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Heterogeneous Wealth Dynamics
On the Roles of Risk and Ability

Paulo Santos and Christopher B. Barrett

7.1  Introduction

Contemporary policy debates are rife with discussion of “poverty traps” 
(see, e.g., Sachs 2005; United Nations Millennium Project 2005). Several 
theoretical models combine some nonconvex technology with some mar-
ket failure to explain why “the poor stay poor and the rich stay rich.”1 But 
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1. See Azariadis and Stachurski (2005) or Bowles, Durlauf, and Hoff (2006) for earlier reviews 
of the theoretical and empirical literature on poverty traps.
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do poverty traps exist in the data? One prominent strand of the empirical 
literature that addresses this question focused on searching for a threshold 
associated with nonlinear growth that would lead to multiple equilibria, with 
one such equilibrium below a poverty line. Recent reviews of this literature 
suggest that the support for the existence of such a threshold is quite mixed 
(see Barrett and Carter 2013; Kraay and McKenzie 2014; Barrett, Garg, 
and McBride 2016).

In this chapter, we use data from a poor population, Boran pastoralists in 
southern Ethiopia, where the presence of such a threshold has been previ-
ously identified. Among this population, the evolution of livestock (in many 
cases, the only nonhuman asset held by these households) is characterized by 
boom- and- bust cycles determined by drought and biological reproduction. 
Using  seventeen- year herd- history data collected by Desta (1999), Lybbert 
et al. (2004) find herd dynamics that follow an S- shaped curve with two stable 
dynamic equilibria (at roughly one and  thirty- five to forty cattle), separated by 
an unstable dynamic equilibrium, a threshold at fifteen to twenty cattle.2 The 
authors’ conjecture is that this threshold results from a minimum critical herd 
size necessary to undertake migratory herding to deal with spatiotemporal 
variability in forage and water availability. Further work by Toth (2015) cor-
roborates that herd mobility is sharply increasing in herd size in the neighbor-
hood of the herd- size threshold that Lybbert et al. (2004) identify, while Santos 
and Barrett (2011) find that informal credit arrangements behave as one would 
expect in the presence of this threshold, largely excluding the persistently poor 
from informal insurance. These findings from East African pastoralists are rec-
ognized as being among the strongest empirical evidence Kraay and Mc Kenzie 
(2014) find in support of the  threshold- based  poverty traps hypothesis.

We build on this work to explore one additional question: If  poverty traps 
exist, do they exist for everyone? We frame this discussion using a general 
representation of wealth dynamics:

(1) yist =
gsA

c (yit−1 | ui) + ´ist if yit−1 ≥ gc

gsB
c (yit−1 | ui) + ´ist if yit−1 < gc

⎧
⎨
⎪

⎩⎪
 

where yist is a measure of wealth of individual i, who belongs to cohort c, 
in state s in period t, and growth dynamics may differ above and below any 
(possibly  cohort- specific) threshold, γc > 0. If  a threshold exists, expected 
dynamics may bifurcate, as reflected in different parameters describing the 
growth function above (A) and below (B) the threshold. We use this for-
mulation to recognize that multiple mechanisms, in particular, both the 
individual’s characteristics, θi, and its initial conditions, yit–1, could be at 
play simultaneously. This is a more compact representation of the dynamics 
developed by Ikegami et al. (chapter 6, this volume).

2. Barrett et al. (2006) find similar herd patterns in herd- dynamics data from similar com-
munities in northern Kenya.
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This recognition matters because the policy implications differ mark-
edly depending on which mechanism is at play. If  poverty is an equilibrium 
because of immutable individual characteristics, ongoing social transfers 
may be the only available remedy for an unacceptably low standard of liv-
ing. But if  poverty results from initial asset holdings insufficient to clear 
a critical asset threshold, then policies such as asset transfers, or financial 
intermediation to encourage investment or to insure asset holdings, can lead 
to increases in wealth that move beneficiaries toward a  higher- level equi-
librium, thereby reducing the need for ongoing transfers (Carter 1998). If  
both processes are at play within a population, then effective targeting of 
appropriate interventions depends on identifying the relevant subpopula-
tion to which a given poor household belongs.

Despite the very different policy implications, identifying the mechanisms 
that underpin persistent poverty is quite difficult methodologically. Bar-
rett and Carter (2013) and Barrett, Garg, and McBride (2016) identify a 
range of confounding factors that challenge the econometric identification  
of  poverty trap mechanisms, several of which our unusual data let us over-
come, as we argue in more detail in the next section. We study a relatively 
simple system in which a single variable (livestock holdings) serves as an 
excellent proxy for overall wealth, we have  household- level panel data that 
permit us to establish initial conditions and to estimate herd management 
ability, and we have data on households’ expected herd growth conditional 
on particular states of nature, which we collected so as to explore the role 
of shocks and ability in shaping wealth dynamics. These attributes permit 
a deeper exploration of the genesis of multiple dynamic wealth equilibria 
than has been feasible previously.

Empirically, we focus on two mechanisms. First, in section 7.3, we confirm 
the possibility, first suggested in this context by Lybbert et al. (2004), that 
negative shocks may generate persistent poverty if  they drive individuals 
below the threshold. We analyze data on pastoralists’ expectations of herd 
size one year ahead, given different values of initial herd size. We disaggre-
gate these dynamics as a function of rainfall states and find a nonlinear rela-
tion between initial and future wealth only under adverse states of nature. 
Under favorable rainfall regimes, respondents’ subjective perceptions sug-
gest a smooth asset growth process. We use these data to simulate long- run 
equilibria that we show correspond closely with those identified by Lybbert 
et al. (2004) in the historical data. We also note considerably larger varia-
tion among households in expected herd dynamics under adverse states of 
nature, which raises the possibility of household or individual characteris-
tics that might generate such  cross- sectional variation.

