2.1 Introduction

Economists have long recognized the importance of human capital accumulation for economic growth. And since the seminal analysis of Jorgenson and Griliches (1967), which provided a straightforward measurement framework, indices of human capital, or labor quality, have become standard in growth-accounting studies for many countries. In this chapter, we assess alternative methods for estimating US labor quality and provide projections for the future. We also identify key uncertainties that will determine the actual path of US labor quality in the medium and longer run. In almost all scenarios we consider, labor quality adds less to growth over the next decade than it has historically—in some scenarios, much less.

We begin by reviewing commonly used methods for measuring labor quality. Since labor quality is not directly observable, measuring it requires researchers to find an observable proxy. Not surprisingly, the best proxy is wages, which should move closely with marginal products. For example, a neurosurgeon is likely to have a higher marginal product than a grocery clerk. This difference in marginal products is, in turn, arguably the main reason why the neurosurgeon is paid more.
The question is how best to impute the relative marginal products of workers based on different characteristics. We develop a novel statistical metric that evaluates the reliability of alternative approaches to imputing relative marginal products. Specifically, we examine the trade-off that each approach implicitly makes between (a) the share of the productivity-related variation in observed wages that is explained, and (b) the precision of the imputed estimates of relative marginal products of different workers.¹

In our statistical assessment, the best-performing model is a parsimonious Mincer specification that includes experience, education, and, when accurate data are available, occupation. Experience and education are clearly related to productivity differentials across workers, and are empirically important for explaining the patterns of wages in the data. Other commonly used variables raise challenges. For example, both occupation and gender add explanatory power with little cost in terms of precision. But, historically, occupation has been challenging to forecast with any degree of accuracy so, for the purpose of projections, we exclude it. For gender, it is unclear to what degree gender-related wage differentials reflect marginal products, so we again prefer to exclude it. (In any case, including gender turns out to make little difference empirically to our estimates of labor quality.) Other variables (such as industry or race) add little to explanatory power while substantially reducing the precision of estimated marginal products.

We then use our preferred parsimonious Mincer specification to estimate labor-quality growth from 2002 to 2013 across three alternative data sets.² We find that labor quality grew about 0.5 percent per year—somewhat faster than its postwar average of about 0.4. Indeed, labor quality arguably explains a bit under one-third of labor productivity growth of 1.8 percent per year over the 2002–2013 period.³ This finding is robust across data sources.

Strikingly, the growth and acceleration of labor quality since 2002 has a very different source than it did in the half century before that. In the twentieth century, the primary driver of labor-quality increases was rising educational attainment (Ho and Jorgenson 1999; Goldin and Katz 2009; Fernald and Jones 2014). In contrast, since 2002, the source of labor-quality growth has been a shift in the composition of employment away from lower-

¹. For example, adding an additional variable might add explanatory power for wages, but at the cost of sharply reducing precision of imputed marginal products.
². The time period is constrained by our desire to compare results across three publicly available data sources.
³. This contribution is calculated assuming that growth in output per hour rises one-for-one with growth in labor quality. That is, the growth in labor quality is not multiplied by labor’s share, which would give the proximate growth-accounting contribution. The one-to-one mapping comes from standard economic models, where there is an indirect effect from endogenous growth in capital. The reason is that capital deepening in the models is typically in terms of “effective labor.” Fernald and Jones (2014) discuss this accounting and estimate that increases in labor quality explained 0.4 percent per year of the 2.0 percent annualized growth in US GDP per hour between 1950 and 2007.
skilled and toward higher-skilled workers. This change owed to ongoing secular changes in the labor force as well as cyclical adjustments associated with the Great Recession.

Building on this analysis, we provide alternative scenarios for the evolution of labor-quality growth over the medium and longer run. Our work reinforces the view that labor-quality growth will add less to growth in productivity and output than it has historically. That said, the actual path of labor-quality growth is sensitive to uncertainties about trends in employment rates and, to a lesser extent, educational attainment. These differences will show up in productivity growth, but whether they matter for output growth depends on the degree to which they are offset by hours growth. This highlights a takeaway from our analysis, namely that labor-quality growth and hours growth are often negatively correlated. An important implication of this is that forecasts of overall labor-input growth, or quality-adjusted hours, are preferable to independent projections of labor quality and hours.

Section 2.2 reviews the growth-accounting definition of labor quality that we apply in this chapter. Section 2.3 then discusses the practical challenges involved in empirically applying our conceptual framework and assesses alternative approaches and data sets. Section 2.4 examines the evolution of labor quality since 2002, and compares approaches and data sets. Over this period, labor-quality growth was boosted by disproportionate declines in employment rates among low-skilled workers, especially during and after the Great Recession.

With a framework in place, section 2.5 turns to projections of labor-quality growth over the medium to long term. We forecast that labor-quality growth is likely to slow to somewhere in the range of 0.1 to 0.25 percentage points a year over the next ten years. Should employment composition return to its prerecession levels, medium-term labor-quality growth will fall below this baseline and could even turn negative. In the longer run, trends in education and employment rates are central. To generate labor-quality growth at close to its historical pace requires not just a continuing shift in the composition of employment from low-skilled toward high-skilled workers, but also a resumed upward trend in educational attainment. Although such a scenario is possible, we think it unlikely. In particular, although educational attainment has picked up since 2007, our preferred interpretation is that the rise represents a transitory reaction to a poor economy, not a new upward trend.

2.2 Definition of Labor-Quality Growth

Indices of labor quality are based on standard neoclassical production theory. Consider a neoclassical value-added production function of the form

\[Y = F(K, L) \]

where \(Y \) is output, \(K \) is capital, and \(L \) is labor. The labor component can be decomposed into quality and quantity:

\[L = L_0 + L_1 \]

where \(L_0 \) is the quantity of labor and \(L_1 \) is the quality of labor.

\[L_1 = L_0 Q \]

where \(Q \) is the quality index of labor.

