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8
Agroecosystem Productivity and the 
Dynamic Response to Shocks

Jean- Paul Chavas

8.1  Introduction1

Dynamics is at the heart of  economic development and the search for 
processes that contribute to improving human welfare. But dynamic pro-
cesses are typically complex, especially under nonlinear dynamics. Indeed, 
nonlinear dynamic systems can exhibit many patterns. For deterministic 
systems, this can go from reaching a unique steady state to having multiple 
steady states, to displaying limit cycles, or even to being chaotic (e.g., May 
1976). For stochastic systems the complexity increases further, making it 
challenging to evaluate the dynamic response to unanticipated shocks. The 
assessment of such dynamic response is highly relevant in economics. Some 
shocks are favorable (e.g., good weather, the discovery of new knowledge) 
with positive impacts on welfare both in the short run and the longer run. 
But other shocks have a negative impact on human welfare (e.g., drought, 
disease). The dynamic effects of such shocks has been of great interest to 
economists and policymakers. Under some scenarios, their adverse effects 
matter in the short run but dissipate in the longer run. But under other sce-
narios, their  longer- term impacts can be sustained and large. An example 
is the case of poverty traps, which associate poverty with meager prospects 
for economic growth (e.g., Dasgupta 1997; Azariadis and Stachurski 2005; 
Barrett and Carter 2013; Kraay and McKenzie 2014; Barrett and Constas 
2014). Another example is from ecology: under some circumstances, an 
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ecosystem may fail to recover under extreme shocks (e.g., Holling 1973; 
Common and Perrings 1992; Perrings 1998; Gunderson 2000; Folke et al. 
2004; Derissen, Quaas, and Baumgärtner 2011). Other examples include 
cases of economic collapse with large and lasting adverse effects on society 
and civilization (e.g., Tainter 1990; Diamond 2005). This includes the case 
of  ancient Egypt, where failures of  the Nile floods caused great famines 
that imperiled Nile civilizations (e.g., Shaw 2000; Marriner et al. 2012). This 
also includes widespread droughts that contributed to the collapse of Clas-
sic Mayan civilization in Central America between 800 to 1000 AD (Gill 
2000; Webster 2002;  Medina- Elizalde and Rohling 2012). Adverse weather 
shocks remain relevant today as they threaten food production and food 
security around the world (e.g., Headey 2011; Nelson et al. 2014; Kalkuhl, 
von Braun, and Torero 2016). In these examples, the shocks are all undesir-
able. But the assessment of these situations can be challenging for two rea-
sons: (a) such adverse scenarios are not very common, and (b) the dynamics 
of  the underlying process is often complex and poorly understood. This 
suggests two useful directions of inquiry. First, we need to refine our tools 
used in dynamic analysis. Second, we need to explore applications that may 
provide new insights into economic dynamics. These two directions are key 
motivations for this chapter.

This chapter studies nonlinear dynamics in economics. It makes three 
contributions. First, the analysis evaluates the linkages between stochastic 
dynamics and the characterization of resilience and traps. Resilience means 
good odds of escaping from undesirable zones of instability toward zones 
that are more desirable. Traps mean low odds of escaping from zones that are 
both undesirable and stable. As such, resilience is desirable but traps are not. 
As noted above, the measurement and evaluation of dynamics associated 
with traps or resilience remains difficult (e.g., Barrett and Constas 2014). Our 
analysis focuses on identifying zones of stability/instability that provides a 
good basis to evaluate the resilience of a system and the presence of traps.

Second, the investigation of resilience and traps requires a refined approach 
to the study of stochastic dynamics, with a special focus on representations 
that allow for flexible dynamic response to shocks. The chapter relies on a 
threshold quantile autoregressive (TQAR) model (Galvao,  Montes- Rojas, 
and Olmo 2011; Chavas and Di Falco 2017). The TQAR model is empiri-
cally tractable. And it is flexible: it allows dynamics to vary with both current 
shocks and past states. As such, a TQAR model can be used to assess how 
dynamics can differ across situations (as reflected by different shocks and 
different states). This makes it particularly appropriate for our purpose.

A third contribution is to illustrate the usefulness of our approach in an 
application to the dynamics of an agroecosystem. Our empirical analysis 
uses historical data on wheat yield in Kansas during the period 1885–2012. 
Historically, the western Great Plains have experienced many periods of 
severe drought (Burnette and Stahle 2013). The worse drought occurred 
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in the 1930s leading to the Dust Bowl, a major American environmental 
catastrophe (Hornbeck 2012). Coupled with intensive land use, the drought 
led to major crop failure, wind erosion, and dust storms. The impact was 
particularly severe in Kansas, where land erosion contributed to significant 
decrease in land value and agricultural productivity (Hornbeck 2012). The 
 short- run response to the environmental destruction was mostly population 
migration away from the affected areas, but the long- run effects were major 
and lasting. Hornbeck (2012) documents that soil erosion due to the Dust 
Bowl contributed to a decline in land value up to 30 percent in the long term. 
Wheat being the major crop in Kansas (USDA 2015), studying Kansas wheat 
yield provides a great case study of the dynamic response to environmental 
shocks. Of special interest are the effects of extreme shocks both in the short 
run and in the long run. In the context of wheat yield, our analysis identifies 
a zone of instability in the presence of successive adverse shocks. It also finds 
evidence of resilience. We associate the resilience with induced innovations 
in management and policy in response to adverse shocks. This stresses the 
importance of management and policy in the dynamic response to shocks.

The chapter is organized as follows. Section 8.2 presents a general model 
of stochastic dynamics and examines its linkages with traps and resilience. 
Section 8.3 introduces a threshold quantile autoregressive model and its flex-
ible representation of the dynamic effects of shocks. Section 8.4 presents an 
econometric application to the dynamics of wheat productivity in Kansas. 
Implications and discussion of the results are the topic of sections 8.5 and 
8.6. Finally, section 8.7 concludes.

8.2  Dynamics, Traps, and Resilience

Consider a dynamic system evolving according to the state equations

(1a) yt = h(yt−1, . . . , yt− p, zt), 

(1b) zt = g(yt−1, . . . , yt− p; zt−1, . . . , zt− p), 

where yt ∈ R measures payoff at time t, zt is a vector of variables affecting 
the system with dynamics given in equation (1b), and p ≥ 1. Equations (1a) 
and (1b) provide a general representation of dynamics, allowing for joint 
dynamics in payoff yt and in the state variables zt. After successive substitu-
tions of equation (1b), note that equation (1a) can be alternatively written as

(2) yt = h yt−1, yt−2, . . . , g yt−1, yt−2, . . . ; zt−1, zt−2, . . .( )( ) 

 = h yt−1, yt−2, . . . , g yt−1, yt−2, . . . ; g yt−2, . . . ;zt−2, . . .( ), zt−2, . . .( )( )

 = . . . 