Second, we explore the possibility that characteristics such as skills or abil-
ity may explain the observed heterogeneity in expected growth. Perhaps the 
talented can more easily escape poverty regardless of initial wealth, or better 
manage their wealth in the face of negative shocks. Of particular relevance to 
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this chapter, Schultz (1975) emphasizes the central importance of individual 
ability to reallocate scarce resources in response to shocks, what he terms 
“the ability to deal with disequilibria.” He applies the concept to a different 
setting, with particular reference to technology shocks and the structural 
transformation of rural economies. But his core concept applies here, as it 
does to other aspects of that transformation.3 In section 7.4 we use stochastic 
frontier estimation to obtain  household- specific estimates of technical effi-
ciency, which we use as proxy for herding ability. We use these estimates to 
address the hypothesis that herder ability conditions wealth dynamics. This 
appears true in the data. Low- ability herders (which we define as those in 
the bottom quartile of the efficiency distribution) are expected to slide into 
poverty regardless of initial wealth; we observe multiple dynamic herd- size 
equilibria only for the cohort of herders of higher ability. Finally, in section 
7.5 we stress the policy implications of these findings with respect to com-
plex wealth dynamics and the centrality of shocks and individual ability to 
understanding the existence of multiple equilibria in this system and raise 
some questions for future research. Section 7.6 concludes.

7.2  Data

We use data from a household survey fielded among a random sample of 
120 Boran pastoralist households, in the same four communities of southern 
Ethiopia as those studied by Lybbert et al. (2004), although among dif-
ferent households. These data were collected by the Pastoral Risk Manage-
ment (PARIMA) project every three months, March 2000–June 2002, and 
then annually each September–October starting in 2003. The focus of the 
project, and consequently, of the data collected, was on understanding the 
importance of  shocks as a source of  poverty persistence in this context, 
and the data include rich detail on household composition, migration his-
tories, changes in herds, shocks, informal transfers of assets, and so forth. 
Barrett et al. (2004) describe the location, survey methods, and available 
variables. In section 7.4 we use these data, briefly summarized in table 7.1, 
to estimate herd frontiers, from which we can estimate  household- specific  
ability.

The respondents are, as a rule, male, experienced in herd management 
and, to a large extent, have not migrated from where they were born. Con-
ditional on owning livestock, cattle represents approximately 85 percent of 
their total tropical livestock units, and only seven households own more live-
stock in species other than cattle. An important fraction (close to one in five 
households) owns no cattle. These households are sedentarized and depend 

3. See, for example, Feder, Just, and Zilberman (1985) for a review of the importance of 
human capital in the process of technology adoption.
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heavily on relief  food distribution in towns. They own few, if  any, other 
nonhuman assets, so even for these stockless households livestock holdings 
serve as a reasonable proxy for wealth (McPeak, Little, and Doss 2011). 
An even more important fraction (slightly above two in three households) 
owns herds that are smaller than fifteen cattle, the accumulation threshold 
identified in Lybbert et al. (2004), which does not account for possible het-
erogeneity. During the period for which we have data, the average herd did 
grow, from an average herd size of 8.1 cattle in 2000 to 9.2 cattle in 2003 (the 
equivalent of a growth rate of 4.3 percent per year). However, this average 
masks important heterogeneity in terms of growth experiences: focusing 
only on households who owned cattle, growth episodes were almost as likely 
as decreases or stagnation in herd size.

In 2004 we collected data on households’ subjective expectations of herd 
dynamics, designed to complement the data routinely collected by PARIMA. 
The use of  elicited expectations to study  decision- making has now been 
applied extensively for testing economic hypotheses in both developed and 
developing countries (for reviews, see Manski 2004; Hurd 2009; Delavande 
2014; Delavande, Giné, and McKenzie 2011). That said, it is worth explain-
ing in some detail how we elicited these data.

We started by randomly selecting four hypothetical initial herd sizes for 
each respondent, one from each of the intervals defined by the equilibria 
identified by Lybbert et al. (2004).4 Respondents were then asked to charac-
terize their expectations of rainfall during the coming year, choosing between 

4. The intervals are [1,5), [5, 15), [15, 40) and [40, 60] tropical livestock units (TLU) where 1 
TLU = 1 cattle = 0.7 camels = 10 goats or sheep. The TLU measure allows aggregation across 
species on the basis of animals’ average adult metabolic weight. Among the Boran we study, 
the overwhelming majority of TLU are held in the form of cattle.

Table 7.1 PARIMA data: definition and descriptive statistics

Variable  Definition  Mean  Std. err.

Cattle As % of TLU 0.85 0.22 
Herd size at t Herd size at t 9.18 12.87 
Herd size at t − 1 Herd size at t − 1 8.12 11.35 
No cattle at t − 1 = 1 if  owns no cattle at t − 1, 0 otherwise 0.19 0.39 
Herd below threshold at t − 1 = 1 if  0 < herd size at t − 1 < 15, 0 otherwise 0.68 0.47 
Herd above threshold at t − 1 = 1 if  herd size at t − 1 > 15 0.14 0.35 
Labor Family size at t 5.50 3.36 
Land Land cropped in June 2000 1.12 2.25 
Sex = 1 if  male 0.64 0.48 
Experience Years since start of herd management 20.26 14.07 
Migrant  = 1 if  migrated to where currently lives  0.21  0.41 
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good, normal, or bad.5 Because the data were collected well into the rainy 
season, these answers should not be interpreted as uninformed priors that 
could merely reflect differences in optimism.6 Respondents were also asked 
to assume a herd of standard composition for the region (in terms of age 
and sex of  the animals). In one site, and in a second separate interview, 
we additionally asked respondents to consider what would happen to their 
herd (with an identical randomly allocated initial herd size) in the case 
of  more extreme weather conditions, namely, severe drought and a very  
good year.7