The growth of labor quality is then defined as the growth of the quality index:

\[\Delta Q = \frac{\Delta L_1}{L_0} \]

4. Ho and Jorgenson (1999) survey the history of labor-quality measurement and discuss several semantic and/or conceptual confusions.
Output, Y, is produced by combining the n types of labor inputs, H_1, \ldots, H_n, with a capital input, K. A denotes the level of technological efficiency with which the inputs are combined.\(^5\)

To quantify how changes in inputs affect output growth, we apply a first-order logarithmic Taylor approximation. Small letters denote the natural logarithms of the capitalized variables such that y is the log of output, Y. Applying the first-difference operator, Δ, we can write

\begin{equation}
\Delta y = \ln Y_t - \ln Y_{t-1}.
\end{equation}

This is simply the growth rate of output, as measured by the change in the logarithm of output. The Taylor approximation then reads

\begin{equation}
\Delta y = \frac{\partial F}{\partial A} \frac{A}{Y} \Delta a + \frac{\partial F}{\partial K} \frac{K}{Y} \Delta k + \sum_{i=1}^{n} \frac{\partial F}{\partial H_i} \frac{H_i}{Y} \Delta h_i.
\end{equation}

Output growth depends on technology growth plus the contribution of the various factors of production. The final term in this expression is the effect of changes in labor inputs on output growth, where growth in each type of labor is multiplied by its respective output elasticity.

The contributions of labor inputs can be further decomposed into the effect of growth in total hours (i.e., growth in $\sum_{i=1}^{n} H_i$) and changes in the composition of total hours. To do this we rewrite equation (3) as

\begin{equation}
\Delta y = \frac{\partial F}{\partial A} \frac{A}{Y} \Delta a + \frac{\partial F}{\partial K} \frac{K}{Y} \Delta k + \left(\sum_{i=1}^{n} \frac{\partial F}{\partial H_i} \frac{H_i}{Y} \right) \Delta h_i + \sum_{i=1}^{n} \frac{\partial F}{\partial H_i} \frac{H_i}{Y} \left(\Delta h_i - \Delta h \right).
\end{equation}

Growth in total hours is Δh and the change in the composition of hours worked is

\begin{equation}
\sum_{i=1}^{n} \frac{\partial F}{\partial H_i} \frac{H_i}{Y} \left(\Delta h_i - \Delta h \right).
\end{equation}

The change in the composition of hours worked in equation (5) amplifies or attenuates growth in total labor input relative to growth in total hours. This wedge between growth in labor input and growth in hours is commonly interpreted as labor-quality growth. Intuitively, if all types of labor inputs, H_i, grow at the same rate, then the composition of total hours does not change and labor-quality growth is zero. But if, instead, hours of relatively

\(^5\) Assuming a single capital input is for simplicity and does not affect the results that follow for labor input.
more productive workers (with high $[\partial F/\partial H_i]$) grow more quickly than hours of less productive workers, then labor-quality growth will be positive.

Empirically, the marginal products of labor, $(\partial F/\partial H_i)$, in equation (5) are not observed. Under standard neoclassical conditions, the $(\partial F/\partial H_i)$ are proportional to the nominal hourly wage earned by workers of type i, denoted W_i. We assume that the proportionality constant is equal across types of labor. If this is the case then

$$(6) \quad \frac{\sum_{i=1}^{n} (\partial F/\partial H_i) H_i}{\sum_{j=1}^{n} W_j H_j} = \frac{W_i H_i}{\sum_{j=1}^{n} W_j H_j},$$

which is the share of total compensation that gets paid to workers of type i.

Under these assumptions, labor-quality growth, denoted by g_{LQ}, is the compensation-share-weighted average deviation of labor input from total hours growth by type, that is,

$$(7) \quad g_{LQ} = \sum_{j=1}^{n} \frac{W_j H_j}{\sum_{j=1}^{n} W_j H_j} (\Delta h_i - \Delta h).$$

This is the measure of labor-quality growth that we analyze. It is the same as the one used in range of growth-accounting data sets for many countries.7

Note that growth in total labor input, or “quality-adjusted” hours, is simply the share-weighted growth in hours:

$$(8) \quad g_{LQ} + \Delta h = \sum_{j=1}^{n} \frac{W_j H_j}{\sum_{j=1}^{n} W_j H_j} \Delta h_i.$$

2.3 Measurement of Labor-Quality Growth

To implement equation (7) and obtain an empirical estimate of labor-quality growth requires three things:

1. **Definition of worker types**: decision regarding the specific types of workers, $i = 1, \ldots, n$, the labor-quality index will distinguish between.
2. **Estimate of wage by worker type**: estimate of average hourly earnings

6. In competitive markets, standard neoclassical assumptions imply that real (output-price-deflated) wages equal marginal products, so the assumption holds (with proportionality given by the output price). Imperfect competition in the output market allows firms to charge a markup of price over marginal cost, but the markup is constant across types of workers so the assumption again holds. It also holds if firms have some monopsony power in the labor market, as long as the wedge is constant across types of labor.

7. For the United States, examples include Jorgenson, Gollop, and Fraumeni (1987), Jorgenson, Ho, and Samuels (2014), Ho and Jorgenson (1999), Zoghi (2010), and the Bureau of Labor Statistics (2015a, 2015b). Notable examples for a wider set of countries include EUKLEMS (O’Mahony and Timmer 2009), the Conference Board’s Total Economy Database (van Ark and Erumban 2015), and the Penn World Tables (Feenstra, Inklaar, and Timmer 2015).

You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher.
for each worker type, W_i, used to construct the share of each worker type in total compensation.

3. **Measure of hours**: measure of hours worked by worker type, H_i, used to calculate the deviation of hours growth by worker type, Δh_i, from overall hours growth, Δh.

Item (3) is relatively straightforward. Measures of hours worked by individuals are available in many data sets. Once the worker types are defined, calculation of H_i simply involves aggregation of hours across individuals in each of the n groups.

Items (1) and (2) are less straightforward than (3), and we discuss the different options for dealing with them in this section. We are not the first to discuss the choice of worker types and wage measures in the context of the construction of labor-quality indices (e.g., see Zoghi 2010). Our contribution relative to that work is to introduce a framework that allows us to make tractable choices for (1) and (2) and “test” those choices against each other using standard statistical techniques.