 = f0(yt−1, yt−2, . . . ; y0, z0) 
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where (y0, z0) are initial conditions, which we take as given. Assume that the 
effects of lagged values of yt–j on yt in equation (2) become negligible for all 
j > m. It follows that equation (2) can be written as

(3) yt = f (yt−1, . . . , yt−m, et), 

and et is a random variable representing unobservable effects at time t. We 
assume that et is identically and independently distributed1 with a given 
distribution function.

Equation (3) is an mth order stochastic difference equation representing 
economic dynamics under general conditions. Comparing equations (1) and 
(3), equations (1a) and (1b) are structural equations describing how the 
system evolves over time, while equation (3) is a  reduced- form equation of 
the same system. While equation (3) does not reflect structural information 
about the system, it has two advantages: (a) it provides a valid representa-
tion of the system dynamics, and (b) it does not require information about 
the variables zt. This is a significant advantage when some of the dynamic 
factors affecting payoff are not observable. For this reason, our analysis will 
focus on the  reduced- form representation (3).

Note that equation (3) can be written as the  first- order difference equation

(4) wt ≡
yt

!
yt−m+1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

f (yt−1, . . . , yt−m, et)

!
yt−m+1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡ H wt−1, et( ) 

where wt ∈ R+
m. Equation (4) can be used to characterize the nature of 

dynamics. Under differentiability, let DH wt−1, et( ) = ∂H wt−1, et( ) / ∂wt−1 be 
an m × m( ) matrix. Denote the characteristic roots of  DH wt−1, et( ) by 
l1(wt−1, et),… , lm(wt−1, et)[ ] where |l1 wt−1,et( )| ≥… ≥ |lm wt−1,et( )|, |l j | being  

the modulus of the jth root, j = 1, . . . , m, and l1 being the dominant root.
Where equation (3) is linear in (yt–1, . . . , yt–m), the system exhibits linear 

dynamics. In this case, the matrix DH is constant and so are its roots (λ1, . . . ,  
λm). Consider for a moment a situation where et is constant for all t. Then, 
under linear dynamics, the system is globally stable (in the sense that 
lim
t→∞

yt = ye  for any initial condition y0) if  |l1| < 1 (Hasselblatt and Katok 
2003). Alternatively, the system would be unstable if  |l1| > 1. When λ1 is real, 
the dynamics of yt has a forward path that is { oscillatory

exponential} when l1{<0
>0}. And when 

λ1 is complex, then l1 = a + b −1 and the system exhibits cyclical dynam-
ics, with a cycle of period 2p / arctg b / a( )[ ].

In the general case where equation (3) is nonlinear in (yt–1, . . . , yt–m), the 
system exhibits nonlinear dynamics. Under nonlinear dynamics, the forward 
path of yt can exhibit a variety of dynamic patterns. For example, holding 

1. Note that assuming serial independence of et is not restrictive since any serial correlation 
can be captured by the dynamic equation for zt in equation (1b).
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et constant for all t, yt can eventually reach a unique steady state, it can have 
multiple steady states, it can exhibit limit cycles, or it can be chaotic (e.g., 
May 1976). Situations of  multiple  steady- state equilibria have been of 
interest. Multiple steady states y1

e, . . . , yM
e( ) would arise if  lim

t→∞
yt = yj

e  when 
y0 ∈ Sj, j = 1, . . . , M, where M > 1 and (S1, . . . , SM) is a partition of R. In 
this context, the set Sj is the attractor of point yj

e, j = 1, . . . , M, as having 
initial condition y0 in Sj eventually leads to yj

e, j = 1, . . . , M. When a steady 
state yj

e is identified as being “undesirable,” it means that it is good to avoid 
being in the set Sj. Examples include cases of ecological collapse in ecology 
(Holling 1973) and poverty trap in economics (Barrett and Carter 2013; 
Kraay and McKenzie 2014).

Under nonlinear dynamics, both DH(wt–1, et) and the dominant root 
λ1(wt–1, et) depend on the evaluation point (wt–1, et). In general, ln(|l1 wt−1, et( )|) 
measures the rate of divergence in yt along forward paths in the neighbor-
hood of (wt–1, et) (Hasselblatt and Katok 2003). In this context, the dynamic 
properties just discussed still apply but only locally, that is, in the neighbor-
hood of (wt–1, et): the dynamics is locally stable if  the dominant root satisfies 
|l1 wt−1, et( )| < 1, and it is locally unstable if  |l1 wt−1, et( )| > 1. We will make 
use of these local properties in our empirical analysis below.

The analysis of  dynamics becomes more challenging in the stochastic 
case: the random vector et in equation (3) affects the path of yt over time. 
This is relevant when et represents unanticipated shocks. In this context, a 
key question is: What is the dynamic response of the system (3) to a shock et? 
This is the essence of the concept of resilience. A resilient system is defined 
as a system that can recover quickly from a shock (Holling 1973). This 
gains importance in the presence of adverse shocks (Di Falco and Chavas 
2008; Chavas and Di Falco 2017). For example, in ecology, a resilient system 
would recover quickly from an adverse shock by moving away from undesir-
able situations and toward more desirable ones, but a nonresilient system 
may collapse. Similarly, in economics, a resilient household would recover 
quickly from an adverse income shock, but a nonresilient household would 
not (e.g., Barrett and Constas 2014). While adverse shocks always have nega-
tive  short- term effects, resilience means such effects would eventually disap-
pear in the longer term. But nonresilient systems would behave differently: 
they would see persistent adverse long- term effects.