After thus framing the problem, we asked each respondent to define the 
maximum and the minimum herd size they would expect to have one year 
later if  they themselves started the year with the randomly assigned initial 
herd size. These bounds provide a natural anchor for the next step, in which 
we asked respondents to distribute on a board twenty stones among herd 
sizes between the minimum and the maximum previously elicited, thereby 
describing their subjective herd- size distribution one year ahead condi-
tional on the randomly assigned initial herd size and the statement about 
rainfall. Finally, each respondent was asked if  s/he had ever managed a 
herd approximately equal in size to the initial value provided as the random 
seed. The elicitation of the probability distribution function is an appropri-
ate technique under these circumstances (Morgan and Henrion 1990) and 
allows us to compute conditional distributions and their moments. In addi-
tion, and because hypothetical initial wealth was randomly assigned to the 
respondent, it eliminates the prospective endogeneity of initial herd size in 
determining the estimated herd dynamics.

In total, we have 460 observations collected among 115 respondents for 
rainfall conditions labeled as good/normal or bad. Of these, nineteen do not 

5. In this and several other African rangelands ecosystems, pasture biomass covaries strongly 
with rainfall. In recent years, the density of  grazing livestock and wildlife has been insuf-
ficient to affect biomass sufficiently to alter herd dynamics, with stocking rates well below 
carrying capacity outside of a relatively small cluster of overgrazed areas around settlements 
(McPeak, Little, and Doss 2011). While climate change or a significant increase in human 
population and stocking rates could change the relationship between herd sizes and range 
vegetation dynamics, at the current time both appear driven largely by variation in weather. 
So the rainfall states we study should suffice to capture the stochastic dynamics of interest. 
This sort of trinomial rainfall characterization is familiar to respondents, as it corresponds to 
published rainfall forecasts such as those disseminated by the regional Drought Monitoring 
Centre and government and nongovernmental organization extension officers. See the analysis 
in Luseno et al. (2003) and Lybbert et al. (2007), who previously studied pastoralists’ rainfall  
expectations.

6. The geographical concentration of pastoralists’ expectations regarding rainfall further 
reinforces this interpretation: in two sites, over 90 percent of the respondents expected bad 
rainfall, while in the other two sites expectations were equally divided between bad rainfall 
and good rainfall.

7. In particular, we asked respondents to consider herd evolution “as if” in 1999, the last 
major drought, or “as if” in a very good year, which we asked them to define based on their 
own experience.
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include a herd- size prediction, usually because respondents were unable to 
distribute the stones across the board, a problem that occurred mainly for 
bigger initial herd sizes when the difference between the maximum and the 
minimum was sometimes quite large. Of the remaining 441 observations, 
the respondents had prior personal experience managing a herd of compa-
rable size in 288 cases (65.3 percent). In addition, we have  sixty- one similar 
observations for very good and very bad years.

We finish this brief  description of the data we use by presenting in figure 
7.1 the scatter plot and kernel regression relating expected herd size one year 
ahead and initial herd size, conditional on ever having had a herd with a 
similar size, but unconditional on weather conditions.8 Several points emerge 
from comparing pastoralists’ subjective expectations of  one- year- ahead 
herd dynamics (figure 7.1) with the dynamics revealed by Desta/Lybbert 

8. We estimate  Nadaraya- Watson nonparametric regressions with the Epanechnikov kernel 
and bandwidth of 4.545. The value of bandwidth was selected using Silverman (1986) rule 
of thumb, as determined by the “bounds for Stata” package (Beresteanu and Manski 2000).

Fig. 7.1 Unconditional subjective expected herd dynamics
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et al.’s herd- history data (in particular, the dashed line in figure 4 of Lybbert 
et al. 2004, which reflects one- year- ahead dynamics).

First, both these data and the prior studies exhibit multiple dynamic equi-
libria consistent with the notion of a poverty trap. Second, however, the 
equilibria identified by pastoralists appear to differ markedly from those 
apparent in herd- history data, both with respect to their location and sta-
bility. Notably, herd accumulation occurs for a wider range of initial herd 
sizes, while herd losses seem a relatively marginal occurrence, contradicting 
detailed studies of this system (Coppock 1994) and the dynamics suggested 
by herd- history data.

These casual comparisons invite more disaggregated analysis. Our data on 
herders’ subjective expectations of herd dynamics (figure 7.1) represent only 
one- year- ahead expectations under necessarily limited variability in rainfall 
regimes. By contrast, the pattern exhibited in the actual herd- history data 
used by Desta/Lybbert et al. are the result of a mixture of environmental 
conditions over a period of seventeen years.9 These differences are made 
clear in table 7.2, which summarizes the data on expected herd size one year 
ahead, conditional on the state of nature and on having had a herd with a 
similar size, and its representation in figures 7.2 and 7.3, where we present 
the scatter plot and kernel regression relating expected herd size one year 
ahead and initial herd size for bad and normal/good years.10

These plots, and the summary statistics in table 7.2, suggest two insights. 
First, the relation between expected and initial herd size is nonlinear only in 
the case of bad rainfall conditions. Under good or normal climatic conditions 
(and perhaps unsurprisingly), almost all herders expect herd growth no matter 
the initial herd size. This disaggregation implies that adverse weather shocks 
drive the nonlinear dynamics revealed by the analysis of herd- history data.

Second, the dispersion around the expected herd- growth values is much 
bigger under conditions of  bad rainfall than in a normal/good year, as 
reflected by the max.- min. spreads. Herders exhibit far more heterogeneous 
beliefs about their ability to deal with adverse states of nature than with 
favorable ones. If, following Schultz (1975), one interprets this variation 
as at least partly reflecting pastoralist herding ability then “the ability to 
deal with disequilibria” seems to play a significant role in wealth dynamics. 
Put differently, risk and ability may intersect to generate the complex herd 
dynamics observed in this system.