In terms of data sets, we focus primarily on the American Community Survey (ACS). The ACS is a smaller, annual version of the decennial census and collects a relatively narrow range of demographic and socioeconomic data on a sample of about 1 percent of the US population (approximately three million individuals) each year.8 We also consider two other data sets. The first is the Current Population Survey’s Output Rotation Groups (CPS-ORG), which consists of the outgoing rotation groups from the Current Population Survey (CPS). This is the quarter of the CPS respondents that are asked about their earnings and income in any given month. This results in an annual sample of about 135,000 individuals. The second, the Current Population Survey’s Annual Social and Economic Supplement (CPS-ASEC), is the Annual Social and Economic Supplement to the Current Population Survey, also known as the March supplement. It contains annual earnings and income data from the full March CPS sample (70,000 individuals).

Though based on different samples and sampling methods, each of the data sets allows for the construction of similar hourly wages, as well as the six variables of education, age, sex, race/ethnicity, industry, and occupation, that are our main focus. In all cases, we measure hours as usual hours worked per week, which is available in all three data sets.

2.3.1 Criteria for Choosing Worker Types and Wage Estimates

Indices of labor quality are built by dividing workers into groups based on their marginal products of labor, $(\partial F/\partial L_i)$. The decision about how many

8. The sample of the ACS has been expanded twice and has only been a 1 percent sample of the population since 2006. In 2000, its first year, the sample was just under 400,000 individuals and between 2001 and 2005 the sample was slightly over one million.
and which worker types, \(i = 1, \ldots, n \), to use depends on (a) the degree to which the types distinguish between workers with different marginal products, and (b) the degree to which the different worker types capture the cross-individual variation in wages.

A simple way to quantitatively assess the degree to which these criteria are met for any particular grouping is a regression. To see this, consider \(j \) individuals and denote the log of their individual hourly wage by \(w_j \). For each individual we also observe a vector \(x_j \) of individual-level characteristics based on their worker type, \(i \). Under the assumption that relative wages reflect relative marginal products, the extent to which the characteristics in the vector, \(x_j \), capture cross-individual differences in marginal products can be measured as the fraction of individual-level log-wage variation that is explained by the variables in \(x_j \). This measure is equal to the \(R^2 \) of the following standard log-wage regression

\[
(9) \quad w_j = x_j' \beta + \epsilon_j.
\]

Here, \(x_j' \beta \) is the part of the wage variation captured by the variables in \(x_j \).

Though simple, this specification is very general. It subsumes the case in which the elements of \(x_j \) are dummy variables that span the set of worker types. In this version, every type is a stratum made up of individuals with the characteristics as in Jorgenson, Gollop, and Fraumeni (1987). It also includes the case where \(x_j \) contains polynomial terms of variables affecting workers’ marginal product. In this case, equation (9) is a form of a Mincer (1974) regression. This is the model used by Aaronson and Sullivan (2001), among others.

Of course, in practice we do not know the true parameter vector \(\beta \) and the log-wage regression (9) is estimated using a sample of workers of finite size. This means that, at best, we can obtain an estimate \(\hat{\beta} \) of the parameter vector and that we thus infer the part of wages captured by our explanatory variables with error. To formalize this mathematically, we denote the standard deviation of the estimation error of the explained part as

\[
(10) \quad \sigma_j = \sqrt{E[(x_j'(\hat{\beta} - \beta))^2]}.
\]

Since it is important to have a reliable estimate, the smaller \(\sigma_j \) the better. However, for the construction of the labor-quality index, we are not interested in one particular worker, \(j \), but instead in the reliability of the relative marginal product estimate, \(x_j' \hat{\beta} \), across the whole sample. To gauge the reliability of the marginal product estimate across the sample, we consider the \(p \)th percentile of the standard errors, \(\sigma_j \), across individuals. We denote this percentile by \(\bar{\sigma}_p \).

Based on this simple framework, we suggest two statistical criteria for
determining the types of workers to distinguish and the method to use when estimating wages.

1. **R^2 of log-wage regression.** This measures the share of cross-individual wage variation that is captured by our choice of worker types and specification of the log-wage equation.

2. **Percentile of standard error, $\tilde{\sigma}_p$, of marginal product estimates.** This captures how reliably we estimate the (relative) marginal product of labor across workers. Higher R^2’s and lower $\tilde{\sigma}_p$’s are preferred.

Importantly, there is a direct trade-off between these two measures. In principle, we can obtain an $R^2 = 1$ in the estimated regression (9) by including as many linearly independent variables in x_j as we have observations, m. However, this would result in a regression with zero degrees of freedom and $\tilde{\sigma}_p \to \infty$. Alternatively, we can aim for a very low $\tilde{\sigma}_p$ at the expense of a R^2.

Using these tools we can directly compare different choices of (a) worker types and (b) wage estimates by worker type. We do so using scatterplots that plot the R^2 and $\tilde{\sigma}_p$ for each choice that we consider. Before we construct the scatterplots, we first describe the choices of worker types and wage-regression specifications we consider.

2.3.2 Choice of Worker Types and Wage-Regression Specifications

So far, we have discussed the choices of worker types, i, and the regression specification, that is, x_j, as two distinct decisions. In practice, however, they are one and the same. This is because for the variables that are commonly considered in log-wage regressions there are only a finite number of values. Consequently, for a given regression specification in terms of these variables there is only a finite number of permutations of x_j across individuals. In this context, a worker type, i, corresponds to a permutation of the covariates vector x_j.

With this in mind, two questions remain: (a) which variables should be included in the vector x_j, and (b) what functional form of these variables works best?

Choice of Variables in Wage Equation

The decision regarding which variables should be included in the regression is guided by the assumption, underlying the labor-quality growth derivation, that wage differentials between worker types reflect differences in relative marginal products of labor. This means that the variables we include in the wage equation should have two properties. First, they should explain a substantial part of the variation in wages across worker types. Second, the part of wage variation they explain should reflect only differences in marginal products.

Whether a variable has the first property is straightforward to verify statistically. The second property—that is, which variables capture marginal
product differentials—is more controversial. This is because certain observable characteristics may be correlated with wedges between wages and marginal products.10 Though such variables might improve the fit of the wage regression, (9), including them in our measure of labor quality would bias our results.