The dominant root λ1(wt–1, et) provides useful insights on system dynam-
ics. We discuss three cases. First, consider the case where λ1(wt–1, et) is close 
to 0 for all (wt–1, et). This system would exhibit little dynamics, and any shock 
would have minor or no long- term effects. In a second case, assume that 
|l1 wt−1, et( )| is positive but less than 1 for all (wt–1, et). Then, there would be 
a dynamic response to any shock. But having |l1 wt−1, et( )| < 1 means that the 
impact of a shock would die down over time and eventually disappear in the 
long term. In this case, the magnitude of the dominant root remains useful. 
Having |l1 wt−1, et( )|  close to 0 (close to 1) means a rapid (slow) decay of the 
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temporal effects of  a shock. In other words, a rise in |l1 wt−1, et( )| ∈ (0,1) 
corresponds to stronger impacts of a shock in the intermediate term. Third, 
consider the case where |l1 wt−1, et( )| is greater than 1 for some (wt–1, et). As 
discussed above, this corresponds to local instability in the neighborhood 
of (wt–1, et). A possible situation is that this local instability varies with the 
neighborhood. To illustrate, consider a system where N1, N2, N3 are three 
different neighborhoods where |l1 wt−1, et( )| < 1 when wt−1, et( ) ∈ N1 ∪ N3, 
but |l1 wt−1, et( )| > 1 when wt−1, et( ) ∈ N2. This system exhibits local stability 
in neighborhoods N1 and N3, but local instability in neighborhood N2. Local 
instability in N2 means that dynamics would tend to move yt away from N2. 
In situations where N2 is surrounded by N1 and N3, this would identify points 
in N2 as tipping points, that is, as points where yt would tend to escape from 
as they move toward locally stable neighborhoods. In this case, knowing 
which locally stable neighborhood (N1 or N3) is more likely to be visited 
would be of interest. For example, if  being in N1 is seen as being undesirable, 
then an escape from N2 to N3 would be seen as a better scenario than moving 
from N2 to N1.

These patterns are illustrated in figure 8.1 under four scenarios. Figure 8.1 
shows how |l1| can vary with et, where higher (lower) values of et are inter-
preted as favorable (unfavorable) shocks. The first scenario is the case where 
λ1 is constant. This occurs when the dynamic is represented by a linear 
autoregressive (AR) process, in which case the dynamic response to shocks 
does not depend on the situation considered. Scenarios 2–4 are associated 
with nonlinear dynamics where λ1 is not constant. Scenario 2 exhibits a pat-
tern where |l1| has an inverted U- shape with respect to et, with a zone of 
instability (where |l1| > 1) surrounded by two zones of  stability (where 
|l1| < 1): a favorable zone (where et is high) and an unfavorable zone (where 
et is low). It means that the forward path of yt would tend to escape from the 
instable zone. And in the case where there is a low probability of escaping 
from the unfavorable stable zone, this would identify this zone as a trap. 
Scenario 3 shows a situation where there is a zone of instability, but it occurs 
only for low values of et. This is an example of resilience where the dynam-
ics would move the system away from unfavorable outcomes. Finally, Sce-
nario 4 shows a situation where there is a zone of instability but it occurs 
only for high values of et. This represents a collapse where the dynamics 
move the system away from favorable outcomes. These examples illustrate 
that many patterns of dynamics are possible.2 Note that the dynamics would 
gain additional complexities when we note that |l1 wt−1, et( )| can vary with 
both et and wt–1. The empirical challenge to evaluating these complexities is 
addressed in section 8.3.

2. Indeed, there are many possible scenarios (e.g., Azariadis and Stachurski 2005). Other 
possible scenarios (not shown in figure 8.1) are when there is a zone of stability surrounded by 
zones of instability, or when instability is global (e.g., under chaos).
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Under stochastic dynamics, a related issue is: What are the implications 
of dynamics for the distribution of yt in the long run? To address this ques-
tion, note that the dynamics in equation (3) can be alternatively written in 
terms of a Markov chain (Billingsley 1961; Meyn and Tweedie 1993). Consider  
partitioning the space R into K mutually exclusive intervals {v1, . . . , vK}. To 
illustrate, consider the case where m = 1. Letting M = {1, . . . , K}, we have

(5a) Prob yt ∈ vi( ) =
j∈M
∑ {Prob yt ∈ vi | yt = f (yt−1, et[ ) , yt−1 ∈ v j]

 Prob[yt−1 ∈ v j]} 

for i ∈ M . Under time invariance, equation (5a) can be written as the Mar-
kov chain model

(5b) pt = Apt−1 

where pt = (pt,1, . . . , pt,K ′)  is a (K × 1) vector with pt, j = Prob (yt ∈ v j), j ∈ M
ob (yt ∈ v j), j ∈ M , and A is a (K × K) matrix of Markov transition probabilities. The 

Fig. 8.1 Dynamic patterns for the dominant root |λ1|
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Markov matrix A has a dominant root equal to 1. Under time- invariant 
transition probabilities, when this dominant root is unique, the dynamic 
system (5b) has a unique stationary equilibrium given by pe = lim

t→∞
pt for all 

initial conditions p0. This provides a basis to evaluate the long- run distribu-
tion of y. This long- run distribution will depend on the underlying dynam-
ics. Again, the long- run distribution of y can exhibit many patterns (Azari-
adis and Stachurski 2005). For example, the long- run probability density of 
yt could exhibit a single peak with little skewness (e.g., under Gaussian 
shocks and a linear AR process). Alternatively, it could be skewed when the 
dynamics implies an escape from low outcomes (under resilience) or from 
high outcomes (under collapse). Finally, it could exhibit multiple peaks (e.g., 
when a system tends to escape from a zone of instability toward surrounding 
zones of stability, leading to a bimodal density in the long run). Again, these 
examples indicate that many patterns of long- run distribution are possible, 
stressing the importance of a flexible approach in the empirical investigation 
of dynamics.

8.3  Econometric Analysis of Stochastic Dynamics

Consider the case where equation (3) takes the general form yt = f (yt−1, . . . ,
yt = f (yt−1, . . . , yt− p, xt, et) where xt is a vector of  explanatory variables affect-

ing yt at time t. Define the conditional distribution function of  yt as 
F(v | yt−1,..., yt−m, xt) = Prob[yt ≤ v | yt−1,..., yt−m, xt] = Prob[ f (yt−1,..., yt−m,xt,et) ≤ v]

[ f (yt−1,..., yt−m,xt,et) ≤ v]. The distribution function F(v | yt−1, . . . , yt−m, xt) is conditional  
on lagged values (yt−1, . . . , yt−m) and on xt. Define the associated condi-
tional quantile function as the inverse function q(r | yt−1, . . . , yt−m, xt) ≡ infv{v : F (v | 

. . . , yt−m, xt) ≡ infv{v : F (v | yt−1, . . . , yt−m, xt) ≥ r} where r ∈ (0,1) is the rth quantile. When  
r = 0.5, this includes as special case the conditional median q(0.5 | yt−1, . . . , yt−m, xt)

q(0.5 | yt−1, . . . , yt−m, xt). Both the distribution function F(v | yt−1, . . . , yt−m, xt) and the 
quantile function q(r | yt−1, . . . , yt−m, xt) are generic: they provide a general 
characterization of the dynamics of y. In the rest of the chapter, we will make 
extensive use of the quantile function q(r | yt−1, . . . , yt−m, xt) in the analysis of 
the dynamics of yt.