9. For example, Kamara, Swallow, and Kirk (2004) identify three major droughts (1984/85, 
1991/92, and 1995/96) and two periods of excessive rains (1980/81 and 1997/98) in this region 
over the period covered by the Desta/Lybbert et al. data. To these natural disasters, one may 
add the generalized ethnic clashes between the Boran and the Gabra in 1992, following the 
fall of the Derg regime. Barrett and Santos (2014) explore how changing rainfall distributions 
might affect observed herd dynamics.

10. To conserve space, we omit figures reflecting the data and nonparametric regressions 
under extreme weather conditions, which show that during severe drought everyone expects 
to lose cattle.
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7.3  Expected Herd Dynamics in a Stochastic Environment

In order to generate herders’ subjective expectations of herd dynamics 
under a mixture of  states of  nature, we need to integrate data on herd- 
growth expectations conditional on rainfall (the elicited expectations data 
previously described) with historical rainfall data (in practice, monthly 
rainfall data for the four sites over the period 1991–2001).11 With this infor-
mation we can then simulate herd evolution over longer periods than just 
one year ahead. Since we must predict out- of- sample in simulating herd 
evolution for large values of initial herd size, we estimate the parametric 
relation between initial and expected herd sizes (hereafter, herd0 and herd1, 

11. Average rainfall was 490 mm/year, with a standard deviation of 152 mm/year. Given the 
skewness and the kurtosis of this distribution, we cannot reject the null hypothesis that rainfall 
follows a normal distribution. The minimum annual rainfall over the period was registered in 
1999 (259 mm) and the maximum in 1997 (765 mm). The probability of such events is 0.064 
and 0.035. Given these results, we assumed, for simulation purposes, a symmetric distribution, 
with a probability of extreme events (drought; or very good year) equal to 0.10. In a separate 
analysis (Barrett and Santos 2014) we show that the results are relatively sensitive to changes 
in the rainfall distribution, reflecting the dependency of this system on rainfall and its vulner-
ability to climate change.

Fig. 7.2 Expected herd dynamics under bad rainfall conditions
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respectively) conditional on each of  the four rainfall scenarios (drought 
[very bad], bad, normal/good, and very good). We estimate this relation 
with a respondent fixed effect specification, αi, taking advantage of having 
repeated observations, r, across different herd- size intervals for each indi-
vidual i. We thus estimate

(2) herd1ir = f herd0ir( ) + ai + ´ir 

where f (herd0ir) is a polynomial function of  initial herd size.12 Table 7.3 
presents the estimates, which reflect the same results displayed visually in 
figures 7.2 and 7.3, and suggested in table 7.2: unambiguous linear expected 
growth under normal/good/very good rainfall conditions, a nonlinear rela-
tion between herd1 and herd0 under conditions of poor rainfall and drought, 

12. Besides the assumptions on the functional form of f(·), we also assumed that ́ ir ~ N 0, s2( ).  
Other specifications that replace the fixed effect with other regressors that could affect subjec-
tive expectations, such as gender, age, experience, and migrant status, were considered, but none 
of those variables proved statistically significant, so we omit these results. We omit  higher- order 
polynomial terms in the very good and good/normal year specifications because they added 
nothing given the good fit already achieved with a simple linear specification with fixed effects.

Fig. 7.3 Expected herd dynamics under good or normal rainfall conditions
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and with considerable dispersion so that the precision of those estimates (as 
measured by the R2) is far less than under favorable rainfall regimes.

We then use these estimates to simulate the expected evolution of herd 
sizes.13 Figure 7.4 presents the basic structure of the simulation procedure 
we used, while figure 7.5 presents the mean of ten- year- ahead herd size for 
500 replicates of this simulation with initial herd sizes between one and sixty.

The results are remarkably similar to the dynamics revealed by the herd- 
history data (the solid line in figure 4 of Lybbert et al. 2004), both in the 
general shape of the curve and in the location of the different equilibria. This 
strongly suggests that the mismatch between the one- year- ahead transitions 
predicted by the two data sets that we discussed above arose because of differ-
ences in the underlying distribution of the states of nature. Once we account 
for historical rainfall patterns and simulate the  longer- term herd dynamics, it 
appears that Boran pastoralists’ subjective expectations reflect a remarkably 
accurate understanding of the nature of how their herds have evolved over 
the past generation. In particular, they expect that, on average, someone with 
a herd below approximately fifteen cattle will eventually lose almost all of his 
wealth, collapsing into a destitute equilibrium with just one cow.

Can we be sure that multiple equilibria exist? Given the small sample size, 
the answer is no; the lower confidence band crosses the equilibrium line 
only once, from above, at the  lower- level equilibrium (one animal). But as 
we show below, this merely reflects our current assumption that all herders 

13. We calibrate these estimates to impose basic biological rules for livestock. More precisely, 
we do not allow for negative herds and impose that biological growth under good rainfall con-
ditions is delayed by two years, that is, enough for cows to reproduce in accordance with basic 
gestational patterns. We also constrain the predicted values for initial herd sizes above  fifty- two 
(poor rainfall) and  forty- five (drought) to be linear, with a slope of 0.033 and 0.009, respec-
tively, preventing unbelievable predictions due to the parameter estimates at the boundaries 
of our sample.