The most obvious variables to consider for inclusion in equation (9) are education and experience. Several decades of running Mincer regressions has demonstrated a robust correlation between education and potential experience (or age) and wages (Psacharopoulos and Patrinos 2004).11 Although there is some controversy over the degree to which returns to education are derived from improved human capital as opposed to the signaling of unobservable worker characteristics, both perspectives tend to attribute educational wage differentials to differences in marginal products (Weiss 1995).12 Overall, there is broad agreement that the correlation between wages and education or experience is driven by real productivity differentials.13

A substantial literature, summarized in Altonji and Blank (1999), has also pointed to a role for gender, race, and ethnicity in explaining wage differentials. Here we encounter substantial controversy as to whether, or to what degree, these wage differentials reflect differentials in productivity as opposed to discrimination. On the one hand, gender differentials may capture the fact that women are more likely to work part time or leave the labor force temporarily, which is not captured in the measures of experience available in standard data sets (Light and Ureta 1995). And ethnic differentials may proxy for unobserved language barriers that have a real impact on productivity (Hellerstein and Neumark 2008).14 Yet, there is also a substantial literature documenting the existence of labor market discrimination, particularly on the basis of race and ethnicity, in both hiring and wages (Bertrand and Mullainathan 2003; Pager, Western, and Bonikowski 2009; Hellerstein, Neumark, and Troske 2002; Oaxaca and Ransom 1994).

10 See Boeri and van Ours (2013) for a textbook treatment of many possible sources of such wedges.

11 Some of the recent Mincer-regression literature has suggested that there are important differences in the education-experience return profiles between cohorts (Lemieux 2006; Heckman, Lochner, and Todd 2008). We allow for such cohort effects in that we estimate wage regressions on annual cross-sectional data. Thus, in our analysis, cohort and age effects are indistinguishable. This is appropriate for our application because we are only interested in making robust wage predictions and not in isolating specific returns.

12 Outside of developing countries there has been little empirical research that even asks the question of whether educational wage differentials might reflect something other than productivity, and the research in developing countries has generally concluded that the differentials are consistent with differences in productivity (Jones 2001; Hellerstein and Neumark 1995).

13 Broad as the agreement is, it is not entirely universal: incomplete labor contracts, labor market segmentation, or cultural factors could potentially drive a wedge between wage premiums associated with education and experience and differentials in marginal product (Blaug 1985).

14 Skrentny (2013) and Lang (2015) discuss the theoretical and empirical evidence on race and worker productivity.
Finally, there is also a body of literature suggesting that there are inter-industry wage differentials that persist even after controlling for education and experience (Dickens and Katz 1987; Krueger and Summers 1988).\footnote{15} Once again, such differentials could originate from genuine differences in productivity (e.g., the matching of a worker to a particular job may reflect differences in social skills; Deming [2015]) or from non-productivity-related features of an industry (such as profit sharing). Interestingly, although similar arguments could apply to occupational differences, there has been little research that considers whether there are persistent interoccupation wage differentials independent of educational and experience prerequisites. Though not the main purpose of our analysis, our estimates of equation (9) partially fill this void by including occupation in our analysis.

Thus, the observables we focus on are age, education, gender, race, industry, and occupation. We are aware that there are many other variables that could be interpreted as reflecting differences in marginal product of labor across workers. Examples include marital status, rural-urban location, or family structure. However, given the limited evidence that these variables are of first-order importance in explaining cross-individual variation in wages, we omit them from our analysis.

There is also a wide range of potentially influential unobservable characteristics (such as entrepreneurial talent [Silva 2007]; cognitive and noncognitive abilities [Heckman, Stixrud, and Urzua 2006]; and physical attractiveness [Hamermesh and Biddle 1994]).\footnote{16} Although it would be ideal to include measurements of, or proxies for, these characteristics in our analysis, that is not possible in the data sets available.

Choice of Functional Form

With the set of variables to include in x_j in hand, the last thing to consider is the specific functional form imposed on these variables. For example, is the traditional Mincer regression with a constant, linear years of education, and a quadratic polynomial in experience, the appropriate functional form or should dummies for high school graduation and college graduation be included to account for sheepskin effects (Hungerford and Solon 1987)? Are education and experience additively separable, or is there a nonlinear interaction between the two? These questions have been investigated quite carefully for the traditional Mincer regression variables of education and experience (Lemieux 2006), but less attention has been paid to the other variables.

Given this uncertainty around the appropriate functional form, one
approach is to allow for the maximum flexibility in the log-wage regression, (9). To do this, one would treat each possible combination of values of the included variables as a worker type. This boils down to running a fully nonparametric regression in which \(x \) is a vector with separate dummies for each worker type. The fitted log wage, \(x \hat{\beta} \), for each worker type in that case is the average log wage for workers with that combination of values for the included variables. This approach, though flexible, results in a significant loss of degrees of freedom.

For example, if we only consider age and education, restrict the population under consideration to sixteen- to sixty-four-year-olds, and distinguish sixteen educational categories (as is the case with most standard US micro data sets), then this regression has 768 estimated parameters corresponding to the 768 possible permutations of age and education in the data. In practice, many of these worker types will contain very few observations in the data. For those worker types for which there is only one observation, the standard error of the estimated mean log wage is infinite, that is, \(\sigma = \infty \).

Though such a nonparametric regression might result in a very good fit, the heterogeneity in marginal products of labor across worker types will be estimated with a high degree of uncertainty.

Stratum-based methodologies, which have been used extensively in prior growth-accounting exercises that account for labor quality (Gollop and Jorgenson 1983; Jorgenson, Gollop, and Fraumeni 1987; Ho and Jorgenson 1999; Jorgenson, Ho, and Samuels 2014), are a form of this type of dummy regression. Stratum-based studies define worker types by partitioning the population by observable characteristics, with the mean wage of each partition being interpreted as the wage for workers of that type.

In practice, in order not to run into the curse of dimensionality described above, stratum-based studies do not treat each value of a variable as distinct. Instead, they group different values of the variables together. For example, the sixteen educational categories are often collapsed into less than high school, high school, some college, and college categories. Using a less granular partition regains some degrees of freedom, but with a loss of some flexibility in the functional form. How granular a partition can be used largely depends on the sample size of the data set used.

