model by month. Since Intel did not issue new price sheets monthly, “adjoin-
ing time periods” means temporally adjacent observations.
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price index for microprocessors, falling at rates exceeding 60 percent in the 
late 1990s and slowing to a decline rate under 10 percent since 2009.

This geometric mean matched- model index actually falls a little more 
slowly than the official US microprocessor PPI, which may be attributable 
to the fact that the geometric mean index weights all models equally, while 
the PPI probably uses a subset of the data, with some weighting scheme for 
models drawn (and replaced periodically) from subsets of processor types. 
The PPI also uses fixed weights from some base period to weight these price 
changes, while my Jevons index chains adjoining paired comparisons of 
models and therefore implicitly allows weights given to different models over 
pairs of adjoining time periods to evolve over time.

I have also constructed a hedonic price index, using an econometric model 
that utilizes more of  the information available in my sample of  Intel list 
prices. The basic hedonic price model I estimated statistically was

(H0) lpriceit =  constant + dt + baarch_di + bp ∗ lproci + bmlmaxmhzi  

+ bwlbwi + bcolcoresi + bhhti + bcalcachei + bgint_graphi + 

btdpltdpi + b64em64ti + bsteisti + bv vti + uit,

with the following covariates for chip model i, period t:

•  dt, a time dummy indicator variable for the later period in a pair of 
adjacent time periods

•  arch_di, architecture dummy for Intel chip architecture (e.g., Haswell, 
Coppermine, Ivy Bridge)

•  lproci, log of base processor clock rate
•  lmaxmhz, log of maximum clock rate if  processor has turbo mode, = 

lproc if  not
•  lbwi, log of memory bandwidth (8 × memory bus clock rate if  older 

front- side bus architecture or max memory bandwidth if  reported in 
Intel Ark database)

•  lcoresi, log of number of physical cores on chip
•  hti, hyperthreading (additional virtual core per physical chip core) hard-

ware support, binary indicator variable
•  lcachei, log of maximum cache memory for highest level cache on pro-

cessor
•  int_graphi, binary indicator variable for integrated graphics, 1 if  on 

chip graphics
•  ltdpi, log of thermal design power (watts), rating of chip
•  em64ti, binary indicator dummy for Intel 64- bit memory architecture
•  eisti, binary indicator dummy for enhanced Intel speedstep technology 

(dynamic frequency scaling and power reduction) feature
•  vti, binary indicator dummy for hardware virtualization support, 1 if  

virtualization hardware support
•  and uit, a statistical disturbance term for chip model i, time period t
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Choice of Characteristics. Choice of characteristics was primarily based 
on a review of the computer architecture literature (discussed below). The 
most widely used textbook in that literature holds that computer instruc-
tion processing performance is based primarily on the processor architec-
ture (which determines how many software instructions can be executed 
per processor clock cycle: IPC, or instructions per clock) and the comput-
er’s clock rate. Since the mid- 2000s, desktop PC processors have further 
boosted performance by incorporating a turbo mode, increasing clock rate 
to some maximum above the chip’s baseline frequency for short periods 
of time. Frequently, software performance can also depend on its on- chip 
(cache) memory size and on the sustained speed at which a computer can 
transfer data from its off- chip, secondary memory—its maximum memory 
bandwidth. Over the last decade, additional processor units (cores) have 
been added to desktop computer processors, and if  software can be par-
allelized and run simultaneously on multiple cores, this too will improve 
performance. In addition, adding hardware support for “virtual cores,” so 
that a hardware processor core can be time- shared simultaneously by two 
instruction- processing threads, can speed things up—Intel’s version of this 
feature is called hyperthreading. Several other features—hardware support 
for virtualization and a 64- bit memory architecture—can improve computer 
performance on particular applications, particularly when desktop proces-
sors are used in servers. Basic graphics are now integrated onto many proces-
sor chips, sparing the end user the need to purchase a costly discrete graphics 
card, which should also affect demand for a processor by consumers. Finally, 
power consumption is probably the major variable cost of computing (and 
drives use of relatively expensive cooling systems needed to dissipate heat 
from high- powered processors). Low thermal design power (TDP) in desk-
top processors is considered beneficial for this reason,60 and processor mak-
ers like Intel have also developed hardware support for power- saving features 
in the chip’s micro architecture (Intel’s proprietary version—enhanced Intel 
Speedstep—is abbreviated EIST).

Note that maximum memory bandwidth, cache sizes, number of cores, 
and even TDP typically take on only a handful of  discrete values in any 
two- period estimation sample interval and are often perfectly collinear with 
binary indicators for processor architecture, 64- bit support, hardware virtu-
alization, and integrated graphics. In addition, as I show below, performance 
on different SPEC processor benchmark suites is nearly perfectly predicted 
by a linear combination of a subset of five of these processor characteristics 
(chip architecture, clock rate, number cores, hyperthreading, turbo mode).

The regression coefficients (weights) on each of  these characteristics, 
however, vary substantially by software benchmark type. Since the mix of 
software programs run on computers has evolved substantially over time 

60. In addition, low power consumption has the additional very important benefit of pro-
ducing longer battery life in a laptop computer, irrelevant for a battery- less desktop computer 
processor.
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(these changes have led SPEC to periodically revise its various benchmarks), 
using the underlying characteristics determining processor benchmark per-
formance (rather than a particular benchmark score) seems the more flexible 
way to accommodate the impact of changes over time in market demand for 
different types of software applications running on computers.

The very same characteristics that one might expect to affect processor 
demand would also be expected to affect processor cost on the supply side. 
Faster chips supporting the highest clock rates are culled from larger num-
bers of chips fabricated in batches of wafers through extensive testing (a 
process dubbed “binning” within the industry). Slower-  and faster- running 
chips are sorted into higher and lower performance bins and sold as distinct 
chip models. Processors with defects in circuitry in their memory caches 
and feature circuits also have their defective circuitry fused off electroni-
cally and are then sold as lower performance chips (with less memory and 
fewer features). Redundant circuits can be added to a chip design (at a cost, 
by increasing chip die area) to yield larger shares of chips on a wafer with 
functioning features. Every desirable feature of a processor also has some 
incremental cost incurred in order to increase the number of chips produced 
with that functioning feature—either through a bigger and therefore more 
costly chip footprint on a silicon wafer (driven by redundant circuitry needed 
to fix defects) or through the larger numbers of wafers that must be pro-
cessed in order to get the desired target numbers of chips with functional 
features and characteristics.

Computer architectures also affect processor cost, as well as performance, 
since numbers of transistors on a chip, and therefore chip manufacturing 
cost, are directly related to the chip’s architecture. In addition, since at least 
the early 2000s, Intel has marked the introduction of new manufacturing 
technology nodes by rolling out improved chip architectural designs when 
introducing the new node. So manufacturing technology nodes and chip 
architectural family will be perfectly collinear in a statistical analysis of 
Intel prices and costs.

In short, the chip characteristics in this hedonic regression would be 
expected to affect both computing performance and power consumption, 
as well as processor cost, and are relevant to both the demand and supply 
cost sides of the market. For that reason, even if  a single, perfectly accurate 
measure of  average processor computing performance (a “market aver-
age” benchmark based on the relative mix of software applications run by 
final computer end users in computing service markets at that particular 
moment in time) existed, changing in perfect lockstep with the changing mix 
of applications run by different end users,61 changes in processor character-

61. It is worth noting that the SPEC benchmarks report an unweighted geometric mean of 
performance in a variety of applications and that these fixed (equal) weights remain fixed over 
long periods of time (since 2006, as of October 2018) for the SPEC benchmark composite 
scores.
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istics would have additional impacts on price working through processor 
manufacturing cost and therefore need to be accounted for separately in the 
estimated hedonic price equation.

One potentially important pitfall in using large numbers of characteristics 
in a hedonic equation is that many of these characteristics are likely to be 
perfectly collinear with others. This is a real- world problem. For example, 
all the chips developed with a new architecture design may, at least ini-
tially, have a common size for their highest- level cache, may all have a 64- bit 
architecture, or may all have hyperthreading. Most regression software will 
drop perfectly collinear characteristics automatically, and the coefficients 
of the other covariates (the ones with which the dropped characteristics are 
perfectly collinear) will include the effects of the dropped covariates in their 
estimated values.

This can make interpretation of signs and values of hedonic characteris-
tics problematic and liable to big jumps in value (and coefficient interpreta-
tion) in different estimation periods, depending on which characteristics are 
perfectly collinear and which characteristics are dropped (often automati-
cally) by the statistical software. It also may appear at first glance to look 
like undesirable “coefficient instability.”

However, as long as the key variable of substantive interest (the last period 
time dummy variable in a regression model spanning two adjacent time peri-
ods, the coefficient of which is used to construct a hedonic price index) is not 
perfectly collinear with the other included characteristics variables, there is 
no difficulty in interpreting the coefficient of the time dummy variable. For-
tunately, it is straightforward to check that this is the case by simply running 
an auxiliary linear regression of the time dummy on all other explanatory 
covariates and verifying that it is not perfectly predicted by other regression 
covariates.

Perfect Collinearity in a Simple Hedonic Simulation. The problem of per-
fect collinearity—and its effects—is very real in my sample of Intel micro-
processors. In every single pair of adjacent time periods, multiple character-
istics are dropped as perfectly collinear by statistical software. The problems 
this can create in interpreting regression results are easily illustrated in a 
simple simulation model.

Consider a simplified, stylized processor market over two adjacent time 
periods. Suppose that half  of manufacturing capacity is used to fabricate 
a baseline processor architecture (arch_dummy = 0) and half  is dedicated 
to a different architectural alternative (arch_dummy = 1). Suppose that ini-
tially, half  of fabricated chips from both architectures can run at a clock 
rate of 1,000, and half  at 1,500. All chips manufactured run 500 faster in 
the later period (i.e., half  at 1,500, half  at 2,000; think of this as the result of 
manufacturing process improvement). Substantively, this means there will 
be a positive correlation between a binary time period indicator variable 
(first_period = 0, last_period = 1) and processor clock rates.
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Let us also suppose that the only thing all processor buyers care about is 
processing speed on a single, common software application (so we are ignor-
ing the problem of heterogeneity in demand—i.e., which benchmark to run). 
Further, let’s assume that this single measure of speed (software processing 
performance) relevant to users is perfectly determined by a simple linear 
function of three processor characteristics:

speed = clock_rate + 500*arch_dummy + 200*turbo

(where “turbo” is a binary indicator for a functioning turbo speedup feature 
that is enabled in half  of the chips produced for each architecture and clock 
combination).

Each unique combination of  architecture, clock rate, and turbo capa-
bility under these assumptions can be thought of as a distinct “processor 
model.”62 With this setup, there are 12 distinct microprocessor models (2 
processor architectures × 3 clock rates × 2 turbo values) sold over two peri-
ods. Half  the models are sold in both periods (the ones running at 1,500), 
and half  are sold only in the beginning or end periods (the models running 
at the 1,000 and 2,000 clock rates, respectively).63

Unit manufacturing cost for the chip is assumed to be given by

cost =  50 + 2 ∗ clock_rate + 2000 ∗ turbo + 500 ∗ arch_dummy – 10  

∗ end_period.

End- period manufacturing costs decline by $10 for any constant quality 
“computer model,” simulating a uniform $10 drop in manufacturing cost, 
given any set of fixed model characteristics, over time.