Relying on the conditional quantile function q(r | yt−1, . . . , yt−m, xt), we 
focus our attention on the case where the conditional quantile function takes 
the form q(r | y1, . . . , yt−m, xt) = X (yt−1, . . . , yt−m, xt)b(r), r ∈ (0,1), where X(·) 
is a (1 × K) vector and b(r) ∈ RK  is a (K × 1) vector of parameters. This 
restricts the analysis to situations where conditional quantiles are linear  
in the parameters β(r). This specification allows the parameters β(r) to  
vary across quantiles, thus providing a flexible representation of the underly-
ing distribution function and its dynamics. In addition, the function 
X (yt−1, . . . , yt−m, xt) can possibly be nonlinear in (yt−1, . . . , yt−m), thus allowing 
for nonlinear dynamics.
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In the analysis presented below, we consider an econometric model speci-
fication of the form

(6) q(r | y1, . . . , yt−m, xt) = b0(r, xt) +
j =1

m

∑b j (r, xt)yt− j . 

To illustrate the flexibility of this specification, note that it reduces to a 
standard autoregressive model of order m, AR(m) (e.g., see Enders 2010), 
when βj(r, xt) = βj, j = 1, . . . , m, for all r ∈ (0,1) and all xt, that is, when the 
autoregression parameters βj’s are constant and do not vary across quantiles. 
When the intercept β0(r, xt) varies across quantiles r, this provides a flexible 
representation of the distribution function (e.g., it allows for any variance, 
skewness, and kurtosis). Also, when β0(r, xt) varies with xt, this allows xt to 
shift the intercept. But an AR(m) model is restrictive in two important ways: 
(a) it is restricted to linear dynamics in the mean; and (b) it does not provide 
a flexible representation of dynamics in variance, skewness, or kurtosis. Such 
limitations have stimulated more general specifications capturing dynamics 
in variance (e.g., the generalized autoregressive conditional heteroscedastic 
[GARCH] model proposed by Bollerslev [1986]) and nonlinear dynamics 
(e.g., Markov switching models, Hamilton [1989]), threshold autoregressive 
(TAR) models (Tong 1990), and smooth transition autoregressive (STAR) 
models (Van Dijk, Teräsvirta, and Franses 2002).

When βj(r, xt) = βj(r), j = 1, . . . , m, the above specification reduces to the 
quantile autoregressive model QAR(m) proposed by Koenker and Xiao 
(2006). Unlike an AR(m), the QAR(m) model allows the autoregression 
parameters βj(r) to vary across quantiles r ∈ (0,1), thus permitting dynam-
ics to differ in different parts of the distribution. In the more general case, 
βj(r, xt) can vary with the explanatory variables xt, allowing economic con-
ditions to affect dynamics.

In addition, considering the case where the state space R is partitioned 
into K subsets R = {S1, . . . , SK}, define dk,t− j = {0

1} when yt− j {∉Sk

∈Sk}, k = 1, . . . , K, j = 1, . .
{∉Sk

∈Sk}, k = 1, . . . , K, j = 1, . . . , m. Depending on the value taken by the lagged variable 
yt–j, this identifies K regimes (S1, . . . , SK) with the dk,t–j’s being variables 
capturing the switching between regimes, j = 1, . . . , m. When xt includes the 
variables dk,t–j’s, this allows the autoregression parameter βj(r, xt) to vary 
across the K regimes, j = 1, . . . , m. The general case corresponds to a thresh-
old quantile autoregressive (TQAR[m]) model where, for each lag j, βj(r, xt) 
can vary both across quantiles r ∈ 0,1( ) and across regimes (Galvao, 
 Montes- Rojas, and Olmo 2011; Chavas and Di Falco 2017). When βj(r, xt) 
= βj(xt), j = 1, . . . , m (i.e., when the autoregression parameters do not vary 
across quantiles), a TQAR(m) reduces to a threshold autoregressive 
(TAR[m]) model (see Tong 1990). And as noted above, a TQAR(m) model 
includes as special cases a QAR(m) model (obtained when βj(r, xt) = βj(r), 
j = 1, . . . , m), as well as an AR(m) model (obtained when βj(r, xt) = βj,  
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j = 1, . . . , m). In general, a TQAR(m) model is very flexible at representing 
nonlinear dynamics. Indeed, in a TQAR(m) model and for each lag j, the 
autoregression parameter βj(r, xt) can vary with the value of the current 
variable yt (as captured by the quantile r), with the value of the lagged vari-
able yt–j (as captured by the  regime- switching variables dk,t–j’s), and with the 
value of other variables in xt. A TQAR(m) model will be used below in our 
empirical investigation of dynamics.

Consider a sample of n observations on (y, X), where X is a vector of 
explanatory variables and q(r | X ) = X b(r), r ∈ (0,1). Denote the ith obser-
vation by (yi, Xi), i ∈ N ≡ {1, . . . , n}. For a given quantile r ∈ (0,1) and fol-
lowing Koenker (2005), the quantile regression estimate of β(r) is

(7) b̂(r) ∈ argminb{
i∈N
∑rr(yi − Xib)}, 

where rr(w) = w[r − I(w < 0)] and I(·) is the indicator function. As dis-
cussed in Koenker (2005), the quantile estimator b̂(r) in equation (7) is a 
 minimum- distance estimator with desirable statistical properties. The quan-
tile estimator (7) applied to the dynamic specification (6) will provide the 
basis for our empirical analysis presented next.

8.4  An Application to the Dynamics of Wheat Productivity

Our investigation proceeds studying the dynamics of wheat productiv-
ity in Kansas. The analysis involves annual wheat yield in Kansas over the 
period 1885–2012 (USDA 2015). This covers the period of the American 
Dust Bowl (in the 1930s) when the US Great Plains were affected by a major 
environmental catastrophe. The Dust Bowl was the joint product of adverse 
weather shocks (a major drought) and poor agricultural management. The 
Dust Bowl is remembered by two of its main features: (a) severe drought 
leading to crop failure and triggering massive migration out of the western 
Great Plains, and (b) soil and wind erosion (Hornbeck 2012). The Dust Bowl 
had  short- term effects on agricultural production (as drought generated 
crop failure). But it also had longer effects: soil erosion had lasting adverse 
effects on land productivity (Hornbeck 2012). Kansas has been the leading 
wheat producing state in the United States (USDA 2015). As noted in the 
introduction, this makes studying wheat yield dynamics in Kansas a great 
case study of the response of productivity to environmental shocks.