In the context of the regression framework that we use here, this grouping of values imposes multidimensional step functions on the data. Thus, although the most granular partitions result in a nonparametric regression that will have an \(R^2 \) that is at least as high as any other regression specification, the partitions used in practice actually impose a restrictive functional form that does not necessarily fit the data better than alternative model specifications.

Concerns about the step functions imposed by partitioned dummy regressions have led some researchers to hew more closely to the Mincer regression literature (Aaronson and Sullivan 2001; Bureau of Labor Statistics 1993).
These specifications focus on education and experience as the fundamental drivers of human capital, marginal product, and wages.\(^{17}\) These regressions generally include education (either as a polynomial in years of education or as a set of dummies indicating levels of educational attainment) and a polynomial in experience.

In addition to the baseline education and experience variables, these human capital specifications often include some interaction between gender and experience to account for women’s higher rate of part-time work and temporary withdrawal from the labor force (either as an interaction between gender and experience or by estimating the regression on men and women separately). In some cases (Aaronson and Sullivan 2001; Bureau of Labor Statistics 1993, 2015a, 2015b) they also include control variables like part-time status, marital status, veteran’s status, race, and rural location. These variables are not included to capture differences in marginal products across workers, but instead to reduce omitted variable bias in the education and experience coefficients.

Comparison of Specifications

Between the question of which variables to include and what functional form to impose, the task of selecting a preferred regression specification for a labor-quality measure is quite daunting. Even in the narrowed down set of variables we consider, age, education, gender, race, industry, and occupation, there are several options on how to group their values. For each of the six variables we use, table 2.1 lists how many different classifications we consider for our comparison of model specifications. In the last four columns of each row, the table lists how many groups are defined for each classification. For example, for age we consider two classifications: one that splits the individu-

Table 2.1 Different levels of granularity of classification of variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of classifications</th>
<th>Groups per classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(I)</td>
</tr>
<tr>
<td>1. Gender</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2. Age</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3. Education</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4. Race/ethnicity</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5. Industry</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>6. Occupation</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes: Total number of possible stratum specifications (including omission of one or more variables) is 1,799. Most granular definition includes 8,486,400 strata.

\(^{17}\) As commonly done, we define experience as the difference between age and years of education (plus six).
als up into nine age groups and another into thirteen age groups. The number of permutations across the different classifications of variables is 192. This includes one classification for each of the variables. Once one allows for dropping variables, then the possible number of stratum specifications increases to 1,799. The most detailed one, which includes the most granular classification for all variables, consists of 8,486,400 worker types.\footnote{To put the amount of potential overfitting in perspective, this most granular definition of strata means that, on average, there are less than twenty workers per worker type in the United States, since civilian employment has never exceeded 150 million.}

As noted, we apply the statistical tools R^2 and $\hat{\sigma}_g$ as two clear criteria on which we can base our model-specification decision. For our application we use the adjusted R^2, that is, \tilde{R}^2, as it penalizes for overfitting the data. We consider the 80th percentile of the standard errors of the estimated relative marginal product of labor across workers; that is, we use $\tilde{\sigma}_{g_{80}}$ as our measure of the reliability of the imputed wages.\footnote{In principle, the choice of p for the percentile is arbitrary. However, qualitatively all results that we emphasize in this section hold for choices of $p > 75$. The reason we do not use the mean is that, in the case of the stratum-based methods, $\sigma_j = \infty$ for all worker types with one observation. This would also make the sample mean of the σ_j's go to ∞.}

We complete our analysis using three different data sets. Our results are qualitatively very similar across data sets. For the sake of brevity, we present results obtained using the ACS, since this is the data set with the largest sample size.\footnote{See appendix for results based on CPS-ORG and CPS-ASEC data.}

Figure 2.1 illustrates the trade-off between the goodness of fit, \tilde{R}^2, and the precision of the wage imputation, $\tilde{\sigma}_{g_{80}}$. Panel A shows the scatter plot in the $(\tilde{\sigma}_{g_{80}}, \tilde{R}^2)$ space for all 1,799 stratum-based model specifications from table 2.1. This panel shows how increasing the \tilde{R}^2 of the model specification comes at the cost of the precision with which the relative marginal products are imputed, that is, an increase in $\tilde{\sigma}_{g_{80}}$. Because a higher \tilde{R}^2 and lower $\tilde{\sigma}_{g_{80}}$ are preferred, we are focusing on specifications that move us to the upper left in the plotted $(\tilde{\sigma}_{g_{80}}, \tilde{R}^2)$ space.

Panel B shows the same 1,799 points as panel A with two sets of points highlighted. The crosses are the 192 stratum specifications that include all six variables we consider, with the difference being the level of granularity at which the variables are classified. These points are the ones where $\tilde{\sigma}_{g_{80}}$ is high, compared to \tilde{R}^2, and thus correspond to specifications that overfit the data. At the other end of the cloud of points are the ones highlighted as circles. These are the specifications that do not include age and education. The gray points are specifications that include age and education, but not all four of the other variables. When we compare the circles with the gray points we find that, among the gray points, there are several specifications that have a substantially higher \tilde{R}^2 and not much higher levels of $\tilde{\sigma}_{g_{80}}$.

We find that adding occupational dummies to the stratum definitions that
already condition on age and education yields the greatest improvement in fit and a relatively small decline in the precision of the imputed wages. This can be seen from panel C, which highlights the specifications that add only occupations as circles. As can be seen from the figure, adding occupation adds about 0.1 to the R^2, but increases σ_{80} only slightly. In contrast, adding industry alone, depicted by the empty squares, does not improve the fit as much as adding occupation, and results in lower precision with which the

Fig. 2.1 Trade-off between fraction of wage variation captured and precision of imputed wages. A, all 1,799 specifications; B, all variables and specifications excluding age and education; C, age, education, and industry and/or occupation; D, age, education, and gender and/or race.
wages are imputed. Adding both industry and occupation results in values of $\hat{\sigma}_{80}$ well above 0.5. This means that for more than 20 percent of the strata, log wages are imputed with a standard error of more than 0.5 (65 percent).

Panel D adds gender and race/ethnicity to the stratum definitions that include education and age. Race/ethnicity only slightly increases the fit at the cost of a substantial reduction in the precision of the marginal product imputation. Gender also increases the fit, but it is hard to know whether this

21. Of course, for some purposes, such as estimating industry-specific labor-quality indices, including industry dummies may still be necessary.
reflects marginal product differentials or other factors. Since, in our analysis, the in- or exclusion of gender does not have a large effect on estimates of labor-quality growth we exclude gender from our specifications in the rest of this chapter.