In the spirit of Pakes (2003), we write out an extremely simple hedonic 
price reduced- form equation:

price = 600 + 2 ∗ speed + cost + random disturbance term,

with the first two terms on the right- hand side of the equation reflecting 
the further assumption that expected markup over incremental unit cost, 
reflecting user demand, is a linear function of speed alone. After substituting 
for unit cost (which we typically cannot observe in available data), this gives 
us a “hedonic price equation” as a function only of observable processor 
characteristics:

62. I draw a sample of 10 million observations, using pseudorandom draws from indepen-
dent uniform distributions, to create a simulated population of processor “models,” uniformly 
and independently distributed over architecture, clock rate and turbo feature. Another set of 
independent, pseudorandom draws from a uniform distribution create a mean zero disturbance 
term added into the realized sales price on the left- hand side of the hedonic price equation.

63. Because clock rates increase over time, a binary indicator variable for the end period 
is positively correlated with clock rate but uncorrelated with either architecture or the turbo 
feature (which are independently and randomly assigned to wafers/chips prior to fabrication).
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(H1) price =  650 + 2 ∗ speed + 2 ∗ clock_rate + 2000 turbo  

+ 500 ∗ arch_dummy – 10 ∗ end_period  

+ random disturbance term.

The disturbance term in the simulation is drawn from a zero- mean uniform 
distribution. The assumed across- the- board $10 end- period average reduc-
tion in manufacturing cost, conditional on fixed processor characteristics, 
induces a $10 decline over time in quality- adjusted (constant characteris-
tic) mean price across all computer models (since markup by assumption 
depends only on speed, in turn a function of the other processor character-
istics we are conditioning on).

Most importantly, we cannot actually estimate (H1), because speed, archi-
tecture, frequency, and turbo characteristics, as a group, are perfectly collin-
ear with one another (since speed is a linear function of arch dummy, clock 
rate, and turbo). Since these three chip characteristics exactly determine 
speed, any three of these four variables exactly determines the value of the 
fourth. If  we were to substitute for speed as a function of its three determi-
nants and so drop it from the hedonic price equation, we get

(H2) price =  650 + 4 ∗ clock_rate + 1500 ∗ arch_dummy  

+ 2400 ∗ turbo – 10 ∗ end_period.

If  we substitute for turbo in terms of the other three variables, we get

(H3) price =  650 + 12 ∗ speed—8 ∗ clock_rate –4500 ∗ arch_dummy –10  

∗ end_period.

If  we substitute for clock_rate in terms of the other three characteristics, 
we get

(H4) price =  650 + 4 ∗ speed – 500 ∗ arch_dummy + 1600 ∗ turbo – 10  

∗ end_period.

And substituting for architecture, we get

(H5) price =  650 + 3 ∗ speed + clock_rate + 1800 ∗ turbo – 10  

∗ end_period.

Table 11.6 summarizes a simple simulation demonstrating that with a 
large simulated sample (10 million observations), a regression model with 
any of the four above specifications (H2–H5) recovers the above parameters 
correctly.64 A key point of substantial practical relevance is that all four of 

64. Appendix 11.A2 contains the short Stata program giving these simulation results.
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these estimable specifications are correct and produce exactly the same esti-
mate for the coefficient of the time dummy variable, the parameter of greatest 
substantive interest. But the coefficients of the perfectly collinear charac-
teristics need to be interpreted differently in each case as the joint effects 
of  that characteristic plus the effects of  the dropped, perfectly collinear 
characteristic. In fact, there are wild swings in coefficient values (from 12 
to 3 for speed and from 1,600 to 2,400 for turbo) and even sign (from 1,500 
to –4,500 for arch_dummy) as different candidates from the set of perfectly 
collinear variables get dropped from the estimated regression specification.

This is important because with large numbers of  characteristics in a 
hedonic regression, particularly with binary dummies, or nominally con-
tinuous covariates that in any given time frame take on only a fixed number 
of discrete values, perfect collinearity among characteristics is very com-
mon. Covariates are typically dropped from the regression automatically 
by the econometric software. If  this is happening and different subsets of 
the perfectly collinear covariates are used in two different time periods, then 
wild variation in coefficient estimates, rather than representing worrisome 
instability in (nonperfectly collinear) explanatory covariates selected and 
used in the estimated regression, should be anticipated.

A second, even more important point is that estimated coefficients for vari-
ables that are not in the set of perfectly collinear variables are not affected by 
which of the perfectly collinear variables is dropped. In this simulation, for 
example, the estimated effect of the time dummy—the variable of greatest 
substantive interest, since its coefficient would be used to estimate a hedonic 

Table 11.6 Simulation of perfectly collinear characteristics in hedonic price equation

(drop speed) (drop turbo) (drop clock) (drop arch) (speed only)
  p  p  p  p  p

time −10.22*** −10.22*** −10.22*** −10.22*** −75.24***
(0.258) (0.258) (0.258) (0.258) (0.677) 

clock_rate 4.000*** −7.999*** 1.000***
(0.000365) (0.000983) (0.000517)

architecture_dummy 1,500.0*** −4,499.8*** −500.1***
(0.183) (0.492) (0.258)

turbo dummy 2,399.9*** 1,599.9*** 1,799.9***
(0.183) (0.197) (0.197)

speed 12.00*** 4.000*** 3.000*** 4.130***
(0.000913) (0.000365) (0.000365) (0.000762) 

constant 650.0*** 650.0*** 650.0*** 650.0*** 992.5***
(0.492) (0.492) (0.492) (0.492) (1.281) 

N 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 
R2  0.980  0.980  0.980  0.980  0.808 

Notes: Standard errors in parentheses. * p < .05, ** p < .01, *** p < .001. Stata code for this simulation 
in appendix 11.A2.
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price index—does not change in value at all as the excluded perfectly col-
linear variable changes. It is likely to be relatively rare and fairly obvious 
when a time dummy variable is perfectly collinear with other covariates. In 
any event, it is easy to verify that the time dummy variable is not perfectly 
collinear with other included variables by simply running auxiliary regres-
sions of the time dummy against all other explanatory variables, both those 
included and those dropped as perfectly collinear.

Finally, there is an important specification issue illustrated by this simu-
lation. If  one uses speed as one of  the explanatory covariates, it is also 
important to include the full, nonperfectly collinear subset of relevant char-
acteristics affecting cost, even if  speed entirely captures the impact of these 
characteristics from the user demand side. Table 11.6 demonstrates that 
when only speed and time are used as explanatory variables (last column 
in the table), bias from the omitted characteristics greatly confounds the 
coefficient estimate for the time dummy variable, incorrectly magnifying the 
drop of quality- adjusted price by a factor of 7.5! I return to this point below.

A Hedonic Price Index for Intel Desktop Processors. Model (H0) above 
was run for each of 162 pairs of adjacent months in which I collected Intel’s 
desktop processor list prices.65 The first set of adjacent list prices is for Janu-
ary and February 1996. The last pair of adjacent price sheets is for June and 
July 2014.66 Overall, R2 was uniformly high and was not driven primarily by 
the inclusion of the architectural dummy variables—these were treated as 
fixed effects, and I also report a “within” R2 (after demeaning all variables 
by their group mean), which is also quite high. (See appendix tables 11.A4 
and 11.A6.)

The time dummy variables in the above regression were then exponenti-
ated and used to construct price index relatives for adjacent time period 

65. The list prices refer to per- chip prices for processors packaged in quantity 1,000 trays sold 
to original equipment manufacturers (OEMs). By adjacent month, I mean a month and the 
next month in which an updated list price was published. For example, if  Intel issued a price 
sheet in January, March, April, August, and November of a year, there would be four adjacent 
month pairs: January–March, March–April, April–August, and August–November. Roughly 
three- fourths of the monthly observation pairs were a month apart; the next most frequent 
value observed was two months; the largest time gap between adjacent price lists observed was 
four months. A hedonic model excluding TDP produced useful estimates for price relatives 
over 162 adjacent pairs of months. Results for a model with TDP are shown in the appendix 
tables based on an initial period ending in October 1998, but the problem of a large share of 
observations lacking a TDP measure does not really fade away until the pair of adjacent months 
ending in January 2000.

66. The number of processors in early years was very small and characteristics extremely 
collinear; numbers of processor prices (with TDP) in adjacent month pairs more than double 
from under 15 to over 30 in late 1999, and estimated price relatives after that date are probably 
much more reliable. See appendix table 11.A4 and 11.A6 for details on numbers of observations 
in different adjacent month samples. Entry and exit of architecture and indicator variables from 
estimation period to period have been color coded in this table. After the first nonzero obser-
vation for an indicator variable occurs, blanks indicate the variable was dropped as perfectly 
collinear. In no case was the time dummy variable perfectly collinear with other covariates; this 
was checked with auxiliary regressions.
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pairs.67 The resulting price index relatives were then used to chain link these 
period- to- period indexes into a longer chained price index, shown in appen-
dix table 11.A3.

In addition, I report the values of other coefficients in the hedonic regres-
sion in appendix tables 11.A5 and 11.A7, which show how large qualitative 
jumps in coefficient values from estimation period to period often occur as 
nonzero values for new characteristics, indicators, or architecture variables 
that enter and exit the sample, due to perfect collinearity. But there is often 
perfect collinearity even when there is no new architecture or indicator enter-
ing or exiting the sample—this may be seen in the many blank coefficient 
estimates that appear when architecture or other indicators, or even continu-
ous covariates (which often take on only a handful of discrete values in any 
single estimation period), are dropped due to perfect collinearity.

The processor architecture family variables are treated as fixed effects and 
not reported. There were anywhere from one to seven such architecture fixed 
effects, depending on the pairs of adjacent months used for estimation of 
the hedonic equation.

Note that nominal power consumption for a processor (TDP, thermal 
design power) was simply unavailable for most Intel processors released 
prior to late 1999. I therefore estimated two versions of a hedonic index: one 
with TDP as a characteristic and one without. TDP is statistically signifi-
cant when it is used, and therefore the hedonic price index including TDP is 
the preferred index from 2000 onward (the small numbers of observations 
with TDP reported prior to late 1999 make these pre- 2000 estimates less 
reliable). I have linked the post- 2000 index with TDP to the pre- 2000 index 
without TDP and show this in the final column of table 11.A1 as a composite 
“best effort” index. The TDP- inclusive and - exclusive indexes are virtually 
identical from 2000 through January 2005, departing significantly from one 
another only afterward. Prior to 2000, the earlier the time period, the more 
limited the available data and the less reliable the resulting estimate.

Figure 11.7 visualizes some of the estimation model summary statistics 
from appendix table 11.A6 for the TDP variant of the price index (which is 
also the “composite” index over the period from 2000 onward). The upper 
panel shows an overall R2 that across estimation periods averaged .96 and 
ranged from .91 to .99 from 2000 onward. “Within” R2 (explained variance 
after demeaning all variables by architecture fixed effects group means) aver-
aged .92 and ranged from .74 to .99. The lower panel, using a logarithmic 

67. One- half  of  the coefficient’s squared standard error was added to the exponentiated 
coefficient to produce an unbiased estimate of  the price relative (the exponentiated coeffi-
cient’s value). See the sources cited in Triplett (2006, 54n41) for details on the rationale for the 
correction. Sergio Correia’s reghdfe Stata command was used to estimate the hedonic regres-
sions, because it removes noninformative singleton observations for dummy variables from the 
regression, because it provides detailed reports on perfectly collinear variables, and because it 
also calculates a “within” R2—that is, an explained variance of the dependent variable after 
demeaning all variables within fixed effect groups (in this case, the processor architecture indica-
tor variables were treated as fixed effects).
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scale, shows that anywhere from one to seven processor architectures were 
being listed for sale as Intel desktop processors during two- month adjacent 
estimation periods over this time frame. The number of observations used in 
the individual hedonic regressions after 1999 ranged from 28 to 190, averag-
ing 82. The average number of processor models per architecture per month 
listed for sale during the post- 1999 period ranged from 4.7 to 24.5, indicative 
of significant historical changes to Intel’s product differentiation strategies 
in marketing desktop processors over time.