The data on wheat yield (t / ha) in Kansas over the period 1885–2012 
were obtained from the United States Department of Agriculture (USDA 
2015). They are presented in figure 8.2. Figure 8.2 shows three interesting 
features. First, as expected, the early 1930s (corresponding to the Dust Bowl) 
is a period exhibiting low yields. Second, wheat yields have been trending 
upward, especially after 1940, indicating the presence of significant produc-
tivity growth and technological progress over the last seventy years. Third, 

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



Agroecosystem Productivity and the Dynamic Response to Shocks    301

there is much variability in yield over time, reflecting the impact of various 
environmental shocks (including weather shocks).

Our investigation explores the distribution of wheat yield as if  we were 
farmers. Since weather shocks are mostly unpredictable, it means that the 
distribution of yield is evaluated ex ante at the beginning of the growing 
season, that is, before weather shocks become observable. In the ex ante 
assessment, the yield distribution is thus unconditional with respect to all 
unobservable factors affecting farm productivity (including weather effects). 
In this context, the investigation of dynamic adjustments in Kansas wheat 
yield is presented next.

8.4.1  Preliminary Econometric Analysis

We start with a simple analysis of  yield dynamics. With wheat yield yt 
as the dependent variable, we first estimate simple autoregressive models. 
Table 8.1 presents the estimation results for alternative model specifications. 
Two time- trend variables are included in all models: a general time trend 
t = year – 2000 and a time trend t1 = max {0, year – T1} where t1 captures 
technological progress after the year T1. The models include autoregressive 
models of order m, AR(m), with m = 1, 2. Using a grid search, the value  
T1 = 1935 was chosen as it provided the best fit to the data. The AR(1) model 
shows that lag- 1 coefficient is 0.703 and highly significant. This documents 
the presence of dynamics in yield adjustments. The  lagged- 2 coefficient in 
the AR(2) model is not statistically significant. A formal Wald test of the 

Fig. 8.2 Kansas wheat yield (ton per ha)
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AR(1) model as a null hypothesis against the AR(2) model gave a p- value 
of 0.709, indicating that there is no significant dynamics going beyond one- 
period lag.

Table 8.1 also reports threshold autoregressive models (TAR[m]) allowing 
the autoregression parameters to vary across three regimes (di, d2, d3). The 
regimes are defined such that di,t = {0

1} when yt{∉Si,t

∈Si,t}, i = 1, 2, 3, with 
S1,t = [−∞, b1,t], S2,t = (b1,t, b3,t] and S3,t = (b3,t, ∞], b1,t, and b3,t being, respec-
tively, the 1/3 and 2/3 quantile of the yield distribution obtained from the 
AR(1) model reported in table 8.1. Thus, regime 1 means that yield is in the 
1/3 lower quantile of the yield distribution, and regime 3 means that yield is 
in the 1/3 upper quantile of the yield distribution. In this context, having 
d1,t–1 = 1 corresponds to situations of low lag- 1 yield where yt–1 is in regime 
1. And having d3,t–1 = 1 corresponds to situations of high lag- 1 yield where 
yt–1 is in regime 3. In TAR(m) models, the autoregression parameters are 
allowed to shift across the three regimes. For a TAR(1), table 8.1 shows that 
the lag- 1 coefficient is 0.409 in regime 2, 0.507 in regime 1, and 0.407 in 
regime 3. Importantly, the difference in coefficients between regime 1 and 
regime 2 (0.098) is statistically significant at the 10 percent level. This pro-
vides statistical evidence that yield dynamics differ across regimes. This  
is our first hint of nonlinear dynamics. We also estimated a TAR(2) model. 
As reported in table 8.1, the lag- 2 coefficients of  the TAR(2) model are  
not statistically significant. A formal Wald test of  the TAR(1) model as  
null hypothesis against a TAR(2) model gave a p- value of  0.959. Again,  
this indicates no significant dynamics going beyond one- period lag. On  
that basis, we continue our analysis based on autoregressive models of  
order 1.

Note that all estimated models reported in table 8.1 show that the overall 
time trend t is not statistically significant, but the effect of the post- 1935 

Table 8.1 Estimates of autoregressive models

Parameters  AR(1)  AR(2)  TAR(1)  TAR(2)

Intercept 0.703*** 0.706*** 0.543*** 0.540**
yt–1 0.236*** 0.219** 0.409** 0.463**
yt–2 0.034 −0.039
d1,t–1 * yt–1 0.098* 0.111*
d3,t–1 * yt–1 −0.010 −0.018
d1,t–2 * yt–2 −0.020
d3,t–2 * yt–2 −0.011
t −0.002 −0.003 −0.002 −0.002
t1 0.0023*** 0.024*** 0.017** 0.017**
R2  0.857  0.856  0.859  0.860

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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time trend t1 is always positive and statistically significant. This reflects the 
presence of significant improvements in agricultural technology over the 
last seventy years.3 Interestingly, the coefficient of the t1 variable is smaller 
in the TAR(1) model (0.017) compared to the AR(1) model (0.023). This 
indicates that productivity growth interacts with changing dynamics across  
regimes.

8.4.2  Quantile Dynamics

Our preliminary analysis found statistical support for a TAR(1) specifica-
tion. A discussed in section 8.3, while a TAR model allows the autoregres-
sion parameters to vary across regimes, it does not allow them to vary across 
quantiles of the current yield distribution. We now extend the analysis by 
considering a threshold quantile autoregressive model. As noted, a TQAR 
model provides a flexible representation of nonlinear dynamics by allow-
ing autoregression parameters to change both across regimes and across 
quantiles. This section focuses on an ex ante analysis of quantile dynamics. 
An ex post quantile analysis (conditional on weather shocks) is presented 
in the next section.

Table 8.2 reports parameter estimates of a TQAR(1) model applied to 
wheat yield for selected quantiles (0.1, 0.3, 0.5, 0.7, 0.9). The variables are 
the same as in the TAR(1) model reported in table 8.1. Table 8.2 shows how 
the dynamics vary across quantiles. We tested the null hypothesis that the 
regression parameters are the same across quantiles (0.1, 0.5, 0.9). With 10 
degrees of freedom, the chi- square test value was 5.703 with a p- value less 

3. Note that technological progress involves many factors, including improved wheat varie-
ties, increased use of fertilizer, greater reliance on irrigation, and improved farm management 
practices.