Table 7.3 Estimates of expected herd dynamics conditional on rainfall

 Variable  Very good  Good  Bad  Very bad 

Herd0 1.293 1.477 0.528 0.246 
(0.000) (0.019) (0.224) (0.246) 

Herd0
2 0.026 0.009 

(0.010) (0.010) 
Herd0

3 −0.00039 −.00017 
(0.0001) (0.0001) 

Constant 0.897 0.179 0.513 −0.575 
(0.448) (0.416) (1.185) (1.083) 

N 61 96 192 61 
 R2  0.986  0.994  0.792  0.589  

Note: Values within parentheses are robust standard errors.
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Fig. 7.5 Simulated expected herd dynamics
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follow the same growth path. When we abandon the strong assumption that 
all herders follow the same dynamics and disaggregate by herder ability, the 
precision of our estimates improves significantly.

Concentrating on our average estimates, do these nonlinearities lead to a 
poverty trap? The answer depends, in part, on what one means by a “poverty 
trap.” In table 7.4 we quantify the probability of  moving between equi-
libria over a ten- year period given the stochastic nature of these shocks. 
There is a positive probability that a herder starting with a herd between 
one and four cattle will, ten years later, have grown his herd. Indeed, there 
is even a very small probability (less than 1 percent) that he finishes above 
the accumulation threshold. Hence, the strictest interpretation of a poverty 
trap—that initial conditions totally determine future wealth and the system 
is non ergodic, thus the probability of  growing to a higher equilibrium is 
zero—finds no support in our data. However, the probability of  moving 
out of poverty is quite low (less than 12 percent), suggesting that, in this 
context, the idea of a poverty trap is most usefully conceptualized as a high 
probability that agents will remain at lower levels of welfare, a weaker but 
perhaps more realistic interpretation of the concept in stochastic environ-
ments (Azariadis and Stachurski 2005).

Summarizing the results so far, we find that Boran pastoralists accurately 
perceive long- term herd dynamics characterized by multiple wealth equi-
libria consistent with the notion of a poverty trap: shocks almost totally 
prevent wealth accumulation that would allow herders at a low initial wealth 
level from escaping poverty. However, these dynamics seem entirely the result 
of heterogeneity in growth rates under different rainfall conditions. Growth 
is universally expected in good years, while S- shaped dynamics seem to result 
from  wealth- differentiated capacity to deal with bad rainfall conditions.14

Our data also show that, even in bad years, not all herders expect their 
herds to shrink. The considerable dispersion of beliefs about herd dynamics 

14. This could explain why, for example, Mogues (2011), studying livestock accumulation 
in other regions of Ethiopia in the period 2000/03, with no major shocks in between, does not 
find evidence of such nonlinearities, and why Barrett et al. (2006) find evidence of an S- shaped 
curve for asset dynamics in the northern Kenya PARIMA sample, which included a major 
drought ending in 2001.

Table 7.4 Estimated herd size ten- year transition matrix

 Herdt+10  0–4  5–14  15–39  >40  

Herdt

0–4 0.879 0.113 0.009 0.000 
5–14 0.575 0.262 0.133 0.030 
15–39 0.204 0.280 0.255 0.261 

 >40  0.136  0.230  0.291  0.342  
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under adverse states of nature suggests that  herder- specific characteristics, 
which we summarize as ability, may likewise play a central role in condition-
ing wealth dynamics. The next section investigates this possibility.

7.4  Ability and Expected Herd Dynamics

Herding in semiarid environments is a difficult livelihood. One must know 
how to treat livestock diseases and injuries, protect cattle against predators, 
manage their nutrition, navigate to distant grazing and watering sites, assist 
in difficult calving episodes, and so forth. Not everyone learns and prac-
tices these diverse skills equally well. One would expect herders with greater 
animal husbandry skills to be able to manage larger herds and to be less 
subject to adverse shocks to herd size than less skilled herders. Put differ-
ently, the herd dynamics explored in the historical data and in the previous 
section may ignore important differences in herder ability.

We explore the impact of differences in herding ability on herd dynamics 
by using the data coming from three rounds of the PARIMA panel of pasto-
ralist households, described in section 7.2, to estimate herder ability using 
stochastic parametric frontier estimation methods for panel data (Kumbhakar 
and Lovell 2000). More precisely, we estimate the herd frontier that explains 
individual i’s herd size at the beginning of period t, hit, conditional on a vector 
of household attributes, Xit–1, and herd size and labor endowments (the two 
most important inputs for which we have information) at the beginning of the 
prior period, using a composed error term that includes a normally distributed 
random component reflecting standard sampling and measurement error, c, 
and a one- sided term reflecting  observation- specific but time- invariant inef-
ficiency, fi ≥ 0, which we assume follows a truncated normal distribution, 
N + m, s2( ):
(3) hit = f hit−1, lit−1( ) + bXit−1 − fi + cit. 

We allow for f(hit–1, lit–1) to reflect the possibility of two different growth paths, 
depending on whether the initial herd is above or below the  fifteen- cattle 
threshold identified by Lybbert et al. (2004).15

Since these households were surveyed repeatedly from 2000 to 2003, we can 
take advantage of multiple observations for each herder to compute consis-
tent  herder- specific mean efficiency measures, that is, each pastoralist’s prox-
imity to the herd frontier. The inefficiency parameter fi  captures any time- 

15. In equation (1) we make clear that there is no necessary equivalence between the threshold 
identified for the average household—which would correspond to the value estimated by Lyb-
bert et al. (2004)—and a possible  cohort- specific threshold. However, given the analysis cited 
in section 7.1 that seems to suggest changes in household behavior for herd sizes around the 
average threshold, this value seemed a natural starting point for the analysis. One alternative 
that we did not pursue would be to agnostically address this problem using a search and testing 
approach similar to the one suggested in Hansen (2000).
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invariant—and  period- average time- varying—unobservables associated 
with systematic deviation from the herd frontier. This parameter can clearly 
capture factors beyond the herder’s unobserved ability, such as the quality of 
local grazing lands, but fi  is almost surely strongly correlated with ability. 
Moreover, it is an open question whether it matters for targeting and program-
ming if  the features that cause systematic underperformance are intrinsic, 
immutable individual skills or  community- level or slow- changing individual 
characteristics. The key is that there exist distinct groups of households who 
routinely outperform or underperform their neighbors, however we under-
stand the structural genesis of those relative performance differences.