Some important substantive points are supported by figure 11.7. First, 
there is substantial variation over time in how important the processor 
design (architecture) dummy variables are in accounting for price varia-

Fig. 11.7 Summary statistics for hedonic regressions
Source: Appendix table 10.A6.
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tion. While the overall explained variation in price in these hedonic regres-
sions remained uniformly high, within relatively narrow bounds (.91 to .99) 
throughout the sample period, the role of  architectural dummies varied 
greatly over different subperiods. “Within” R2 measures how much of the 
variation in price around architecture- specific means is explained by other 
covariates. The “within” R2 coincides exactly with “overall” R2 in the special 
case of their being only one “architecture” fixed effect (i.e., a single common 
constant intercept). The difference between overall and within R2 can there-
fore be interpreted qualitatively as a measure of how important controlling 
for the multiple intercept levels (the processor architecture fixed effects) is 
in a hedonic model explaining price variation.

Figure 11.7 shows that, at times, a substantial share of overall explained 
variation (as much as a difference of .10 to .20 between overall R2 and within 
R2) was accounted for by the processor architecture effects prior to 2003 
and from late 2006 through 2012. Processor architecture effects from 2013 
onward are more modest contributors to explaining price variation, but 
not nil.

As is suggested visually by figure 11.7, within R2 (measuring the role of 
nonarchitectural characteristics in explaining price variation) has a negative 
and statistically significant correlation with the number of different desktop 
processor architectures present on Intel price sheets.68 Not surprisingly, per-
haps, it appears that processor architectural variation is more important in 
explaining price during periods when Intel marketed a larger variety of pro-
cessor architectural designs and less important in periods with less architec-
tural variation. Indeed, the two measures of R2 are virtually identical from 
2003 through 2005, the heyday of the Pentium 4 series and its “Netburst” 
design, when only one or two design families accounted for all Intel desktop 
processors listed on its price sheets (compared with four architectures in 
2002 and as many as seven architectures in late 2006).

Figure 11.8 visualizes the hedonic price indexes produced using these 
models. A dramatic slowing of declines in quality- adjusted price from 2004 
through 2006 is quite apparent, followed by a temporary resumption of a 
somewhat faster rate of decline after 2006 and then another marked slow-
down from 2010 onward.69

68. For the TDP- inclusive hedonic specification for adjacent periods ending after December 
2000, the correlation coefficient between within R- squared and number of processor archi-
tecture dummies used is –.53. I reject the hypothesis that it is equal to zero (p- value is .0000).

69. It is not coincidental that in 2004, the Pentium 4’s architecture hit its clock rate ceiling and 
power dissipation reached maximum limits compatible with inexpensive air cooling systems. 
The rollout of Intel’s next- generation response—the Conroe architecture (two cores on a single 
die at a much lower clock rate but with more instructions per clock processed)—happened 
in mid- 2006. To many industry observers, Intel appeared to be lagging behind its effectively 
duopolist rival AMD, architecturally, in the early 2000s. AMD was first to market with a 64- 
bit architecture and, later, the first single die dual core chip. (AMD had brought its Athlon X2 
processor out in 2005, a full year before Intel’s Core 2 Duo [Conroe architecture] chips.) For 
empirical evidence on AMD’s technological challenge to Intel in the early 2000s, see Nosko 
(2011), Pakes (2017), and European Commission (2009).
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The first four columns in table 11.7 compare my estimated hedonic and 
matched- model price indexes and the BLS PPIs. As expected,70 the matched- 
model geometric mean (Jevons) index price declines are mostly very close 
to the hedonic indexes but generally decline more slowly than those mea-
sured by the hedonic price index based on the same dataset. My estimates 
over comparable earlier time periods are quite similar to the matched- model 
indexes of Aizcorbe, Corrado, and Doms (2003) and to the US producer 
price indexes. Prior to 2004, my Jevons matched- model (geometric mean) 
index and the PPI move quite closely, while my hedonic indexes show a mod-
estly higher rate of decline, as expected. The hedonic price indexes based on 
Intel list prices with and without TDP are virtually identical over the period 
beginning in 2000 through the beginning of 2005.

From 2004 through 2006, both my Jevons and hedonic price indexes 
decline much more slowly than the PPIs, while from 2006 through 2009, my 
Jevons and hedonic indexes fall at rates a little faster than the PPI. From 
2009 to 2010, the Jevons and hedonic bracket the PPI. Finally, from 2010 

70. Since if  there were no entering or exiting processor models (all sampled processor models 
were observed in both time periods) and all hedonic coefficients were the same in the two adja-
cent periods (assumed by the time dummy method), the time dummy hedonic price index would 
be equal to the Jevons price index. See De Haan (2010), equation (23), and Triplett (2006), 55.

Fig. 11.8 Matched- model and hedonic price indexes for Intel desktop processors, 
January 2005 = 100
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through 2014, my hedonic indexes fall more slowly than the PPI, but all 
decline rates are in the low single digits. These are not the only hedonic price 
indexes for Intel processors available over this time span, and below I discuss 
alternative estimates that others have constructed.

Using almost the exact same hedonic regression model,71 I also estimated 
a hedonic index using weekly data on retail internet pricing for desktop 
processor models that I had collected over the same time span. The data 
came from a now- defunct website (sharkyextreme .com) that published the 
minimum weekly price quoted by a selection of national US internet retail-
ers over the period from the end of 2001 through the end of 2010. Similarly,  
I calculated a Jevons index based only on matched models in adjacent peri-
ods. These prices are a relatively limited subset of the much larger set of list 
prices for all Intel desktop processors and presumably are more representa-
tive of lower- end models most popular in the retail marketplace. Generally, 
the pattern over time is similar (steepest declines over 2001–4 and 2006–9 
and slower declines over 2004–6 and 2009–10).

One interesting observation that emerges from these results is that except 
for the period from 2006 through the end of 2007, all the Intel list price 
indexes, including both hedonic and geometric mean matched- model 
(Jevons) indexes, move together in a fairly tight formation. This can be 
seen by comparing the original index (with January 2005 = 100) to rebased 
indexes with January 2010 = 100. (See figure 11.9.) This is consistent with 
2006–7 being a highly atypical period, with many more older, exiting mod-
els (from now obsolete Pentium 4–branded architecture families) and new 

71. With one additional characteristic—a binary “OEM” indicator variable, indicating 
whether the product sold by the retailer came in a “boxed” retail package with heatsink and 
fan or it came in “OEM” packaging without a fan, heat sink, and retail box. Monthly aver-
age prices were calculated from published weekly reports. The published weekly price was the 
reported minimum in a sample of larger internet component retailers.

Table 11.7 Annualized compound rates of change in microprocessor price indexes

Intel OEM list 
prices

Jevons 
matched model  

Intel retail BLS

  
Hedonic 
w/TDP  

Hedonic 
w/o TDP  Hedonic  

Jevons 
matched model  

Microproc 
PPI

1998m9−2001m12 −71.5% −66.2% −64.0% −56.8%
2001m12−2004m4 −49.6% −49.6% −48.9% −40.2% −35.5% −47.1%
2004m4−2006m1 −9.6% −10.1% −10.7% −4.6% −11.1% −25.2%
2006m1−2009m1 −35.4% −40.3% −31.5% −19.9% −24.2% −29.0%
2009m1−2010m11 −13.3% −13.5% −6.2% −15.9% −11.3% −10.7%
2010m11−2014m7 −3.5%  −2.9%  −2.3%      −4.2%

Source: Author’s dataset and calculations, except Microprocessor PPI, from BLS. See appendix table 
11.A3.



Fig. 11.9 Jevons (geometric mean) and hedonic price indexes with alternative  
base periods
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entering models (from its new Core 2 Duo–branded architecture families) 
than has generally been the case for Intel historically, before or after this 
period. The change in Intel’s product design strategies from 2006 through 
2007, in responding to AMD’s earlier technological challenge, has been com-
mented upon by researchers72 and appears to have had impacts that are 
visible in these price indexes.

Although there are substantial differences in the magnitude of declines 
across different time periods and data sources, all the various price indexes 
I have constructed concur in showing substantially higher rates of decline 
in desktop microprocessor price prior to 2004, a stop- and- start pattern after 
2004, and a dramatically lower rate of decline after 2010.

Taken at face value, this creates a puzzle. Even if  the rate of innovation 
had slowed in particular for microprocessors, if  the underlying innovation 
in semiconductor manufacturing technology had continued at the late 1990s 
pace (i.e., a new technology node every two years and roughly constant 
wafer- processing costs in the long run), then manufacturing costs would 
continue to decline at a 30 percent annual rate, and the recent rates of decline 
in processor price just measured fall well short of that mark. Either the rate 
of  innovation in semiconductor manufacturing must also have declined, 
or the declining manufacturing costs are no longer being passed along to 
consumers to the same extent, or both. The semiconductor industry and 
engineering consensus seems to be that the pace of innovation derived from 
continuing feature- size scaling in semiconductor manufacturing has slowed 
markedly. I next examine what other direct evidence is available.

11.3.1.2  Costs

Evidence on Manufacturing Costs. Microprocessors are a semiconductor 
product sold in truly large volumes. The overwhelmingly dominant player 
in this market, Intel, released a slide in a presentation to its stockholders 
in 2012 that supports the narrative of a slowing down in Moore’s law cost 
declines (table 11.8). The figures from Intel’s 2012 Investor Meeting seem 
to show accelerating cost declines in the late 1990s and rapid declines near 
a 30 percent annual rate around the millennium, followed by substantially 
slower declines in cost per transistor after the 45nm technology node (intro-
duced at the end of 2007). As discussed previously, the transition to use of 

72. “Note that in June 2006 there was intense competition for high performance chips with 
AMD selling the highest priced product at just over $1000. Seven chips sold at prices between 
$1000 and $600, and another five between $600 and $400. July 2006 saw the introduction of 
the Core 2 Duo and Fig. 2 shows that by October 2006; (i) AMD no longer markets any high 
performance chips (their highest price chip in October is just over two hundred dollars), and 
(ii) there are no chips offered between $1000 and $600 dollars and only two between $600 and 
$400 dollars. Shortly thereafter Intel replaces the non- Core 2 Duo chips with Core 2 Duo’s.

“Nosko goes on to explain how the returns from the research that went into the Core 2 Duo 
came primarily from the markups Intel was able to earn as a result of emptying out the space of 
middle priced chips and dominating the high priced end of the spectrum.” From Pakes (2017), 
251–54; see also Nosko (2011), 8–9.
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a larger wafer size after the 130nm technology node was accompanied by 
a particularly large reduction in transistor cost at the next node, using the 
larger- size wafers.

11.3.1.3  Other Economic Evidence

Depreciation Rates for Semiconductor R&D. Another innovation metric 
in semiconductors is the depreciation rate for corporate investments in semi-
conductor R&D. As the rate of innovation increases (decreases), the stock 
of knowledge created by R&D should be depreciating more rapidly (less 
rapidly). One recent economic study estimates R&D depreciation rates in a 
number of high- tech sectors, including semiconductors. The authors con-
clude that “the depreciation rate of the semiconductor industry shows a clear 
declining trend after 2000 in both datasets, albeit imprecisely measured.”73 
This is consistent with a slowing rate of innovation.