Table 8.2 Estimates of threshold quantile autoregressive model TQAR(1) for 
selected quantiles

Quantile

Parameters  r = 0.1  r = 0.3  r = 0.5  r = 0.7  r = 0.9

Intercept −0.003 0.481** 0.747*** 1.036*** 1.409***
yt–1 0.687*** 0.407 0.272 −0.036 −0.341
d1,t–1 * yt–1 0.234*** 0.086 −0.015 −0.026 −0.007
d3,t–1 * yt–1 −0.067*** −0.057 −0.051 0.125 0.156
t 0.000 −0.003 −0.005** −0.005** −0.001
t1  0.003  0.018**  0.027***  0.035***  0.040***

Note: Hypothesis testing is conducted using bootstrapping.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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than 0.01. This implies a strong rejection of the TAR(1) model in favor of 
the TQAR(1) model. Thus, we find statistical evidence that the regression 
parameters vary across quantiles. Table 8.2 shows that the lag- 1 coefficient 
under regime 2 is 0.687 at the 0.1 quantile. This coefficient is larger than for 
higher quantiles, indicating the presence of stronger dynamics in the lower 
tail of the yield distribution. Table 8.2 also reports that, for the 0.1 quantile, 
the lag- 1 coefficient differs between regime 1 (where d1,t–1 = 1) and regime 
2. The difference is 0.234. Using bootstrapping for hypothesis testing, we 
find this difference to be statistically significant at the 1 percent level. This 
provides evidence against a QAR model and in favor of a TQAR specifica-
tion. The lag- 1 coefficient for the 0.1 quantile is 0.921 under regime 1 (when 
lagged yield is low), which is much higher than under the other regimes. This 
documents the presence of much stronger dynamics in the lower tail of yield 
distribution and when lagged yield is low. This is one of our key findings: 
dynamic yield adjustments to shocks become quantitatively very different 
under repeated adverse shocks. As we show below, this is a scenario where 
adjustments also become qualitatively different.

In addition, table 8.2 shows the effects of the t1 trend variable are much 
stronger in the upper tail of the distribution. This indicates that technologi-
cal progress has contributed to a rapid increase in the upper tail of the yield 
distribution. But such effects are weaker in the lower tail of the distribution. 
This reflects significant shifts in the shape of the yield distribution over time 
(as further discussed below).

To conduct robustness checks, we explored issues related to the number 
of lags used in our dynamic analysis. While table 8.2 reports estimates for 
a TQAR(1) model, we also estimated a TQAR(2) model. In a way consis-
tent with the results shown in table 8.1, we found that none of the lag- 2 
coefficients were statistically significant. This indicates that the TQAR(1) 
model provides an appropriate representation of dynamics. On that basis, 
the analysis presented in the rest of the chapter focuses on a model with 
one- period lag.

8.5  Implications

Our estimated TQAR(1) model provides a refined representation of the 
nonlinear dynamics of yield. As noted in section 8.3, it allows for flexible 
patterns of  stability and instability. To explore in more detail the nature 
and implications of these patterns, we estimate our TQAR(1) model for all 
quantiles, thus providing a representation of the whole distribution of wheat 
yield and its dynamics.

First, we use our TQAR(1) model estimated for all quantiles to evaluate 
the distribution function of wheat yield at selected sample points. The result-
ing simulated distribution is presented in figure 8.3 for selected years (1950, 
1970, 1990, 2010). As expected, over time, the distribution shifts strongly 
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to the right, reflecting the major effects of technological progress on agri-
cultural productivity. Interestingly, the yield distribution exhibits greater 
spread (and thus greater risk exposure) in 2010 than in previous years, indi-
cating an increase in the magnitude of unpredictable shocks (possibly due 
to climate change).

Next, using equation (4), we examine the dynamic properties of our esti-
mated TQAR(1) by evaluating the associated root l = ∂H / ∂yt−1. Under 
nonlinear dynamics, this root varies with the situation considered. As dis-
cussed in section 8.2, dynamics is locally stable (unstable) at points where λ 
< 1 (> 1). We calculated the root λ for all quantiles and all three regimes. The 
results are reported in figure 8.4. Figure 8.4 documents the patterns of non-
linear dynamics associated with our estimated TQAR(1) model. It shows 
three important results. First, from figure 8.4, the root λ is similar across all 
three regimes for quantiles greater than 0.3, but it exhibits different dynam-
ics for lower quantiles (less than 0.3). More specifically, compared to other 
regimes, the root λ is larger under regime 1 (when lagged yield is low) and in 
the lower tail of the distribution. This is consistent with the discussion of 
table 8.2 presented in the previous section.

Second, figure 8.4 shows that the root λ remains in the unit circle (with 
|l| < 1) in many situations, including regimes 2 and 3 (when lagged yield are 
not low) or the absence of adverse current shock (for quantiles greater than 

Fig. 8.3 Simulated yield distribution
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0.2). This implies that the system is locally stable in many situations, espe-
cially in situations excluding adverse shocks. This is an important result: 
investigating dynamics in situations around or above the median could only 
uncover evidence of local stability. As discussed in section 8.2, this would 
preclude finding any evidence of traps.

Third, figure 8.4 shows that the root λ can be larger than 1 but only in 
situations of successive adverse shocks, that is, when both yt and yt–1 are in 
the lower tail of the yield distribution. Associating λ > 1 with local insta-
bility, we thus find evidence of local instability in the presence of adverse 
shocks. This has several implications. First, we have identified a zone of 
local dynamic instability, that is, a zone of tipping points where the system 
tends to escape from. Second, associating a zone of instability with succes-
sive adverse shocks is an important finding. This raises the question: Is the 
zone of instability associated with resilience? Or is it associated with a trap 
or collapse? It depends on the path of escape. As discussed in section 8.2, if  
the escape from the zone of instability is toward more favorable situations, 
the system would be characterized as resilient (e.g., as represented by Sce-
nario 3 in figure 8.1). Alternatively, if  the escape is toward more unfavorable 
situations, the system may be experiencing a trap or a collapse (e.g., Scenario 
4 in figure 8.1).