The interpretation of  these estimates as proxies for ability can still be 
contested on at least two grounds. First, the lagged values of herd size are 
clearly related to lagged (and current) ability, hence our estimates of inef-
ficiency are likely inconsistent. This would matter if  we were interested in 
cardinal measures of inefficiency. But we focus only on the ordinal measures, 
grouping households into low-  and high- ability cohorts. So long as the cor-
relation between lagged wealth and ability does not affect the ordering of 
each observation within the inefficiency distribution, the possible bias in 
point estimates will be of no consequence for present purposes.

Second, we estimate inefficiency by imposing a specific functional form, a 
specific distribution for the inefficiency parameter, and a specific accumula-
tion threshold that, from the existing literature (in particular, Lybbert et al. 
2004), seems valid for the average herder in this setting. These assumptions 
can introduce misspecification error that may be easily conflated with inef-
ficiency (Sherlund, Barrett, and Adesina 2002). As with the prior concern 
about inconsistent parameter estimates, our reliance purely on the ordering 
of the estimates sharply limits the relevance of such concerns. Nonetheless, 
an alternative approach is to use more flexible, nonparametric efficiency 
estimation methods, in particular data envelopment analysis, that can easily 
allow for variable returns to scale without imposing specific assumptions 
about functional or distributional forms (see Coelli et al. 2005). Our analysis 
is robust to this alternative way of estimating inefficiency, so we maintain 
that the ordinal inefficiency estimates we estimate provide a reasonable proxy 
for relative herder ability/skill and thus serve present purposes well.16

Table 7.5 presents estimates of  the herd frontier based on 2000–2001, 
2001–2002, and 2002–2003 annual observations for the 113 households for 
which we have complete data on each of the covariates.17 The results indicate 
statistically significant ( p- value = 0.053) differences in the asset dynam-
ics above and below the threshold, with expected herd growth (collapse) 

16. The DEA estimates were obtained using the - dea-  command in Stata (Ji and Lee 2010). 
The results are available from the lead author by request.

17. Because one of the households is the successor of an initial household, we only have data 
for the last two years. Hence, we’re using an unbalanced panel with 338 observations.
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above (below) the threshold. The estimated frontier is piecewise quadratic, 
as  higher- order polynomial terms of lagged herd size have no statistically 
significant effect.18 Household labor and land endowments have no effect at 
the margin on expected herd size, signaling that these are not limiting in this 
environment for most households. Male- headed households enjoy signifi-
cantly larger herd sizes, which may partly capture household composition 
effects (with male- headed households having more men available to herd, 
especially on treks away from base camp lasting days or weeks, holding labor 
availability constant). There exist statistically significant, albeit diminishing, 
marginal returns to herding experience. And there are marginally significant 
fixed effects associated with location and year (in particular, for 2001–2002, 
the year of recovery after the severe 1999–2000 drought), the latter result 

18. Table 7.1 defines these variables and presents the descriptive statistics. We also estimated 
this regression using cubic and quartic terms, but none of the  higher- order polynomials were 
statistically significantly different from zero and one could not reject the null hypothesis that 
the  higher- order terms jointly have no effect on next period’s herd size, once one allows for the 
threshold effect. The variable “no cattle at t − 1” is included to control for the fact that herd 
growth is different when one has no cattle—growth can then only occur through purchases or 
gifts, both of which are very infrequent (Lybbert et al. 2004)—than when one has a positive 
herd size. Although the point estimate on this variable is not statistically significantly different 
from zero, when we do not control for this effect the estimated coefficients on lagged herd size 
and its various interactions become far more imprecise.

Table 7.5 Stochastic parametric herd frontier estimates

Variable  Coefficient  Std. err.  P- value

Herd size at t − 1 * above threshold 1.022 0.093 0.000 
Herd size at t − 1 squared * above threshold 0.000 0.001 0.689 
Herd size at t − 1 * below threshold 0.890 0.307 0.004 
Herd size at t − 1 squared * below threshold −0.009 0.022 0.681 
No cattle at t − 1 −1.126 1.245 0.366 
Labor * above threshold −0.089 0.174 0.611 
Labor * below threshold 0.099 0.125 0.427 
Land 0.022 0.152 0.885 
Sex 1.333 0.702 0.057 
Experience 0.137 0.071 0.052 
Experience squared −0.002 0.001 0.174 
Migrant −0.605 0.998 0.544 
2000−2001 −0.740 0.531 0.164 
2001−2002 1.553 0.525 0.003 
Dida Hara 1.870 1.110 0.092 
Qorate 0.026 1.229 0.983 
Wachille 0.827 1.131 0.465 
Constant 13.012 195.554 0.947 
μ 14.671 195.551 0.940 

N 338
R2  0.230
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reinforcing our earlier finding about  state- dependent growth. The estimated 
distribution of the inefficiency estimates (with cattle as the units of measure) 
is presented in figure 7.6,19 allowing a visual analysis of the  within- sample 
variation.

Using the predicted value of each herder’s estimated inefficiency, we then 
divide our sample into two subsamples:  lower- ability (those in the 4th quar-
tile of  the inefficiency estimates with fi > 15.38) and a complementary 
category of  higher- ability herders. The observations are concentrated around  
just a few points ranges of inefficiency estimates, suggesting that there may 
be little value to further subdivision of the sample.20 For each of these two 
classes we reestimate equation (2), obtaining estimates of the parametric 
models that relate expected and initial herd size for each subsample, after 
which we performed the same simulation as above.21 Figure 7.7 shows the 
nonparametric conditional expectation function (and 95 percent confidence 
intervals) of ten- year- ahead herd size obtained for 500 replicates with initial 

19. Estimated using the Epanechnikov kernel, with a bandwidth of 0.24697.
20. We also experimented with splitting the  higher- ability herders into two categories, those 

of highest ability (the 1st quartile of the inefficiency distribution) and a residual  medium- ability 
class (the 2nd and 3rd quartiles). The qualitative results are similar, so we present the simpler 
approach here. Results of the most disaggregated analysis are available from the lead author 
by request.