Semiconductor Fab Lives. Faster (slower) technological change in semi-
conductor manufacturing should presumably shorten (lengthen) fab life-
times. There are no recent studies of economic depreciation rates for semi-
conductor plants and equipment, but the anecdotal evidence on the 200mm 
fab capacity “reawakening” (detailed below) strongly suggests that fab lives 
have increased, consistent with a slowing rate of innovation in semiconduc-
tor manufacturing.

In August 2018, GlobalFoundries (one of four remaining firms that had 
committed to the development of leading- edge logic manufacturing pro-

73. Li and Hall (2015), 13.

Table 11.8 Annualized decline rates for Intel transistor manufacturing cost, 2012

Transistor cost index, 
90nm = 100

Percent transistor cost 
decline rate between 

nodes
Compound annual 

decline rate
Otellini 2012 Otellini 2012 Otellini 2012

Wafer size Wafer size Wafer size

Intro date  Tech node  200mm  300mm  200mm  300mm  200mm  300mm

1995q2 350 1,575.35
1997q3 250 1,033.14 −34.4 −17.1
1999q2 180 616.10 −40.4 −22.8
2001q1 130 311.09 −49.5 −32.3
2004q1 90 100.00 −67.9 −31.5
2006q1 65 48.87 −51.1 −30.1
2007q4 45 27.54 −43.6 −27.9
2010q1 32 17.69 −35.8 −17.9
2012q2  22    11.23    −36.5    −18.3

Source: Otellini (2012), digitized using WebPlotDigitizer. Intro dates: 130nm and up from http:// www 
.intel .com /pressroom /kits /quickreffam .htm. < 130nm from ark .intel .com.
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cess technology) announced that it was abandoning its effort to move to 
its next targeted technology node (7nm) and would stick instead with its 
current- generation technology: “‘The lion’s share of our customers . . . have 
no plans for’ 7nm chips. Industry- wide demand for the 14/16 node was half  
the volume of 28nm, and 7nm demand may be half  the level of the 14/16nm 
node, Caulfield said. ‘When we look out to 2022, two- thirds of the foundry 
market will be in nodes at 12nm and above, so it’s not like we are conceding 
a big part of this market,’ he added.”74 This left only three remaining semi-
conductor manufacturing firms (Samsung, Intel, and TSMC) developing 
sub- 10nm manufacturing technology going forward into 2019.

A slowing pace of innovation in semiconductor manufacturing was even 
undeniable at Intel. Intel had introduced its 14nm technology node back in 
2014 but ran into difficulties bringing its next- generation 10nm technology 
to market. In August 2018, Intel acknowledged that it was now delaying 
volume manufacturing of 10nm technology products until late 2019, over 
five years after its last technology node (i.e., almost triple its previous two- 
year “tick- tock” cadence between new technology nodes) and almost three 
years after its initial projection (see table 11.9 below).75

Personal Computer Replacement Cycles. One reason for businesses and 
consumers replacing computers more frequently (less frequently) is if  the 
rate of  innovation in key components in computers, like microproces-
sors, increases (decreases), so performance improvements associated with 
replacement are more (less) economically compelling. While published stud-
ies of PC replacement cycles are scarce, Intel monitors replacement cycles 
for PCs, a major market for its desktop processors. In 2016, Intel CEO Brian 
Krzanich noted that PC replacement cycles had extended from four years, 
the previous average, to five or six years, the current average.76 This, again, 
is consistent with a slower rate of innovation.

11.4  Is Moore’s Law Still Alive? Intel’s Perspective in Microprocessors

The most significant evidence against any current slowdown in semicon-
ductor manufacturing cost reduction from Moore’s law had come from Intel. 
Fairly recent Intel statements about its manufacturing costs had been the 
primary factual evidence within the semiconductor manufacturing commu-
nity countering the proposition that Moore’s law is ending. Unfortunately, 
Intel had not been consistent in the data it had presented publicly on this 
issue. Since late 2017, Intel appears to have refrained from releasing any new 
public information on its manufacturing costs.

The problem with Intel’s previous statements is illustrated by figure 11.10 

74. Merritt (2018); see also S. Moore (2018).
75. Rogoway (2018); see also Cutress and Shilov (2018).
76. Krzanich (2016).
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and table 11.9, which contrast two exhibits on manufacturing costs per tran-
sistor that Intel had presented at its annual investor meetings—one in 2012 
(by then- CEO Paul Otellini) and one in 2015 (by its top manufacturing 
executive, Bill Holt; see figure 11.2). Some version of the bottom pane in 
figure 11.10 had been the primary factual evidence in Intel’s assertions that 
Moore’s law continues at its historical pace. The graphics in figure 11.10 have 
been digitized77 and recorded in table 11.9, then rebased to 100 at the 90nm 

77. Using http:// arohatgi .info /WebPlotDigitizer/.

Fig. 11.10 Intel transistor manufacturing costs, 2012 vs. 2015 versions
Source: Otellini (2012); Holt (2015); Intel.
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technology node. Compound annual decline rates have been calculated in 
this table using quarterly introduction dates for the first processors manu-
factured by Intel at that technology node.

The figures presented by Intel to shareholders in 2012 seem to show rapid 
declines in the 30 percent range around the millennium, then substantially 
slower declines in cost per transistor after the 45nm technology node (i.e., 
after 2007). In contrast, a more recent presentation by Intel in 2015 restates 
the more distant history to show very much slower declines in cost per tran-
sistor at earlier technology nodes. Intel has a stock disclaimer that numbers it 
presents are subject to revision, but in this case the revisions to the historical 
record are quite dramatic.

The 2015 graphic substantially revises what in the semiconductor industry 
would be considered the distant historical past (i.e., five technology nodes 
back from the 22nm node that was in production at the time the earlier 2012 
presentation was given). Intel’s most recent version of its history now shows 
transistor costs declining at 12 percent to 18 percent annual rates after the 
millennium rather than the 30 percent annual declines it showed to its inves-
tors in 2012. Its transistor cost decline rate accelerates, rather than slowing 
further, at the most recent couple of technology nodes.

It now seems likely that one important reason for Intel’s restatement of its 
historical cost declines in 2015 was a definitional change in technical infor-
mation made public by Intel. Instead of reporting transistor density (tran-
sistors per die area) based on actual die area and the number of transistors 
processed on an actual microprocessor die (which allows one to calculate 
an actual average of transistors fabricated per die area), Intel apparently 
began using an entirely theoretical measure of area per designed transistor 
that appears not to take into account the increasingly relaxed (from design 
rules) layout of  transistors in actual die designs, imposed in part by the 
need to allow for additional area between transistors needed to fabricate 
increasingly complex interconnections.78 (For die designs released prior to 
2010, Intel had previously disclosed both actual die size and the number of 
transistors processed on the die for many of its chip models.)

Most interestingly, assume Intel’s 2015 forecast of 10nm transistor manu-
facturing costs was correct and simply postpone its use in shipped proces-
sors from 2017 by an additional two years (2019 was the actual ship date 
for Intel’s first commercial 10nm processors). This delay slows the annual 
decline rate for its transistor manufacturing costs from 21 percent to 9.7 per-

78. See Flamm (2017, 34) for a brief  explanation of this issue. Intel’s latest redefinition of its 
publicly disclosed “transistor density metric” is entirely theoretical: .6 × (transistors in a NAND 
logic cell / area of a NAND logic gate) + .4 × (transistors in a complex scan logic flip- flop cell /  
area of complex scan logic flip- flop cell) = # transistors/mm2. Such a definition does not allow 
for the practical effects of relaxation (from theoretical design rules) in actual cell layout needed, 
for example, to accommodate metal interconnections between logic cells. On Intel’s new transis-
tor density definition, see Bohr (2017).
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cent and implies a marked attenuation of Moore’s law–driven cost declines, 
consistent with the other evidence discussed previously.

11.4.1  An Intel Exception?

Interpreting the recent economic history of Moore’s law, how can Intel’s 
description of  accelerating declines in manufacturing cost per transistor 
(as recently as September 201779) be consistent with reports from other chip 
manufacturers, and their customers, of stagnating cost declines or even cost 
increases? Increasingly important scale economies provide one plausible and 
coherent explanation.

Scale economies at the company level are obvious. The cost of a produc-
tion scale semiconductor fab has increased dramatically at recent technology 
nodes, and only the very largest chip IDMs (integrated device manufac-
turers) can depend on their internal demand to justify a fab investment. 
Intel made this case quite accurately at its 2012 Investor Meeting, predicting 
that only Samsung, TSMC, and itself  would have the production volumes 
required to economically justify investment in leading- edge fab technol-
ogy for logic chips by 2016.80 (Intel overlooked GlobalFoundries, which, by 
acquiring IBM’s semiconductor business in 2015, substantially increased its 
scale.)81 Both TSMC and GlobalFoundries are “pure” foundries and achieve 
their volumes entirely by aggregating the demands of external chip design 
customers.

Many US- based semiconductor companies have exited chip manufac-
turing (e.g., AMD, IBM) or stopped investing in leading- edge fabrication 
while continuing to operate older fabs (Texas Instruments pioneered this 
so- called fab- lite strategy). Other “pure play” US foundries (e.g., TowerJazz, 
On Semiconductor) operate mature foundry fabs that remain cost effective 
for lower volume chips. Long- established American chip companies, such 
as Motorola, National Semiconductor, and Freescale, disappeared in the 
course of mergers or acquisitions that continue to reshape the industry.

This consolidation in leading- edge IC fabrication is global. In Europe, 
there are no manufacturers currently investing in leading- edge technology.82 
In Asia, there are arguably only Toshiba in Japan, Samsung and Hynix in 
Korea, and foundry TSMC in Taiwan. Firm- level scale economies explain 

79. See Smith (2017), slide 6, “Is Moore’s Law Dead? No!” Interestingly, since September 
2017, Intel has not—to the best of my knowledge—published a claim that its manufacturing 
cost per transistor continues to decline at rates exceeding previous historical decline rates or is 
even falling at new technology nodes.

80. Krzanich (2012), slide 19.
81. What constitutes leading- edge technology in memory chips is somewhat more nebulous, 

and several large memory specialist IDMs (Hynix, Toshiba, Micron) might also arguably be 
categorized as being near the leading edge. Global Foundries has since announced that it is 
dropping out of future development of new manufacturing technology nodes.

82. The last remaining leading- edge chipmaker headquartered in Europe, ST Microelectron-
ics, announced in 2015 that it will be relying on foundries for future advance manufacturing 
needs.
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why fewer firms can afford leading- edge fabs but can’t explain why Intel’s 
cost per transistor would have declined much faster than that at other pro-
ducers still investing in leading- edge fabs, particularly the foundries. It’s 
possible that Intel has unique, proprietary technological advantages. A more 
mundane explanation is that product- level scale economies drive these dif-
ferences.