In addition to the stratum-based model specifications, we also consider Mincer-type regressions. In particular, the baseline Mincer specification on which we settled includes a quadratic polynomial in experience and five education dummies. Because our stratum-based analysis suggests that occupation is an important determinant of wages, we also consider a baseline-plus-occupation specification, which adds fifty-one occupation dummies.

Figure 2.2 compares the regression-based fit and precision of imputed wages for the baseline and baseline-plus-occupation specifications with the stratum-based specifications. The lower cross in the figure shows the point for the baseline specification and the empty circles are the stratum-based points that only include age and education. Because the Mincer-type regression is more parsimonious than the semiparametric regressions, it results in more precisely imputed marginal product levels across workers, that is, it has a smaller $\bar{\sigma}_{80}$. Moreover, the quartic polynomial in experience captures more of the variations in wages across workers than the piecewise linear specifications implied by the stratum-based methods. Consequently, the regression results in a higher R^2. Thus, the flexibility of the semiparametric specification.

22. A similar Mincer specification, with the addition of several control variables, was also used by Aaronson and Sullivan (2001).

23. We focus on this parsimonious baseline specification in the main text and illustrate that our main qualitative results are unaltered when additional covariates are included as controls in the appendix.
tion that Zoghi (2010) emphasizes when she proposes to use stratum-based medians as estimates of wages is outperformed by the quartic polynomial in experience that we use here. As a result, the Mincer-regression-based way of imputing wages dominates the stratum-based methods in terms of both model-selection criteria.

This is not only true for the baseline regression specification, it is also true for the one that includes occupational dummies. In figure 2.2 the upper cross corresponds to the baseline-plus-occupation regression and the upper cloud of gray dots to the corresponding stratum-based regressions that include age, education, and occupation. Again, the Mincer-regression-based specification outperforms the stratum-based ones.

This evidence shows that our baseline and baseline-plus-occupation specifications perform well in terms of our two model-selection criteria.

2.3.3 Index Formula

Given the choice of the vector \(x_i \) and the period-by-period estimates of the parameter vector \(\hat{\beta}_t \), based on equation (9), the final choice to be made for the calculation of the labor-quality index is the index formula.

In line with the log-linear approximation of equation (4), the index formula that is used for most labor-quality index calculations is of the trans-log form and estimates labor-quality growth as the compensation-share weighted average of log changes in hours across worker types. That is,

\[
\hat{g}_{t}^{LQ} = \sum_{i=1}^{n} \left(\frac{S_{i,t} + S_{i,t-1}}{2} \right) (\Delta h_i - \Delta h), \text{ where } \hat{W}_i(x) = \exp(x_i \hat{\beta}.)
\]

(12)

\[
\text{and } S_{i,t} = \frac{\hat{W}(x_i) H_{i,t}}{\sum_{s=1}^{n} \hat{W}(x_s) H_{s,t}}.
\]

24. The regression framework we use here results in the conditional mean for a stratum to be the imputed wage. In unreported results, we redid our analysis with the conditional median as the wage estimate and obtained the same results compared to the Mincer specifications.

25. Compensation shares are averaged across the two periods between which growth rates are calculated.

26. Note that exponentiating the predicted logwage would not normally be sufficient to get a predicted wage in levels because

\[
E[w_j] = E[\exp(x_j \beta + \epsilon_j)] = E[\exp(x_j \beta)] + E[\exp(\epsilon_j)] = \exp(x_j \beta) \cdot E[\exp(\epsilon_j)]
\]

and \(E[\exp(\epsilon_j)] \) is not 1. It is, however, a constant if the residuals are assumed to be independently and identically distributed. So if \(\hat{W}_j = \exp(x_j \beta) \) and \(c = E[\exp(\epsilon_j)] \), then plugging the predictions into the share of the wage bill calculation from equation (7) gives

\[
\frac{\sum_{j=1}^{n} \hat{W}_j H_j}{\sum_{j=1}^{n} W_j H_j} = c \frac{\sum_{j=1}^{n} \hat{W}_j H_j}{\sum_{j=1}^{n} W_j H_j} = \frac{\sum_{j=1}^{n} \hat{W}_j H_j}{\sum_{j=1}^{n} W_j H_j}
\]

Therefore we need not make any adjustments to the predictions, nor do we need to impose an assumption on the distribution of the residuals beyond the standard assumption that they are IID.
This translog index formula has the desirable property that it is a so-called superlative index (Diewert 1978). That is, it is an exact index for a function (the translog) that provides a general second-order approximation of the production function. In other words, the labor-quality index does not rely simply on a first-order approximation (though we used such an approximation in our derivation in section 2.2 for expositional clarity).

For labor quality, implementation of the translog formula is complicated by the fact that in some cases the number of hours worked by a worker type, i, is zero. In that case, Δh_i cannot be calculated and such worker types are dropped from the calculations. Though dropping these worker types is a reasonable option because their compensation share is, presumably, small, one can also use another superlative price-index formula that does not suffer from this problem.

This is what we do in this chapter. In particular, we follow Aaronson and Sullivan (2001) and use a Fisher Ideal index formula of the form

$$\hat{g}_{t}^{LQ} = \left\{ \frac{H_{t-1}^{i}}{H_{t}^{i}} \right\}^{1/2} \left\{ \frac{\sum_{i} \hat{W}_t(x_i)H_{t,i}^{i}}{\sum_{i} \hat{W}_t(x_i)H_{t-1,i}^{i}} \right\}^{1/2} - 1. \tag{13}$$

This formula allows us to include all worker types, i, in our calculations even if $H_{t,i}^{i} = 0$ or $H_{t-1,i}^{i} = 0$.27

2.4 Historical Labor-Quality Growth

Before we consider projections of labor-quality growth, we first examine its behavior over the past fifteen years. This is useful for two reasons. First, by comparing historical results for different specifications and data sets, we can assess how sensitive the labor-quality growth estimates are to the different choices discussed in section 2.3. Second, and most importantly, the concerns about plateauing educational attainment and the retirement of experienced older workers that many observers currently express were also raised as concerns early in the first decade of the twenty-first century. Our historical analysis shows that, contrary to these concerns, labor-quality growth barely slowed over the past fifteen years. This realization of labor-quality growth owes much to a reduction in the employment rates of less productive individuals, especially during and after the Great Recession. We will return to this point in the projection section.