21. These eight parametric models (four states of nature × two ability classes) are qualita-
tively similar to the ones presented in table 7.2. To conserve space we omit them here, but they 
are available from the lead author by request.

Fig. 7.6 Empirical density function of herd- size inefficiency estimates
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herd sizes between one and sixty cattle for each ability class. The results are 
easily summarized.

Although those in the lowest ability quartile exhibit S- shaped expected 
herd dynamics, these lie everywhere beneath the dynamic equilibrium line 
(the solid 45° line in figure 7.7). Thus, low- ability herders are expected to 
converge toward the low- level dynamic asset equilibrium of one to two head 
of cattle over time. Recall that all herders expect to grow their herds during 
good and normal rainfall years. So this expected long- run herd- size collapse 
arises entirely from low- ability herders’ difficulty in managing and recover-
ing from adverse weather shocks.

Higher- ability herders likewise exhibit S- shaped expected herd dynam-
ics. However, they face multiple dynamic equilibria, with an accumulation 
threshold at eleven to seventeen cattle, similar to the threshold estimated 
by Lybbert et al. (2004) from the herd- history data. Notice also that, when 
we allow for different growth paths conditional on ability, we get much 
more precise estimates of the herd dynamics. In particular, both confidence 
bands for the  higher- ability herders cross the dynamic equilibrium line in 

Fig. 7.7 Simulated expected herd dynamics—the effect of ability
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three points, two of which represent stable dynamic equilibria, at one to 
two and  twenty- nine to  thirty- five cattle, respectively. The implication, 
reflected in figure 7.7, is that S- shaped herd dynamics characteristic of  a   
multiple equilibrium poverty trap are not followed by all herders. Low- 
ability herders face a unique dynamic equilibrium at lower levels of welfare, 
giving rise to a different sort of poverty trap than that faced by herders with 
higher ability, who expect to accumulate wealth so long as they maintain an 
herd size above the twelve to seventeen cattle threshold. These results clearly 
raise important practical questions with respect to any asset redistribution 
or transfer policy, as ability is not easily and quickly identified in conven-
tional survey methods, at least not by outsiders such as the governmental 
and nongovernmental agencies that typically provide transfers and public 
safety net programs.

7.5  The Policy Challenge: Targeting with Imperfectly Known Dynamics

The possibility that multiple mechanisms underpin wealth dynamics 
poses a challenge for policymakers. To illustrate how an understanding of 
wealth dynamics might affect the design and performance of an interven-
tion, we explore the effectiveness of herd restocking in this system, as this 
is perhaps the most common form of postdrought assistance provided to 
pastoralists by donors and governments in the region.

We simulate the effect of three different scenarios under the maintained 
assumption that growth does depend on ability (as represented in figure 
7.7) and using a constant budget. In Scenario 1, all herds below five cattle 
(a customary, Boran- defined poverty line) are given animals to boost their 
herd to five head, irrespective of the recipient herder’s ability. This reflects 
the dominant current paradigm of progressive transfers to the poorest. In 
our simulations, in aggregate that rule leads to a transfer of  thirty- six cattle 
to seventeen beneficiaries in our 2003 sample of  ninety- seven households. 
Those  thirty- six cattle become the fixed “budget” that we maintain in the 
next two scenarios. In Scenario 2, we simulate the effects of a transfer tar-
geted so as to maximize the number of “viable” herders, that is, those that 
have a herd that is larger than the estimated minimum accumulation thresh-
old of eleven cattle. Although we assume that growth depends on ability, we 
also assume that there exists no effective mechanism to elicit herder ability; 
so, transfers are conditioned solely on observable herd sizes. Then, in Sce-
nario 3, we assume one can accurately identify herder by ability group and, 
as with Scenario 2, again target transfers so as to maximize asset growth. 
Scenario 3 involves transfers to sixteen  higher- ability herders, with limited 
overlap in identity with the seventeen recipients under Scenario 1. The main 
difference between these scenarios is evident in figure 7.8, where we draw 
the expected herd- size gains associated with the transfer of one cattle, con-
ditional on herder ability.
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Given expected herd dynamics over the decade following the hypothesized 
transfer, the transfer is expected to generate herd growth, net of  the one 
cattle transfer (i.e., expected gains > 1), only for  higher- ability recipients 
with ex ante herd size between nine and  twenty- two head. Herders of low 
ability or, if  of higher ability, with the smallest (or largest) herds are expected 
to lose some of their posttransfer herd over the ensuing decade, signaling 
negative  medium-  to long- term growth returns on livestock transfers to the 
poorest (or wealthiest) herders of higher ability. The expected herd gain is 
maximized for a transfer to a  higher- ability herder with an ex ante herd size 
of fifteen cattle, a significantly larger herd than is typical of restocking pro-
gram participants, since such interventions are typically targeted following 
some  poverty- reduction criteria, like Scenario 1.

Table 7.6 presents the results of a comparison among these three different 
scenarios for targeting herd- restocking transfers that reflect both this dis-
cussion and, implicitly, the distribution of low-  and high- ability types as a 
function of pretransfer wealth, as represented in figure 7.9.