In particular, there has been an exponential increase in the costs of the 
ever more- complex photomasks needed to pattern wafers using lithography 
tools—a set of masks cost $450,000 to $700,000 back in 2001, at 130nm, 
compared with a wafer production cost of $2,500 to $4,000 per wafer.83 At 
14nm (updating wafer- production costs using Intel costs in table 11.9 implies 
150 percent increases), wafer production cost would be $6,225 to $9,960. By 
contrast, costs for a mask set at 14nm are estimated to run from $10 million 
to $18 million, a 22-  to 40- fold multiple of 130nm mask costs!27 Lithography 
cost models suggest that with 5,000 wafers exposed per photomask set (a 
relatively high- volume product at recent technology nodes), mask costs per 
unit of output will exceed both average equipment capital cost and average 
depreciation cost. With smaller production runs for a product, photomask 
costs become the overwhelmingly dominant element of silicon wafer–pro-
cessing cost at leading- edge technology nodes.84

Intel, with the largest production runs in the industry (perhaps 300 to 400 
million processors in 201485), has huge volumes of wafers to amortize the 
cost of its masks and is certainly benefitting from significant economies of 
scale. A single Intel processor design (and mask set) is the basis for scores 
of different processor models sold to computer makers. Processor features, 
on- board memory sizes, processor speeds, and numbers of  functioning 
cores can be enabled or disabled in the final stages of  chip manufacture, 
and manufacturing process parameters can even be altered to shift the mix 
of functioning parts in desired ways.86

For Intel, this creates average manufacturing costs per chip that are vastly 
smaller than costs for fabless competitors running much smaller product vol-
umes using the same technology node at foundries. Foundries recoup those 
much higher per- unit mask costs through one- time charges or through high 
finished wafer prices charged to its fabless designer- customers. The customer 

83. Both 130nm mask and wafer cost estimates were presented by an engineer in Intel’s 
in- house Mask Operation unit (Yang 2001). Mask set cost estimates at 14nm are taken from 
Black (2013), slide 6.

84. Lattard (2014), slide 6.
85. Based on the fact that Intel publicly revealed that it had shipped 100 million processors 

a quarter, a record- setting event, in the third quarter of 2014. Intel (2014), 1.
86. When chips are tested after manufacture, the speed, power consumption, and functioning 

memory and feature characteristics are used to “bin” the processor into one of many different 
part numbers. As process yields improve over time with experience, new part numbers with 
faster speeds or lower power consumption are introduced. VanWagoner (2014) is a concise 
discussion by a former Intel manufacturing engineer of how a large variety of processor models 
are manufactured from a single unique processor design.
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directly bears the much higher design costs per unit if  the latest technology 
node is chosen for the product.

Exponentially growing design and mask costs at leading- edge nodes now 
make older technology nodes economically attractive for lower- volume 
products. Higher variable wafer- processing costs per transistor at older 
nodes are more than offset by much lower fixed design and photomask costs.

Such scale- driven cost disadvantages are increasingly pushing low- volume 
chip production to older chip- making technology running in depreciated 
fabs. This is reshaping the economics of  chip production, extending the 
economic lives of aging fabs. Older 200mm wafer fab capacity is now grow-
ing rapidly, forecast to expand almost 20 percent by 2020!87

Historically, this is unprecedented. The additional 200mm capacity com-
ing into service cannot use more- advanced process technologies designed for 
300mm wafer- processing equipment. Much lower fixed design and photo-
mask costs with older technology are the primary factor making it economi-
cally attractive to fabricate low- volume products. As inexpensive computing 
penetrates into everyday appliances, “Internet of Things” chip designers are 
generating low- volume foundry orders for chip designs tailored to market 
niches, filling these old fabs with chip orders that don’t require the greatest 
possible density.

Is Intel an exceptional case in the semiconductor industry? Is its portrait 
of recently accelerating manufacturing cost declines reflected in the actual 
behavior of its product prices? The problem is, Intel does not disclose data 
on its product pricing to either the public or government statistical agen-
cies, so analysis of what an economist would call a quality- adjusted price 
is quite difficult.

Alternative Hedonic Price Indexes for Microprocessors. Apart from Intel’s 
pre- 2018 declarations of  optimism, a second piece of  evidence arguing 
against a slowdown in Moore’s law is a study by Byrne, Oliner, and Sichel 
(2018), which also utilizes the same list price data from Intel (that I used) in 
making its argument. Using only the first four quarters of prices for recently 
introduced models, they run an annual time dummy hedonic price model 
over adjoining pairs of years and find quality- adjusted prices declining at 
the same rate in 2000–4 as in 2009–13, at about a 42 percent annual rate of 
decline, and an even more impressive 46 percent decline over 2004–9.88 This 
is higher than any of the rates shown for 2004–9 and very much higher than 
the decline rates post- 2009 in table 11.7.

The key differences between my hedonic price indexes and the Byrne, 
Oliner, and Sichel (2018) hedonic price indexes are that (1) Byrne, Oliner, 
and Sichel use only a subset of the desktop processors for which their chosen 
software benchmark scores are available (vs. all desktop processors listed on 

87. Dieseldorff (2016).
88. Ibid. Byrne, Oliner, and Sichel (2018) use only the first four quarterly average prices 

for individual processors and a single explanatory characteristic—performance on a software 
benchmark—in their hedonic regression.
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Intel’s current price sheets); (2) Byrne, Oliner, and Sichel include quarterly 
average list prices for individual processors only during the first four quar-
ters after their introduction onto the market (vs. using all available monthly 
average list prices); and (3) Byrne, Oliner, and Sichel use only a single pro-
cessor characteristic (geometric mean of benchmark software performance 
scores89) in their hedonic model (vs. using a much larger set of processor char-
acteristics that I argue is likely to be relevant to both demand and unit cost).

Sample Selection: SPEC Benchmark vs. No SPEC Available. Byrne, Oliner, 
and Sichel (2018) acknowledge that there are some differences between chips 
that have benchmark (SPEC) scores available and chips without (SPEC 
scores are primarily used to compare processor performance in servers and 
technical computing workstations, which generally use higher- end proces-
sors than the consumer market).90 They report that a matched- model price 
index using only the SPEC chips generally falls faster than an index using 
the non- SPEC chips in all time periods. They also report that their matched- 
model indexes produce a qualitative pattern in price declines over time that 
is very similar to what is shown in table 11.7 for all Intel desktop processors. 
Thus these results suggest that the restriction of the price sample to higher- 
performance processors with SPEC scores may bias estimates of quality- 
adjusted price declines toward higher rates of price decline but is not respon-
sible for the very different qualitative behavior over time (relatively constant 
vs. dramatic reductions in rates of decline after 2004).

First Four Quarters Only vs. All Prices. Byrne, Oliner, and Sichel (2018) 
observe that individual Intel processor list prices very rarely change over 
time on price sheets after 2011, in contrast to the prior decade. They identify 
two scenarios they believe may explain this. In one scenario, “Intel offers 
progressively larger [but unobserved] discounts to selected purchasers as 
models age,”91 producing a measurement error for older processors but not 
recently introduced models. This would complicate estimation of hedonic 
price indexes using list price data. “The introduction period index would be 
unbiased even if  there are unobserved discounts at the time of introduction 
provided that these discounts do not vary systematically over time or across 
models,”92 while an index using all periods would presumably be biased.

Alternatively, they argue that even if  the posted list prices are actual trans-
actional prices, the older chips must be getting progressively more expensive 
in quality- adjusted terms if  their nominal prices do not change, so rela-
tive demand for these models must be falling: “By focusing on prices [only] 

89. They take the geometric mean of processor performance on industry consortium SPEC’s 
benchmark scores on single program integer and floating- point software test suites. Their pro-
cedure for splicing the two or three distinct sets of benchmarks used over their sample period 
(SPEC2000 and SPEC2006, and possibly SPEC95) over their 2000–2013 sample period is not 
explicitly described. See figure 11.4 above for evidence that both levels and slopes of  these 
benchmarks change over time when they are compared.

90. Byrne, Oliner, and Sichel (2018), table 2.
91. Byrne, Oliner, and Sichel (2018), 690.
92. Ibid.
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at the beginning of each model’s life cycle, a regression that applies equal 
weights to all observations avoids over- weighting models whose quantities 
have dropped off.”93 These arguments are used to justify using only prices 
observed during the first four quarters after a model’s introduction, discard-
ing the majority of their sample of Intel list prices.

However, in a recent study, Sawyer and So (2017) replicate the substance 
of the Byrne, Oliner, and Sichel (2018) results over the period after 2009 in a 
sample utilizing only “early” (first four quarters after introduction) Intel list 
prices.94 However, when processor characteristics are added to SPEC scores 
as explanatory covariates, Sawyer and So show that standard statistical tests 
decisively reject the exclusion of processor characteristics from a hedonic price 
equation that also includes SPEC scores.95 When these other processor charac-
teristics are not excluded, estimates of recent decline rates for quality- adjusted 
processor prices over time are dramatically smaller than those estimated by 
Byrne, Oliner, and Sichel.96 We can reasonably conclude that it is the restric-
tion of hedonic characteristics to benchmark scores only, and not the restric-
tion to early prices, that is producing the pattern of unremittingly high price 
declines found in Byrne, Oliner, and Sichel over the post- 2004 time period.

Sawyer and So (2017) also note that Intel processors are typically sold in 
their largest volumes only after the first four quarters in which they are avail-
able for sale.97 Intel’s own economic expert made this point in its antitrust 
case before the European Commission, noting that processor production 
begins with a “ramp- up” phase that “begins with low volumes and typically 
lasts three to five quarters.”98 Therefore, using price data for a processor 
only during the first four quarters following its introduction likely would 
place relatively high weights on products actually being sold in relatively 
low volumes compared to other products.

It seems reasonable to suggest that this may be a real- world example of 
omitted variable bias, akin to that created in the last column of the perfect 
collinearity simulation in table 11.6. However, Byrne, Oliner, and Sichel 
(2018) articulate some real concerns about use of Intel list price data to mea-
sure processor pricing trends. They note “a sharp change over the course of 
the 2000s in the life- cycle properties of Intel’s posted prices . . . In the early 
period prices fell steeply over a model’s life cycle. However, by 2011–2012, 
price paths are flat or nearly so, with only a few instances of sizable price 
declines.”99 These observations are spot on.

Figure 11.11 shows the fraction of incumbent (i.e., omitting newly intro-

93. Ibid.
94. Sawyer and So (2017), 8.
95. Ibid., 11.
96. Ibid., 10.
97. Ibid., 14–15.
98. European Commission (2009), 326.
99. Byrne, Oliner, and Sichel (2018), 687.
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duced products) desktop processor prices that changed from one list price 
sheet to the next one issued, from 1998 through mid- 2014. Through mid- 
2014, it is evident that Intel’s propensity to alter list prices on existing pro-
cessors diminished over time, though it never entirely stopped adjusting list 
prices on its existing product line through mid- 2014. In 2008 and 2009, for 
example, there were price sheets on which anywhere from 35 percent to 40 
percent of already introduced desktop processor prices changed from the 
previous sheet.100 Since 2014, however, existing processor prices rarely if  ever 
change from one price sheet to the next.

Indeed, if  one had to choose a date based on this chart for a climacteric in 
Intel pricing practices, 2010—the year after its antitrust cases were settled—
would seem a promising choice. That year also apparently coincides with 
the beginning of a determined campaign by Intel to raise its profit margins, 
an effort that seems to have had some success (aided at that point by a 
greatly diminished competitive threat from its historical rival, AMD; see 
figure 11.12). Raising its average sales prices (ASP) was a key element of 
this strategy. (See figure 11.13.)

In earlier versions of their research, Byrne, Oliner, and Sichel (2018) focused 
on the evident change in Intel pricing strategies during the first decade of 

100. Byrne, Oliner, and Sichel (2018), figure 4, show a similar set of patterns over time in the 
share of Intel desktop processors with a list price decline within four quarters of introduction.