2.4.1 Comparison across Methods and Data Sets

As we discussed in section 2.3, we construct our benchmark labor-quality index using ACS data based on our baseline Mincer specification. The index

27. For our benchmark specification, the problem of zeros does not occur, and the Translog and Fisher are virtually identical. It can make a little more difference in cases with extremely large numbers of cells, where there are more zeros.
The outlook for US labor-quality growth obtained from this specification is plotted as the line with squares, labeled “Regression—age and education,” in figure 2.3, panel A.

From 2002 through 2013 the cumulative growth in the index was 5.96 percent, which is 0.53 annually. As the figure shows, labor-quality growth has been far from constant at this average during our sample period. Its standard deviation across years is 0.39. From 2002 to 2006 labor quality by this measure grew relatively slowly, about 0.37 percent per year. Subsequently, during the Great Recession, from 2008 to 2010, labor-quality growth logged in at 0.94 percent a year. Since then it has come down to 0.36 percent.

Fig. 2.3 Comparison of results across specifications and data sets, 2002–2013. A, different specifications using ACS data; B, ACS, CPS-ASEC, and CPS-ORG.
In section 2.3 we showed how our baseline specification outperformed many others in terms of goodness of fit of the log-wage regression, as well as the precision of imputed wages. In terms of labor-quality growth our baseline specification yields an estimate that is very close to those obtained using other specifications that include age and education. This can also be seen in figure 2.3, panel A. As the figure plots, the stratum- and regression-based methods give very similar estimates of the labor-quality index when both age and education are included in the vector \(x_i \). Moreover, the index constructed does not change very much when we use the baseline-plus-occupation specification instead of the baseline specification.

Among the series plotted in figure 2.3, panel A, there are two clear outliers that exhibit much less cumulative labor-quality growth. The first is the stratum specification that includes all variables. Such a specification results in large errors in imputed wages, which reduces the correlation between hours growth and wages that drives labor-quality growth. As a result, the over-fitted specification yields much less labor-quality growth than our baseline model. The other outlier series is the version that excludes age and education entirely (the underfit stratum). That series is flat, confirming that age and education are what drive the series.

Excluding the two outlier series, the cross-specification mean of average annual growth rates of labor quality is equal to the average annual labor-quality growth rate implied by our baseline index, namely 0.53 annually. The cross-specification standard deviation in these average annual rates is 0.03. Besides very similar mean growth rates, all these indices also show a very similar qualitative pattern over the sample period: slow growth from 2002 to 2006, an acceleration during the Great Recession, and a subsequent slowdown in 2011 and 2012.

The results in figure 2.3, panel A, are reminiscent of Zoghi (2010)\(^{28}\) in that she suggests that estimated average annual labor-quality growth rates are fairly robust to the choice of model specification. This robustness of estimated average annual labor-quality growth rates also translates across data sets.

This can be seen from figure 2.3, panel B. It plots the baseline and baseline-plus-occupation results for the three data sets that we consider in this chapter, that is, for ACS, CPS-ASEC, and CPS-ORG. The six indices plotted look very similar.\(^{29}\) In terms of their summary statistics, the mean average annual labor-quality growth rate across series in the figure is 0.49 percent with a standard deviation of 0.03.

Together, these results suggest that the pattern of labor-quality growth

\(^{29}\)The only exception is the ACS-based indices in 2005–2006. In this year, the sample size of the ACS was expanded from one to three million respondents, which appears to have resulted in a sample with a slightly lower level of labor quality than before.
from 2002 through 2013 we find using our baseline case is not the result of the particular specification or data set chosen. Indeed, we find this pattern for all reasonable model specifications and across all data sets. Overall, we conclude that from 2002 to 2013 labor quality has grown around 0.5 percent a year. This is about the same as the average of about 0.5 percent labor-quality growth between 1992 and 2002 (Bureau of Labor Statistics 2015a; Fernald 2015).

2.4.2 Counterfactuals to Identify the Sources of Growth

The fact that we find no substantial deceleration in labor-quality growth since 2002 is surprising, especially given the slow growth of educational attainment and the beginning of retirement among the oldest baby boomers during the period. Our analysis shows that as these adverse demographic and educational trends were pulling down labor-quality growth, a disproportionate decline in the employment-to-population (EPOP) ratio of lower-quality worker types was pushing it up. To illustrate this, we calculate three counterfactual historical indices, which are plotted in figure 2.4.

These counterfactuals take advantage of the fact that hours worked by workers of type i, H_i, are the product of (a) average hours worked per year by workers of this type, η_i, (b) the EPOP of these workers, E_i, and (c) the population of these workers, P_i. That is,

$$H_i = \eta_i E_i P_i. \tag{14}$$

Using this expression, we can create different counterfactuals by holding one of the three factors, that is, η_i, E_i, and P_i, fixed at its 2002 level. We then allow the other two factors to change as observed in the data.
Figure 2.4 shows our baseline estimate, labeled “Observed index,” as well as the three counterfactual indices. As can be seen from the figure, changes in average hours worked across worker types have had relatively little impact on labor-quality growth. In contrast, if the composition of the population had not changed since 2002, then labor-quality growth would have been about a third lower. This is because removing population changes eliminates the continued accumulation of experience of the baby boom generation from the calculations.

The most striking of the three counterfactuals, however, is the one for the EPOP ratio. From figure 2.4 it is clear that, if EPOP ratios by worker type had remained at their 2002 levels, labor-quality growth would have been half of what we observed over the past decade. Notably, the wedge between the observed index and the counterfactual with constant EPOP ratios increased most rapidly during the Great Recession. This wedge is consistent with the extensively documented composition effect of recessions on real wages. Many studies, including those by Bils (1985) and Solon, Barsky, and Parker (1994), find that the incidence of unemployment is more cyclical among low-wage workers.