Fig. 8.4 Root of the dynamic yield equation
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In our case, the zone of  instability occurs only under successive unfa-
vorable shocks generating very low yields. It suggests that starting in this 
zone, there is only one place to go: toward higher yields. Thus, the zone of 
instability can be associated with a resilient system that tends to escape from 
low productivity toward higher productivity under adverse shocks. Indeed, 
figure 8.4 exhibits patterns that are similar to Scenario 3 in figure 8.1. To 
examine this issue in more detail, we consider the Markov chain represen-
tation of our TQAR(1) model, as given in equations (5a) and (5b). Using 
K = 50 and evaluated under conditions occurring in 1995, we obtained the 
Markov matrix A in equation (5b). The matrix A has a unique unit root, indi-
cating that the Markov chain is stationary and has a long- run distribution. 
The second root of A has modulus 0.37, indicating a fairly fast adjustment 
toward the long- run distribution. The evolution of the probability function 
of wheat yield was simulated from equation (5b), starting from a uniform 
distribution over the range of  the data. Starting at t = 0, the simulated 
probabilities are reported in figure 8.5 under three scenarios: in the short 
run (after 2 periods, t = 2), in the intermediate run (after 4 periods, t = 4), 
and in the long run (after 200 periods, t = 200). Figure 8.5 shows several 
important results. First, the adjustments toward the  steady- state probability 
function occurs fairly quickly. Second, the simulated probability functions 

Fig. 8.5 Simulated probability function of wheat yield in the short run (t = 2), 
intermediate run (t = 4), and long run (t = 200)
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depart from the normal distribution in two ways: (a) they exhibit multiple 
peaks, and (b) they are skewed, with a left tail that is much longer than the 
right tail. Indeed, in all scenarios,  Shapiro- Wilk tests of normality have a 
p- value less than 0.01, providing strong evidence of departure from normal-
ity. Third, figure 8.5 shows that the probability of being in the left tail of the 
probability function declines fast as one moves forward in time (as t goes 
from 2 to 4 to 200). This implies a dynamic escape from unfavorable events 
located in the lower tail of the distribution. Since escaping an unfavorable 
zone is the essence of resilience, if  follows that figure 8.5 documents the pres-
ence of resilience. In other words, our estimated TQAR(1) model applied to 
wheat yield dynamics has two key characteristics: (a) a zone of instability 
occurs in the presence of successive unfavorable shocks, and (b) resilience 
arises as the underlying dynamic process tends to escape from this unfavor-
able zone. The significance of these findings is further discussed in section  
8.8 below.

As discussed in section 8.2, the TQAR model reported in table 8.2 is a 
 reduced- form model. While a  reduced- form model provides a valid repre-
sentation of dynamics, it does not provide structural information on the 
nature of dynamics. In the Kansas agroecosystem, a major source of shocks 
comes from the weather. Indeed, the Dust Bowl was the result of a major 
drought that hit the western Great Plains in the 1930s. This suggests evaluat-
ing a structural model where weather variables are explicit determinants of 
Kansas wheat yield. On that basis, we also specified and estimated a dynamic 
model of wheat yield including the effects of three weather variables: rainfall 
in the previous fall rainf, rainfall in the spring rains, and average temperature 
during the growing season temp. Data on these variables were obtained from 
Burnette, Stahle, and Mock (2010), Burnette and Stahle (2013), and the 
National Oceanographic and Atmospheric Administration (NOAA 2016).4 
These weather variables were introduced in the model both as intercept 
shifters and as interactions with lagged yield. These interaction effects allow 
yield dynamics to vary with weather conditions. Estimates of the associated 
quantile regression equation is presented in table 8A.1 in the appendix. As 
expected, table 8A.1 shows that weather has statistically significant effects on 
yield. Rainfall in the previous fall has a positive effect on yield, especially on 
the lower tail of the distribution. Temperature has a negative effect on yield 
through its interaction effect with lagged yield, especially in the upper tail of 
the distribution. This documents that both drought and high temperature 
have adverse effects on agricultural productivity. Such results are consistent 
with previous research (e.g., Tack Harri, and Coble 2012; Tack, Barkley, and 
Nalley 2015). Table 8A.1 also shows the presence of dynamics. Lagged yield 
has statistically significant effects on current yield either directly or through 
its interaction with temperature.

4. Rainfall is measured in millimeters and temperature in degree Celsius.
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To evaluate the nature of dynamics in the structural model reported in 
table 8A.1, we calculated the root of the estimated dynamic process across 
quantiles. Interestingly, we found that the root varies between −0.2 and 
+0.6 depending on the evaluation point. The root is always in the unit circle 
for any quantile or any weather condition within the range of data. This 
implies global stability. Thus, the dynamic model reported in table 8A.1 does 
not show any evidence of instability. This contrasts with the  reduced- form 
model reported in table 8.2 (which exhibits local instability as discussed 
above).5 While this result is somewhat surprising, it has two important impli-
cations. First, since controlling for weather effects implies the disappearance 
of instability, it means that there is close association between instability and 
weather shocks. In other words, our  reduced- form evidence of instability 
must be linked with weather shocks. Second, weather being mostly unpre-
dictable, we do not expect much dynamics in the determination of weather 
shocks. This indicates that any linkage between weather and yield dynamics 
must be because of  the dynamic response of  management and policy to 
weather shocks. We expand on this interpretation below.

8.6  Discussion

From our  reduced- form model, our first finding is about local dynamic 
instability arising, but only under unfavorable shocks. This is important. 
It suggests that a search for local instability is unlikely to be successful if  
the analysis focuses on “average conditions.” This can be problematic in 
economic research to the extent that most econometric analyses involve esti-
mating means or conditional means. While studying the properties of means 
and conditional means can be interesting, it neglects key information related 
to events located in the tails of the distribution. In a stochastic context, our 
findings indicate a need to expand analyses with a focus on dynamics associ-
ated with rare and unfavorable events. This is an intuitive argument. On the 
positive side, increasing resilience is about improving the odds of escaping 
the long- term effects of facing adverse shocks. On the negative side, avoiding 
collapse or traps is about reducing the odds of facing adverse conditions and 
increasing the odds of escaping toward better outcomes. All escape scenarios 
are about identifying local instability. Our TQAR model provides a good 
basis to support such inquiries.

Our second finding is also very interesting: applied to wheat yield dynam-
ics, our analysis uncovered evidence of resilience as local instability tends to 
create an escape away from unfavorable events toward improved outcomes. 
But it also raises questions about the process supporting such dynamics. 
Below, we reflect on this process and the interpretations and implications 
of our findings.

5. Note that Chavas and Di Falco (2017) obtained a similar result for English wheat.
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As noted above, our analysis has relied on an ex ante analysis of yield 
dynamics and focused on assessing the distribution of yield based on infor-
mation available at the beginning of each growing season. Since weather 
conditions are mostly unpredictable, we treated the effects of rainfall and 
temperature during the growing season as part of the shocks represented by 
the yield distribution function. This raises the question: What constitutes 
an adverse shock? Much research has examined the determinants of wheat 
yield (e.g., Olmstead and Rhode 2011; Tack, Barkley, and Nalley 2015). 
Both rainfall and temperature are major factors affecting wheat yield (e.g., 
Tack, Barkley, and Nalley 2015; Chavas and Di Falco 2017). In particular, 
farming in the western Great Plains faces much rainfall uncertainty as it has 
experienced repeated periods of severe droughts (Burnette and Stahle 2013). 
One of the most severe droughts occurred in the 1930s: it led to massive crop 
failures and to the Dust Bowl. Because of the massive soil erosion it gener-
ated, the Dust Bowl is often seen as an environmental catastrophe (Horn-
beck 2012). Yet, our evidence of resilience suggests a different interpretation.