Fig. 11.11 Fraction of Intel desktop processor prices changing from one price list 
to the next
Source: Author’s tabulation from Intel list price dataset.
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the 2000s as the motivation for restricting their Intel prices to “early” initial 
processor prices.101 Their hypothesis, that Intel may have changed its pricing 
strategy during the first decade of the new millennium, actually seems quite 
plausible given that the European Commission launched a major antitrust 
case against Intel over its processor price discounting practices during the 
2002–6 period, culminating in a preliminary decision against Intel in 2007 
and a final decision in 2009.102 A related private US antitrust case by AMD 
was filed and then settled in 2009.

The Byrne, Oliner, and Sichel (2018) scenario of  “progressively larger 
discounts to selected purchasers as models age” is difficult to test, since no 

101. In the earlier 2017 Federal Reserve working paper version of their study, BOS speculated 
that “it is possible that Intel actually changed its life- cycle pricing strategy to extract more 
revenue from older models, with the posted prices reflecting this change.” Byrne, Oliner, and 
Sichel (2017), 8.

102. See European Commission (2009). The same antitrust concerns also resulted in govern-
ment antitrust actions in Japan and Korea and by the US Federal Trade Commission. Acting 
on an appeal by Intel, the European Court of Justice sent the EU case back to a lower court for 
further consideration in 2017, so this seems destined to be litigated for years to come.

Fig. 11.12 Intel’s post- 2010 gross margin elevation objective
Source: Smith (2015).

Fig. 11.13 Intel’s 2015 explanation to its shareholders for success in maintaining 
high profit margins
Source: Smith (2015).
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data on Intel transaction prices for its wholesale sales to large buyers are 
publicly available. We do know that evidence produced in the EU antitrust 
investigation seems to show that even the newest chips sold to large original 
equipment manufacturer (OEM) customers were heavily discounted from 
list prices prior to 2006, at times with conditional exclusivity rebates that 
were not publicly reported by Intel or its customers.103

However, there is one public source of Intel transactional price data that 
is real and observed and does not require any assumptions about unob-
served behavior. Retail prices in the electronics industry are linked to whole-
sale prices, directly and indirectly. Most directly, the very largest retailers 
can purchase boxed processors directly from Intel or, like smaller retailers, 
from distributors. (Approximately 20 percent of Intel processors in recent 
years, by volume, were sold directly as boxed processors, primarily to small 
computer makers and electronic retailers.104) Computer OEMs, electron-
ics system manufacturers, and electronic parts distributors who purchase 
processors directly from Intel can resell excess inventories to other distribu-
tors, resellers, and retailers, and these actually show up on the retail market 
labeled as “OEM package” (vs. “Retail Box” packaging).

Both boxed and OEM- packaged processors are sold by retailers, dis-
tributors, and brokers with a price that is advertised publicly and is directly 
observable in the marketplace. (The retail data used in constructing my 
matched- model price index include both OEM and retail- packaged chips 
sold by internet retailers.) The retail data used in table 11.7 also seem to 
clearly point to a deceleration in microprocessor price declines after 2004.

It seems reasonable to presume that retail transaction prices (which are 
observable in the market), at least in the long run, should have some stable 
stochastic relationship to wholesale producer transactional prices. Indeed, 
at least one previous study found such linkages between OEM contract 
transactional prices and retail prices for high- volume chips sold in the semi-
conductor industry.105

There are market- driven economic reasons behind this linkage. Both 

103. See European Commission (2009). See also SEC v. Dell Inc. et al. Complaint (US 
Securities and Exchange Commission 2010), which asserts that unreported exclusivity rebates 
given by Intel to Dell had climbed to about three- fourths of Dell’s operating income by 2006.

104. “Although it sells microprocessors directly to the largest computer manufacturers, such 
as Dell, Hewlett Packard, and Lenovo, its Channel Supply Demand Operations (CSDO) orga-
nization is responsible for satisfying the branded boxed CPU demands of Intel’s vast customer 
network of distributors, resellers, dealers, and local integrators. Intel’s boxed processor ship-
ment volume represents approximately 20 percent of its total CPU shipments . . . Processors 
ship from CW1 to one of four CW2 ‘boxing’ sites, which kit the processors with cooling solu-
tions (e.g., fan, heat sink) and place them in retail boxes and distribution containers. Such 
boxing sites are typically subcontracted companies that ship the boxed products to nearby 
Intel CW3 finished- goods warehouses where they are used to fulfill customer orders. Channel 
customers range in size and need; they are mostly low- volume computer manufacturers and 
electronics retailers” (Wieland et al. 2012).

105. See Flamm (1993) for a study documenting linkages between retail prices and OEM 
contract prices for DRAM memory chips.
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semiconductor manufacturers and their OEM customers sell their excess 
inventories of chips to brokers and distributors during industry downturns, 
pushing small buyer spot prices down in distributor and retail sales channels 
as excess OEM inventories of chips are absorbed in those sales channels. In 
tight markets, conversely, when semiconductor manufacturers are capacity 
constrained, wholesale contract prices to large OEMs rise. To meet surg-
ing demand, OEMs may even try to purchase additional volumes of chips, 
beyond the volumes negotiated in contracts with chip manufacturers, in 
retail and distribution markets. As both large OEMs and smaller buyers 
compete fiercely over the remaining unallocated output, upward pressure 
on retail and distributor prices is felt. In short, both direct and indirect 
linkages between small buyer (retail and distributor) markets and large 
buyer (contracts with OEMs) markets, as well as arbitrage across distribu-
tion channels, would lead an economist to expect to observe a structural 
relationship between observed retail processor prices and unobserved large 
OEM wholesale prices.

In a still earlier version of their research, Byrne, Oliner, and Sichel (2015) 
had speculated that the change in Intel pricing behavior (resulting in a sys-
tematic change in the relationship between Intel list prices and unobserved 
OEM contract prices) may have occurred after 2006.106 This is actually an 
interesting and plausible choice of dates for a change in Intel pricing behav-
ior, since it coincides approximately with the end of the exclusivity rebates 
that had been the subject of the government and private antitrust actions 
mentioned earlier. There is also a significant drop in the maximum frac-
tion of Intel list prices changing between adjacent price sheets evident after 
2006 visible in figure 11.11 (the last occasions on which 60 percent of prices 
for existing processors were changed at the end of 2006 and early 2007). If  
there was a structural shift in Intel pricing practices that caused list prices to 
diverge more sharply from actual transactional prices after 2006, we might 
then also expect to see a change in the relationship between movements in 
observed transactional prices in the retail market and Intel list prices after 
2006. This is testable using observational data.

I explored the possibility that there was some detectable change in the 
relationship between Intel list (posted wholesale) prices and observed retail 
prices after 2006 by constructing a panel of monthly observations on average 
retail price and posted list price covering 163 distinct Intel desktop processor 
models sold by internet retailers over the years 2000 through 2010.107 I allow 
for model fixed effects (which permits a particular low- end Celeron model, 
for example, to be related to Intel list price with a different retail margin 

106. “By 2006, this pattern had completely changed; the posted price of a specific model 
tended to remain constant, even after a new, higher performance model became available at a 
similar price” (Byrne, Oliner, and Sichel 2016, 9).

107. This is the same sharkyextreme .com data I previously used to construct Jevons and 
hedonic retail price indexes.
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than a high- end Core i7 model). The model that I estimated specified the 
log of retail price as

ln(Rit) =  ai + b ln(Iit) + c Ageit + d OEM + e After2006 + f  After2006  

× ln(Iit) + g After2006 × Ageit + uit,

with Rit as an observation on average retail price for model i in month t; 
Iit as the average posted Intel list price in a month in which list price had 
been posted at least once; Ageit as the number of elapsed months since the 
month the model’s price had been first posted on a published Intel price 
sheet; After2006 as a binary indicator variable with value of 1 in 2006 and 
thereafter and 0 before; OEM as a binary indicator for whether the product 
sold was the retail boxed version or the bare chip in OEM packaging; and 
uit as a random disturbance term. If  post- 2006 transaction prices reflect 
age discounts from Intel list prices that pre- 2006 prices did not, we would 
expect to find a statistically significant shift coefficient on the interaction of 
After2006 with Age.

Table 11.10 shows the results of estimating this model.108 The After2006 
shift variable and all of its interactions, including interactions with proces-
sor model Age, are close to zero and statistically insignificant individually 

108. Robust standard errors clustered on processor models are shown in figure 11.8.

Table 11.10 Fixed effects model of log retail price for Intel desktop processors

(Full model) (Constrained model)
  lp_ret  lp_ret

Log Intel Tray Price 0.763*** 0.768***
(15.37) (17.93) 

OEM dummy −0.0497*** −0.0496***
(−6.70) (−6.77) 

Age −0.00676*** −0.00582***
(−3.70) (−4.91) 

After2006 dummy 0.0204 
(0.13) 

After2006 × age 0.00162 
(0.83) 

After2006 × log Intel Tray Price −0.0108 
(−0.39) 

Constant 1.347*** 1.303***
(4.87) (5.55) 

N 1,580 1,580 
R2 0.987 0.987 
Adj. R2  0.986  0.986 

Notes: t statistics in parentheses. * p <.05, ** p < .01, *** p <.001.
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and jointly.109 The relatively flatter trajectories over time for Intel list prices 
after 2006 are mirrored in the behavior of flatter retail price trajectories for 
the same chips.

Therefore, based on the only evidence on actual transaction prices that 
is publicly available—that is, advertised retail prices from internet- based 
vendors—there is no evidence of some structural change occurring after 
2006 in the relationship between observed Intel list prices and observed retail 
market prices. Of course, this does not directly prove that there was no change 
in the relationship between Intel list prices and (unobserved) discounted 
OEM contract prices for processors, but it certainly weighs against it.

Figure 11.11 and our earlier discussion suggests that 2010–11 is another 
candidate time period in which to search for a shift in Intel pricing practices. 
Unfortunately, the retail data analyzed in table 11.10 do not extend past 
this date.

SPEC scores vs. chip characteristics. As previously remarked, Sawyer and 
So (2017) have shown that the Byrne, Oliner, and Sichel (2018) results show-
ing no slowdown in quality- adjusted Intel processor price declines since 2000 
are not the result of using only “early” Intel list prices but instead are driven 
primarily by use of SPEC benchmark scores as the sole characteristic in a 
hedonic model in lieu of a more extensive set of chip characteristics.

The use of SPEC scores instead of actual chip characteristics is based on the 
argument that direct performance measures are easier to get right than relevant 
chip characteristics. But this argument overlooks three fundamental reasons 
why chip characteristics should still be included in a hedonic price equation.

First, there is a computer architecture literature that tells us that bench-
mark scores of a CPU on any given task should be well explained by a small 
set of chip characteristics, including numbers of cores and threads, com-
puter architectural design, chip clock rate, and on- chip memory cache sizes. 
This literature actually identifies the chip characteristics that are relevant 
and even uses them to model computer CPU performance out of sample.110 
As I next show, scores on various SPEC processor benchmarks are almost 
perfectly predicted by a linear function of the small set of chip characteris-
tics that the computer design literature predicts are its determinants.

Second, economics tells us that the characteristics that belong in a hedonic 
price equation are there because they are relevant to user demand and that 
they have an additional effect on price if  they alter supplier marginal cost.111 

109. The Wald F(3,162) test statistic for the joint hypothesis that all After2006 terms were 
zero was .8 and the p- value .49.

110. Hennessey and Patterson (2003), in the third edition of their classic computer architec-
ture textbook (59–60) do exactly this to compare the Pentium III with a Pentium 4 operating 
at the same clock rate.