As one would expect based on the dynamics of this system, restocking tar-
geted to  lower- wealth households (specifically, those fewer than five cattle) 

Fig. 7.8 Expected gains from the transfer of one cattle
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fails to promote growth among the poor. After ten years, beneficiaries enjoy 
an expected gain of 0.86 cattle, but from an average transfer of 2.12 cattle. 
This implies a −4.4 percent compound annual return on investment in trans-
fer resources, reflecting expected herd losses below the critical herd- size 
threshold. The  growth- promoting impacts of herd restocking become more 
satisfactory in the other two scenarios that target those who can reach the 

Fig. 7.9 Distribution of high-  and low- ability types as a function of initial wealth

Table 7.6 Expected effects of restocking under different targeting assumptions

Scenario  Number  
Average 
transfer  

Average 
herd size 

(2003)  

Expected herd size 
(2013)

 

Expected 
gains from 

transferw/ transfer  
w/out 

transfer

1. Beneficiaries 17 2.12 2.88 4.46 3.63 0.86 
 

2. Beneficiaries 23 2 10 12.20 9.34 2.86

3. Beneficiaries 18  1.94  10.05  13.40  10.09  3.3 
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herd accumulation threshold through transfers rather than the ex ante poor-
est households. Under Scenario 2, the average net returns to this policy after 
ten years are 43 percent (3.6 percent annually). These returns significantly 
increase to 70 percent (5.4 percent annually), under Scenario 3, showing that 
the payoff to the design of a reliable mechanism for identifying herding abil-
ity is potentially considerable, given that ability seems to matter a great deal 
to wealth dynamics in this system. But targeting the accumulation threshold 
is the main factor that drives achieving a positive long- run rate of return on 
transfer resources.

This payoff naturally depends on the distribution of  ability types. As 
shown in figure 7.9 there is, in this system at least, a correlation between 
ex ante wealth and ability that reflects the joint operation of the dynam-
ics described in this chapter—with low- ability types expected to fall into 
and remain in poverty regardless of initial wealth—and the insufficiency 
of  informal insurance, particularly among the poor (Santos and Barrett 
2011). Roughly half  of the herders with less than five cattle are classified as 
low ability (which, recall, we defined as being in the lower quartile of the 
distribution of our estimates of technical efficiency). The frequency of low- 
ability herders then diminishes with wealth: 22 percent of the beneficiaries 
of transfers under Scenario 2 (with herds between nine and eleven cattle) are 
classified as low ability, and only little more than 10 percent of the herders 
with wealth above the accumulation threshold are classified as such. The 
challenge intrinsic to restocking projects targeted at those with small herds 
is that it implicitly favors those with the least ability to manage the livestock 
they receive. This finding lends support to recent policy initiatives in the East 
African drylands that focus more on cash transfers than livestock transfers 
to support the poorest community members.

7.6  Conclusions

Using unique data on subjective herd- growth expectations conditional 
on expected rainfall, we find that southern Ethiopian pastoralists appear to 
understand the nonstationary herd dynamics that long- term herd- history 
data suggest characterize their system, corroborating Lybbert et al. (2004) 
and related results using different data and methods. Moreover, pastoralists’ 
responses reveal that multiple dynamic equilibria arise purely due to adverse 
shocks associated with low rainfall years and only among pastoralists of 
higher herding ability. Lower- ability herders appear to converge toward a 
unique, low- level equilibrium herd size. When adverse weather events strike, 
they lose livestock and, in expectation, cannot recover quickly enough before 
the next drought hits. Thus, the data suggest that even among a seemingly 
homogeneous population in an ethnically uniform region offering effectively 
only one livelihood option—livestock herding—there exist complex wealth 
dynamics characterized by distinct convergence clubs defined by individual 

You are reading copyrighted material published by University of Chicago Press.  
Unauthorized posting, copying, or distributing of this work except as permitted under 

U.S. copyright law is illegal and injures the author and publisher.



288    Paulo Santos and Christopher B. Barrett

ability, with multiple dynamic equilibria existing for only a subset of those 
clubs and a unique, low- level equilibrium for the other club.

These findings carry two main policy implications. First, the need for 
interventions to lift people out of—or to prevent their collapse into—pov-
erty traps, seems to depend on the nature of the adverse shocks, in particular, 
whether their severity and frequency is such that growth under favorable 
states of nature is often and sharply reversed, making accumulation below 
a critical threshold unlikely (albeit not impossible). Risk mitigation or trans-
fer methods to limit the frequency or magnitude of shocks may be as or 
more valuable than transfers to facilitate growth among the poorest, a point 
made as well in Ikegami et al. (chapter 6, this volume). Second, the appro-
priate design and targeting of social protection in this stochastic environ-
ment depend very much on individual characteristics, perhaps including 
 difficult- to- observe characteristics such as ability. Identifying ability may be 
operationally difficult, but failure to take such characteristics into account 
may lead to ill- conceived efforts and wasted scarce resources.

Finally, these findings also carry implications in terms of future research. 
First, the need to understand how important is heterogeneity in poverty 
dynamics. Recent work analyzing  poverty- graduation programs seems to 
suggest that unobserved heterogeneity matters (see, e.g., Bandiera et al. 
2017; Gobin, Santos, and Toth 2017). Second, what can be done to under-
stand what lies under the frequently used, but rarely defined, concept of 
“ability.” In this chapter, we equated ability with the (estimates of) technical 
efficiency, as the capacity to produce more with the same resources seems 
an intuitively acceptable approximation of  ability. A natural next step is 
to “reduce the residual” by measuring the skills that, so far and to a large 
extent, have been left unmeasured. Dean, Schilbach, and Schofield’s (chap-
ter 2, this volume) discussion of the potential importance of noncognitive 
skills such self- control, attention, and memory as psychological determi-
nants of productivity seems a natural starting point, although much needs 
to be understood regarding the practical difficulties of such measurement 
(Laajaj and Macours 2017).
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