First, the Dust Bowl induced significant changes in agricultural manage-
ment and policy. A major federal policy change was the creation of  the 
Soil Conservation Service (SCS) in 1935. The SCS played a major role in 
reducing the incidence of wind erosion in the western Great Plains (Hurt 
1981). The circumstances under which the SCS was created are of interest. 
Starting in 1932, severe droughts caused widespread crop failure in the Great 
Plains, exposing the soil to blowing winds and generating large dust storms. 
On March 6, 1935, and again on March 21, 1935, dust clouds passed over 
Washington, DC, and darkened the sky as Congress was having hearings 
on soil conservation legislation. It motivated policymakers to act: the Soil 
Conservation Act was signed by President Roosevelt on April 27, 1935, 
creating the Soil Conservation Service in the USDA. This was an example 
of a fast policy response to a crisis.

The Dust Bowl also stimulated significant adjustments in agricultural man-
agement. The SCS established demonstration projects to persuade farmers  
to adopt more sustainable tillage and cropping practices (including contour 
plowing, terracing, strip cropping, planting drought resistant crops, and 
greater reliance on pasture). For participating farmers, the SCS programs 
contributed to improving farm practices, increasing land values, and boost-
ing farm income (Hurt 1981). As a result, farmers shifted land from wheat 
into hay and pasture, and they implemented new soil conservation tech-
niques (Hornbeck 2012, 1480). Such changes helped mitigate the adverse 
effects of severe droughts.

Second, the Dust Bowl did not start a process of desertification of the 
western Great Plains. On the contrary, cultivated farmland increased dur-
ing the 1930s and 1940s (Hornbeck 2012, 1480–90). This indicates that the 
1930s droughts stimulated major innovations in agricultural management 
and policy. To the extent that these changes reduced the adverse effects of 
droughts, they contributed to creating a more resilient agroecological system.
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Thus, we associate our evidence of resilience with induced innovations in 
both policy and management that followed the Dust Bowl. This interpreta-
tion raises the question: What would have been the effects of the Dust Bowl 
without such innovations? Of course, this is a hypothetical scenario that we 
have not observed, but we can discuss what might have happened. First, our 
evidence of resilience would likely disappear. For example, without inno-
vations, continued soil erosion may have led to the desertification of the 
western Great Plains. Under this scenario, the adverse long- term effects of 
the Dust Bowl assessed by Hornbeck (2012) would have been much worse. 
The agroecosystem of the western Great Plains may have collapsed. In this 
case, the zone of instability identified in figure 8.4 would move to the right. 
In the context of figure 8.1, this would correspond to a move from Scenario 
3 (resilience) toward Scenario 2 or even toward Scenario 4 (collapse). The 
process of collapse would occur when adverse shocks put the system in the 
zone of instability with a tendency to move toward lower outcomes (e.g., 
Scenario 4 in figure 8.1). Figure 8.5 would also change. Under collapse, the 
lower tail of  the yield distribution would become much thicker. And the 
probability function may exhibit multiple peaks in the lower tail, with a new 
peak possibly rising in the extreme lower tail (corresponding to collapse). In 
this case, a key issue would be whether “valleys” exist in between peaks in 
the probability density function. The presence of valleys would indicate that 
there are positive probabilities of escaping the lower tail of the distribution. 
Alternatively, the absence of such valleys would mean any collapse obtained 
under adverse shocks would be irreversible.

Of course, these hypothetical scenarios differ from the ones reported in fig-
ures 8.4 and 8.5. Yet, our discussion has three important implications. First, 
evaluating resilience/collapse/traps must focus on the nature of dynamics 
under adverse shocks. As noted above, just knowing what is happening “on 
average” is not sufficient. Second, the assessment of local instability is cru-
cial. Our TQAR approach provides a great analytical framework to conduct 
this assessment. Third, in general, the dynamic response to adverse shocks 
depends on management and policy. Our discussion has pointed out the role 
of innovations. On the negative side, collapse/traps are more likely to arise 
in the absence of management and policy response to adverse shocks. On 
the positive side, induced innovations in management and policy can be a 
crucial part of designing a more resilient system. Our analysis indicates the 
important role played by the induced response of management and policy 
to adverse shocks.

8.7  Conclusion

This chapter has studied the dynamic response to shocks, with an appli-
cation to agroecosystem productivity. It has proposed a threshold quantile 
autoregressive model as a flexible representation of stochastic dynamics. 
It has focused on the identification of zones of local instability and their 
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usefulness in the characterization of  resilience and traps. The usefulness 
of the approach was illustrated in an application to the dynamics of wheat 
yield in Kansas. The analysis examined the effects of extreme shocks both 
in the short run and in the long run. It identified a zone of instability in the 
presence of successive adverse shocks. It also finds evidence of resilience. We 
associate the resilience with induced innovations in management and policy 
in response to adverse shocks.

Our approach is generic and can be applied to the analysis of dynamics in 
any economic system. Our empirical analysis focused on a particular agro-
ecosystem. Our findings documented the role of local instability in response 
adverse shocks. Such findings are expected to vary across situations. This 
motivates a need to extend our analysis and its applications to other eco-
nomic systems where traps and resilience issues are of interest.

Appendix

Table 8A.1 Estimates of quantile autoregressive model of wheat yield including 
weather shocks, selected quantiles

Quantile

Parameters  r = 0.1  r = 0.3  r = 0.5  r = 0.7  r = 0.9

Intercept 0.44929 0.02457 0.11511 −0.09011 −0.06440
yt–1 0.22780 0.23496 0.29597** 0.18766 0.19131**
rain_s −0.00045 −0.00043 0.00055 0.00027 0.00025
rain_f 0.00094* 0.00071 0.00089 0.00119** 0.00074
temp −0.00081 0.00994 0.00584 0.01346 0.01549
rain_s * yt–1 0.00057 0.00060 −0.00068 −0.00040 −0.00036
temp * yt–1 −0.00395 −0.01454 −0.01458 −0.02326*** −0.02495***
t −0.00076 −0.00108 −0.00356 −0.00520** −0.00093
t1  0.01823*** 0.02043*** 0.02751*** 0.03565*** 0.03070***

Note: Hypothesis testing is conducted using bootstrapping.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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