111. Pakes (2003, 1581, equation 3) notes that the hedonic price function can be interpreted 
as the sum of the expected marginal cost, conditional on characteristics, and expected markup 
(derived from the demand function), conditional on characteristics. The key point is that the 
product characteristics are arguments in the separate cost and demand function terms in the 
hedonic price equation.
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At best, software benchmark scores might correctly serve as a perfect sum-
mary measure of quality perceived by users on the demand side. But there is 
no reason, technological or economic, why a measure of chip performance 
relevant to demand should also perfectly capture the separate effects of 
underlying characteristics that determine performance on chip cost. Omit-
ting variation in processor characteristics that affects chip cost will induce 
omitted variable bias in the hedonic coefficient estimates if  the omitted char-
acteristics’ effects on cost are correlated (but not perfectly collinear) with the 
included benchmark scores.

That is, assume for the sake of argument that the mix of user demands 
for various types of  computer applications was fixed over time and that 
processor performance on this fixed- weight mix of computer applications 
was correctly captured in some SPEC benchmark. Even with the heroic 
assumption that this aggregated benchmark correctly captured everything 
relevant to chip quality on the demand side (and it is clear it does not112), 
there is no plausible technological or economic reason why variations across 
chip models in marginal production costs related to chip characteristics that 
determine benchmark scores should be perfectly mirrored by variation in 
SPEC benchmark scores.

Indeed, the computer architecture literature teaches us that a variety of 
chip characteristics can affect performance and that, therefore, the same 
SPEC score can potentially be produced with diverse, nonunique com-
binations of  numbers of  cores, threads, cache memory, clock frequency, 
and so on. In fact, if  we look at actual SPEC scores, multiple distinct chip 
models can produce approximately the same score. But variation in each 
of these chips’ characteristics—cores, threads, on- chip memory, and clock 
frequencies—may have very different impacts on production cost for the 
processor compared with impact on SPEC scores.

Third, if  benchmark scores are determined by chip characteristics, using 
chip characteristics directly in the hedonic equation—instead of, or in 
addition, to a single benchmark score—effectively allows coefficients in the 
hedonic equation to change to mirror changes in the average mix of tasks 
run by computer users over time. Use of a single benchmark or fixed- weight 
index of benchmarks effectively assumes the mix of tasks relevant to perfor-
mance for users is fixed over time.113

112. Since power draw minimization, graphics, and hardware virtualization capabilities 
clearly are desirable to large subsets of computer users yet will have no direct impact on SPEC 
scores if  missing or disabled in a processor.

113. That is, assume we have two benchmarks, b1 and b2, and two processor characteristics, 
c1 and c2. Assume b1 = a1 c1 + a2 c2, while b2 = e1 c1 + e2 c2. Assume users in the aggregate 
run b1 applications 50 percent of the time and b2 applications the other 50 percent. Then we 
can represent performance on the “average market workload” with a performance index that 
looks like .5 b1 + .5 b2, or equivalently, .5 (a1 c1 + a2 c2) + .5 (e1 c1 + e2 c2) = [.5 (a1+e1)] c1 
+ [.5 (a2 + e2)] c2. That is, the benchmark index is equal to a simple linear function of the two 
characteristics. Now if  the weights of b1 and b2 change to 25 percent and 75 percent on the 
new “market workload,” workload performance will be incorrectly captured by the original 
performance index (50 percent weights) even if  scaled by some arbitrary constant. However, 
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For all these reasons, use of the SPEC score as the sole characteristic in 
a hedonic price equation is not a highly plausible economic assumption. In 
addition, because SPEC scores are only available for the subset of Intel desk-
top processors used by OEMs in servers, the use of SPEC scores in a desktop 
processor hedonic price regression will considerably reduce sample size com-
pared with statistical models using chip characteristics but not SPEC scores. 
In the Intel list price data, the number of Intel desktop processors with SPEC 
scores available for analysis is a fraction of all Intel desktop processors with 
list prices available in any time period. When using other publicly available 
retail or distributor desktop processor price data, an even larger fraction of 
the available data may not have SPEC scores available.114

To support this point, I next demonstrate that SPEC processor bench-
mark scores are almost perfectly predicted by a small number of underlying 
chip characteristics and provide little or no additional information. In mak-
ing this claim, I note that I make use of a set of processor microarchitec-
ture dummy variables in the set of chip characteristics used. Neither Saw-
yer and So nor Byrne, Oliner, and Sichel (2018) use processor architecture 
dummy variables (which I have shown make an important contribution to 
the explanatory power of a hedonic price model) in the set of characteristics 
they employ when estimating a chip characteristic–based hedonic model. 
It is quite possible that adding a software benchmark score to a set of chip 
characteristics that excludes the architectural dummies has the effect of 
capturing much of the effect of these dummy variables in the hedonic price 
model.

The role of different chip characteristics on different SPEC benchmarks, 
however, varies greatly across different types of SPEC benchmarks, which 
argues for direct use of the underlying characteristics in a hedonic equa-
tion. It is an argument for letting the data decide what the correct weights 
on processor characteristics in a hedonic price equation are rather than 
adopting the implicit weights embedded within a time- invariant weighted 
average benchmark score.

11.5  Chip Characteristics and Computer Performance: Building Blocks 
for a Hedonic Analysis

By forcing us to focus on the relationship between performance of micro-
processors on representative software benchmarks—which all agree should 

performance on “market workload” is still correctly captured by a linear function of the two 
underlying chip characteristics (though the coefficients of the characteristics in this function 
change). The specification that is linear in the underlying characteristics is simply more flexible 
in representing shifts in demand.

114. This is because the selection of  processors commonly sold to consumers for use in 
desktop PCs may include relatively fewer desktop processors used in servers (the ones that 
would have SPEC scores available).
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be an important determinant of chip demand—and chip characteristics, 
Byrne, Oliner, and Sichel (2018) have done us a great service in providing 
focus for a discussion of  what chip characteristics should be used when 
estimating a hedonic price equation for microprocessors.

The theoretical computer architecture literature makes use of a proces-
sor performance equation to predict processor performance. Effectively, this 
relationship models the execution time a computer processing unit takes to 
perform some given software benchmark program (i.e., a given sequence of 
programming instructions) as the product of two parameters: average clock 
ticks per instruction and the seconds per clock tick in the processor’s clock.115 
Since a processor performance benchmark score is proportional to the 
inverse of time required to run a benchmark program on a particular com-
puter processor, we can invert the processor performance equation and then 
have

Performance ~ IPC × clock rate,

where IPC is processed instructions per clock tick, clock rate is measured 
in ticks per second, and the performance index basically compares bench-
mark instructions executed per unit time across processors. Indeed, given a 
particular computer architecture, computer engineers simply scale measured 
performance linearly by clock rate in order to model the approximate impact 
of raising clock rate on processor performance.116

IPC will depend on both the design (architecture) of the computer proces-
sor and the particular mix of instructions being executed in the benchmark 
software. The specified clock rate of a processor model is typically fixed after 
testing, at the end of the chip fabrication process.117 “Binning” during testing 
of finished chips creates different speed grade bins, which are subsequently 
sold as different processor models to computer manufacturers and other 
consumers. The effective, yielded mix of nondefective, more- valuable fast 
processors and less- valuable slow processors on a fabricated wafer contain-
ing hundreds or thousands of these processors is a determinant of processor 
manufacturing costs.

Speed is not the only chip processor characteristic affected by random 
fabrication process variation. There may also be random manufacturing 
variation affecting the voltage needed to run the chip properly, varying from 
die to die on the same wafer. Chips that require less power to perform cor-

115. See Hennessey and Patterson (2012), section 1.9, 48–52.
116. Hennessey and Patterson (2003), in the third edition of their classic computer architec-

ture textbook (59–60), do exactly this to compare Pentium III performance with a Pentium 4 
operating at the same clock rate.

117. Random variation in a highly complex semiconductor manufacturing process leads to 
a distribution of functional chips by the maximum clock rate at which they can successfully 
execute some test suite. A “fast” processor can operate at a higher- than- average clock frequency, 
while a “slow” processor can only operate correctly at a slower- than- average clock rate.
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rectly may be identified through testing and sold as low- power models of 
the processor.118

Microprocessor chips generally have on- chip caches of fast local memory 
that can also affect the execution time for given software. The portion of on- 
chip cache memory that is defect- free and therefore usable by the chip can 
also vary with the incidence of manufacturing defects during the fabrication 
process, and testing then leads to additional binning of finished chips by 
usable, functional cache memory.

Similarly, particular sections of  chip circuitry associated with some 
advanced features of the chip may not be fully functional due to random 
processing defects. In order to maximize revenue from all usable products 
yielded from a finished silicon wafer, a complex system of testing “bins” 
based on speed, memory, power requirements, and working feature func-
tionality is used to define distinct processor models sold as different chips to 
final consumers. Indeed, chips are generally designed with some redundant 
circuitry and electrical “fusing” options intended to maximize saleable prod-
uct, and revenues, from a processed wafer with dies that may not be perfect. 
A dozen processor models may be derived from a single, artfully designed 
die manufactured in the thousands on a single wafer.119

At Intel, microprocessor designs are identified with a “microarchitecture,” 
which historically is associated with a publicly available codename. (For 
example, the processor microarchitecture launched by Intel in October 2017 
was given the codename “Coffee Lake.”120) Prior to 2010, Intel also made 
public information on its processors’ die sizes and the number of transistors 
on the die processed in its manufacture. Based on this information (which is no 
longer publicly released), it appears that the many dozens of microprocessor 
models for each of its microarchitectures were based on somewhere between 
one and three basic die designs.121 That is, the dozens of different processor 
models corresponding to a single microarchitecture product family were man-
ufactured from just one to three basic chip designs fabricated on silicon wafers.

118. And processing of the wafer can be optimized to produce relatively more chips requir-
ing less power.

119. The design of a chip will segment the circuitry into functional blocks that can be dis-
abled electronically (e.g., with programmable “fuses”) during the manufacture and testing 
process. Some redundant circuitry is typically made part of the design, to maximize yield of 
usable parts after test. A more capable chip can generally be made less capable by disabling 
portions of its circuitry at the final stages of manufacture. This may be done deliberately by 
manufacturers to create additional supplies of lower- end chips when customer demand for 
lower- end parts exceeds the portion of output physically binned into low- end chip models on 
the basis of test results.

120. Cranz (2017). 
121. Prior to 2010, Intel publicly released the exact die area and number of “processing tran-

sistors” used in manufacturing most of its microprocessor models. All processors with exactly 
the same microarchitecture, die area, and numbers of processing transistors can be assumed 
to be derived from a single die design. Analysis of this data shows anywhere from one to three 
unique microarchitecture / die size / processing transistor combinations were being used to 
produce many dozens of processor models.
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It is straightforward to analyze the relationship between SPEC scores 
and microprocessor characteristics. Table 11.10 shows the results from esti-
mating a linear regression model explaining log SPEC scores with a set of 
explanatory variables suggested by the computer engineering literature: a 
full set of microarchitecture dummy variables (since IPC is going to depend 
on computer microarchitecture), log of  the base processor clock rate, a 
dummy variable indicating a “turbo” feature is enabled on the chip (the 
highest clock rate achievable by a single core on the chip will differ from the 
base processor clock rate if  this feature is available), log of on- chip memory 
cache size,122 log of  the number of  physical processor cores on the chip, 
and a dummy variable indicating that multithreaded “virtual” logical cores 
are available on a chip.123 In addition, a binary indicator variable for use 
of “autoparallelization” in compiling the SPEC benchmark software code 
is included, since that can enable a speedup on multicore processors or on 
processors with multithreading.124

A simple log linear regression model that explains SPEC benchmark per-
formance as a function of six processor characteristics (and a full set of 
29 to 31 dummy variables for different Intel x86 processor microarchitec-
tures) accounts for a remarkable 97 percent to 98 percent of the variation 
in SPEC2006 benchmark scores for thousands of computer models using 
Intel x86 processors over the 2005–17 period (table 11.11). Note that this 
regression utilizes all Intel x86 desktop, server, and mobile processors in the 
SPEC2006 database and, further, that it is estimated using every different 
individual computer making use of an included processor as the underlying 
set of observations used in estimating the model.

That is, variation in chipsets, motherboards, configured memory, and 
other components in the computer systems from different manufacturers 
making use of any particular chip model, which is reflected in the residual, 
accounted for no more than 2 percent to 4 percent of observed variation 
in SPEC scores. This analysis utilizes individual tested computer system 
data—that is, on average there are four to five different computer systems 
using a specific processor model.

We can alternatively calculate a median or mean score across all computer 
systems utilizing each processor chip model to more closely resemble the 
Byrne, Oliner, and Sichel (2018) procedure for deriving a single SPEC score 
for each chip model. Using that as the basis for our SPEC2006 performance 

122. Actually, I am using the size of the “last level cache,” since microprocessors can have a 
hierarchy of successively larger (and slower) caches onboard.

123. Hyperthreading is Intel’s name for multithreading capability, additional circuitry added 
to the processor that creates two logical (or “virtual”) processors that can access every physical 
core. One logical processor can begin processing the next instruction while the other logical 
processor is actually executing an instruction in a core, thus allowing a form of chip- level 
parallelism that can speed up performance when a computer program spawns multiple threads.

124. Indeed, after a short number of months at the beginning of the SPEC2006 suite in 
2006, almost all the single- process SPEC benchmark scores have autoparallelization turned on.
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regression model, we get an even higher R2, of about .99125 (table 11.12). It is 
clear that computer architecture dummies and five processor characteristics 
together essentially perfectly predict SPEC benchmark scores.

Two points are significant. First, the coefficients of (weights assigned to) 
different processor characteristics in determining SPEC scores are very dif-
ferent for different SPEC benchmarks. The clear implication is that different 
processor characteristics can have very different effects on performance for 
different types of  workloads. A flexible hedonic price model, reflecting a 
changing distribution of chip consumers across distinct types of workloads, 
would best let the empirical data decide the weights users place on particu-
lar characteristics rather than aggregating the characteristics into a single 
benchmark score with the time- invariant weights implicitly used to perform 
the aggregation into a performance metric.

125. I drop all chips shown as underclocked or overclocked by computer system maker (hav-
ing reported clock rate more than 10Mz slower or faster than the Intel- specified base clock 
rate) and ignore autoparallelization in calculating medians or means in table 11.12. Table 11.12 
reports results using logs of medians; using logs of means would give almost identical results.

Table 11.11 Log of SPEC 2006 benchmark as function of processor characteristics

Six characteristics model

Dependent variable is log of  SPECf06  SPECi06  SPECfr06  SPECir06

Log base processor speed 0.196*** 0.115** 0.383*** 0.429***
 (0.0401) (0.0396) (0.0590) (0.0746) 
Log cache memory size 0.0965** 0.0861*** 0.140** 0.109***
 (0.0283) (0.0232) (0.0442) (0.0208) 
Log number physical cores 0.157*** 0.0385 0.642*** 0.826***
 (0.0284) (0.0285) (0.0357) (0.0249) 
Hyperthreading dummy 0.0644** 0.0318** 0.132*** 0.201***
 (0.0179) (0.0111) (0.0169) (0.0130) 
Log max speed w/turbo 0.514*** 0.722*** 0.101 0.328***
 (0.0651) (0.0560) (0.103) (0.0747) 
Autoparallelization dummy 0.0649* 0.00310 0.0107 −0.0134 
 (0.0262) (0.0534) (0.0211) (0.0362) 

Microarchitecture dummies Y Y Y Y
Observations 1,160 1,190 2,207 2,417
R2 0.966 0.960 0.982 0.974 
N_clusters 31 31 29 30
R2 within  0.687  0.697  0.896  0.893 

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p < .05, ** p < .01, *** p < .001
Log base processor speed is processor base clock rate
Log of max speed is log of maximum clock rate if  turbo mode available
Log cache memory is log of amount of last level cache memory on processor chip
Autoparallelization dummy =1 if  feature enabled in compiler when SPEC software was com-
piled
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Second, these characteristics also will affect cost. Every distinct Intel 
microarchitecture is manufactured using a single fabrication technology 
node, so in addition to representing the processor’s design architecture, the 
microarchitecture dummies also capture variation in microprocessor manu-
facturing cost that is induced by variation in chip microarchitectures and 
manufacturing technology. As previously described, different quality grades 
(measured by processor clock rates, amounts of on- chip cache memory, and 
chip features) produced by testing and binning are also associated with cost 
differences. Coefficients on these characteristics in a hedonic reduced- form 
price equation should be regarded as reflecting both demand and cost effects.

Finally, in addition to the chip characteristics determining SPEC perfor-
mance, there is a small set of additional chip characteristics that we would 
certainly want to include in a hedonic price equation for microprocessors. 
Power dissipated by a chip determines whether expensive cooling solutions 
are required, shifting demand for that processor; power requirements are 
also important (for battery life) in mobile applications. Electricity use, the 
principle variable cost of computing, will vary with power consumed. Fur-
ther, power dissipation varies with random manufacturing process varia-
tions, so the power rating of a chip is also going to be related to chip cost. 
Whether or not a graphics processor is integrated into the microprocessor 

Table 11.12 Log of median SPEC 2006 benchmark as function of processor 
characteristics

Five characteristics model

Dependent variable is log of 
median computer system score 
for particular processor model  SPECf06  SPECi06  SPECfr06  SPECir06

Log base processor speed 0.279*** 0.156*** 0.507*** 0.460***
(0.0347) (0.0338) (0.0767) (0.0565) 

Log cache memory size 0.0783** 0.0575** 0.155** 0.122***
(0.0259) (0.0194) (0.0531) (0.0184) 

Log number physical cores 0.190*** 0.0697* 0.644*** 0.810***
(0.0254) (0.0274) (0.0513) (0.0167) 

Hyperthreading dummy 0.0721*** 0.0371*** 0.134*** 0.211***
(0.0133) (0.00727) (0.0132) (0.00788) 

Log max speed w/turbo 0.421*** 0.677*** −0.0109 0.286***
(0.0716) (0.0526) (0.105) (0.0575) 

Microarchitecture dummies Y Y Y Y 
Observations 331 340 449 454 
R2 0.988 0.985 0.990 0.994 
N_clusters 30 30 28 28 
R2_within  0.843  0.853  0.941  0.975

Notes: Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p < .05, ** p < .01, *** p < .001
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will also affect both demand and cost for that chip. Support for hardware 
virtualization will have no practical effect on processor performance on 
SPEC benchmarks but is a valuable feature for business customers wishing 
to increase server efficiency by running numerous “virtual machines” on 
their servers simultaneously.

In conclusion, we should remember that SPEC scores are maintained by 
organizations that sell servers, processors used in servers, and the largest 
server customers, so a SPEC- selected sample will be skewed toward the mod-
els of chips that perform best as server processors. The SPEC performance 
regressions in tables 11.11 and 11.12 would then seem to tell us that desktop 
and server performance should be modeled separately, with different weights 
placed on different chip characteristics.

This suggests a natural segmentation of microprocessors for purposes 
of price measurement. A desktop segment oriented toward single software 
program application performance, a mobile (laptop and tablet) segment 
tilted toward both performance and low power, and a server segment with 
a greater emphasis on performance on embarrassingly parallel workloads 
(servers running a mix of  uncoordinated applications with performance 
more like the SPEC “rate” benchmarks). In terms of finding public data 
useful in estimating a hedonic price equation, retail/distribution prices will 
be most readily observable and useful in estimating desktop microproces-
sor prices. Retail data will be much more limited and less useful for mobile 
processors and even more limited, and therefore least useful, for hedonic 
measurement of server processor prices.

The absence of a reliable source of producer transactional data for micro-
processors, for use in government price indexes, is a serious and increasingly 
formidable barrier to measuring prices and innovation correctly in the semi-
conductor industry.

11.6  Conclusion

There is considerable evidence that semiconductor manufacturing innova-
tion has historically been responsible for perhaps a 20 percent to 30 percent 
annual decline in the cost of manufacturing transistors on a chip. One would 
expect that this predictable cost decline would be transformed into a similar 
price decline in a competitive industry, at least in the long run, and therefore 
that a decline of this magnitude would serve as a floor on the long- run tra-
jectory of semiconductor prices for high- volume semiconductor products. 
Innovations in the architecture and designs being manufactured on the chip, 
new kinds of chip designs, and superior performance characteristics of exist-
ing designs fabricated using more- advanced fabrication technology would 
be additional factors explaining even higher long run rates of  decline in 
quality- adjusted semiconductor prices.
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Historically, most high- volume semiconductor applications ultimately 
migrated to more- advanced manufacturing technology nodes, pulled there 
by the simple economics of continuing declines in cost using more- advanced 
fabrication technology. This migration pressure now seems to have lessened, 
in part the result of rapidly escalating fixed costs that must be sunk into the 
design of new chips using the most- advanced manufacturing technology 
and in part due to an apparent slackening in the rate of cost decline at the 
technological frontier of semiconductor manufacturing.

The available empirical evidence, on balance, suggests that Moore’s law–
related historical declines in chip manufacturing cost have clearly been atten-
uated over the last decade. For chips where market price data are collected, 
decline rates in chip prices over time seem to have greatly diminished. The 
evidence for exceptionality in Intel microprocessor price declines is shaky, 
indicative primarily of the increasingly poor quality of publicly available 
processor price data, changing Intel policies on public release of meaningful 
list prices for its older processors, and likely, omitted variables in hedonic 
price models using Intel list price data.

A substantial economic literature has connected faster innovation in semi-
conductor manufacturing to rapidly improving price performance for semi-
conductors, to larger price declines for information technology, to increased 
uptake of IT across the economy, and to higher rates of labor productivity 
growth. If  correct, this implies that a slowdown in semiconductor manufac-
turing innovation and attenuation of price declines in both chips and IT may 
play an important role in current stagnation in labor productivity growth.

Finally, it is now almost an article of faith in high- tech industry that an 
expanding cloud of computing and machine intelligence is in the process of 
transforming our economy and society. Much of this faith is built on projec-
tion into the future based on past experience with increasingly powerful and 
pervasive computing capabilities that both cost less and use less energy year 
after year. The winding down of Moore’s law means that the technological 
scaling that drove these historical declines and implicitly underlies the most 
optimistic assumptions about the spread of ubiquitous computing in the 
future may no longer hold. Both cost and energy use now seem more likely 
to increase in lockstep with the scale of  cloud computing in the future. 
Unless there are continuing, significant improvements in software technol-
ogy, computing costs—and energy use per computation—are unlikely to 
decline, or even stay constant as computing capacity increases, as was true 
in the past. Investments in entirely new technologies will be needed, as will a 
renaissance of creativity and innovation in software. Software, the neglected 
sibling living in the shadow cast by Moore’s law—and dramatically cheapen-
ing hardware—for the last 50 years, must increasingly shoulder the burden 
of delivering comparable economic benefits from continuing technological 
innovation in information technology.
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