In growth-accounting terms, this cyclical composition effect means that labor quality has a countercyclical component (Ferraro 2014). This is reflected in the strong negative correlation of around −0.9 between labor-quality growth and hours growth as measured by our baseline specification. This negative correlation is quite robust across specifications: figure 2.5 plots the correlations for all of the labor-quality specifications plotted in figure 2.3, panel A, except the overfit and underfit stratum specifications, and all of the correlations are strongly negative. An implication of this negative correlation is that it is important to jointly forecast labor quality and hours worked to get a robust estimate of labor input going forward.

As discussed, our labor-quality index captures the fact that EPOP ratios among lower-quality worker types are more cyclical. And our counterfactuals show that the disproportionate decline in employment rates among less skilled workers led to a recession-driven increase in labor-quality growth. Therefore, an important question for any medium-term forecast of labor-quality growth is to what extent these movements in EPOP ratios by worker types are transitory or permanent. Since a large part of the decline in these EPOP ratios reflects declines in labor force participation rates, this is largely a question of what fraction of recent movements in labor force participation is structural versus cyclical.

If labor force participation rebounds substantially, as the Congressional Budget Office (2015) projects, this will put downward pressure on labor-quality growth over our forecast horizon. However, if, as Aaronson et al. (2014) suggest, the bulk of the movements in participation rates across groups since 2007 have been structural, then our labor-quality index would be largely unaffected. In that case, there would be no downward pressure...
The Outlook for US Labor-Quality Growth

83

This finding highlights an important lesson from our analysis. We should not be misled by the positive sound of “increases in labor quality” due to composition effects. Often, labor quality is discussed assuming a path of total hours. But an important factor driving labor-quality growth since early in the first decade of the twentieth century has been declines in hours (or a slowdown in hours growth) for lower-skilled workers. From equation (4) we know that what matters for output growth is the growth rate of the total labor input, which is hours growth plus labor-quality growth. Hence, if labor quality grows as a result of a selection effect among workers when total hours decline, then this is neither necessarily good news for growth of overall labor input nor for output growth.

2.5 Projecting Labor-Quality Growth

In this section we consider the outlook for labor-quality growth over the next ten years. We begin by reviewing the components of labor-quality growth projections. We then evaluate the performance of our baseline specification for 2002–2013, paying particular attention to the components that have contributed most to historical projection errors. Guided by these find-

Fig. 2.5 Correlation between labor-quality growth and hours growth for key indices

Notes: The plotted correlations are from the age and education and the age, education, and occupation specifications by both the stratum- and regression-based methods. That is, they are all of the specifications plotted in figure 2.2, except for the overfit and underfit stratum specifications. The bold X identifies our baseline specification and the thin X identifies our baseline-plus-occupation specification.
As previously discussed, the index for labor quality, equation (13), is a highly nonlinear function of the parameter vector \mathbf{b}, and hours worked by worker type H_i. The fact that wages and hours are endogenous to one another further complicates the problem. In practice, producing an optimal forecast of labor-quality growth based on the joint distribution of future log-wage regression coefficients and future hours worked by worker type is not feasible.

In its place, researchers generally project labor-quality growth by projecting independently the log-wage parameter vector, \mathbf{b}, and the hours worked by worker type, H_i, and substitute them into equation (13). Given that time variation in the βs accounts for a very small portion of labor-quality growth over time, the convention is to hold log-wage parameters constant (Aaronson and Sullivan 2001; Jorgenson, Ho, and Samuels 2015). We follow this convention and set $\hat{\mathbf{b}}_{t+h} = \hat{\mathbf{b}}_{2013}$.

Turning to hours, recall that hours worked by worker type, $\hat{H}_{i,t+h}$, can be decomposed into the three factors as in equation (14), namely (a) average hours, $\hat{n}_{i,t+h}$, (b) the EPOP rate, $\hat{E}_{i,t+h}$, and (c) population, $\hat{P}_{i,t+h}$. Historically, accounting for heterogeneity in average hours worked by worker type does not make a material difference. This is highlighted in figure 2.6, which plots

30. This gives a joint projection of hours and labor quality, which is important given the negative correlation between hours and quality documented in section 2.4.2.
the observed baseline index against an employment-based index constructed under the assumption that all workers work the same number of hours, that is, \(\eta_{i,t} = \eta_t \) for all \(i \). The employment-based index shows average annual labor-quality growth of 0.61 percent, about a tenth of a percentage point higher than the 0.53 obtained from the hours-based index.\(^{31}\) Given the modest difference, and the significant challenges associated with projecting heterogeneous hours worked, we set \(\hat{\eta}_{i,t+h} = \eta_{t+h} \) for all worker types \(i \). We use this 0.61 percent observed average annual growth of labor quality as our baseline for comparing the observed index with forecasts.\(^{32}\)

2.5.2 Historical Projection Accuracy and Sources of Error

In this section we examine how our baseline projection specification would have performed for the 2002–2013 sample period. Specifically, we compare our projection to observed labor-quality growth and use an informal decomposition to evaluate the sources of forecast errors. Following Aaronson and Sullivan (2001), we build our projections using Census Bureau 2000 (“middle”) National Population Projections by age, gender, and race.\(^{33}\) To obtain population projections for all age and education combinations, we apply a multinomial logit model that estimates the probability distribution of our five educational levels based on age, cohort, gender, and race. We use these estimated probabilities to construct population projections by age and education, that is, to construct \(\hat{P}_{i,t+h} \) for each year. Finally, to project the age- and education-specific EPOP ratios, \(\hat{E}_{i,t+h} \), we estimate the probability that an individual is employed as a function of age, cohort, and education, using logit models that vary by gender and race.\(^{34}\)

The results are shown in figure 2.7. The top line in panel A shows the observed employment-based index of labor quality, which grew at an average annual pace of 0.61 percent. The bottom line in panel A shows our projection of labor-quality growth as of 2002. The results are strikingly different; our projection expected average annual labor-quality growth to rise just 0.19 percent, well below the pace observed over the period. This large

31. This difference between the hours-worked-based and employment-based indices is even smaller in the CPS-ORG and CPS-ASEC data than in the ACS (see appendix).

32. Note that our baseline specification does not include occupation. Including occupation requires projecting population and EPOP ratios by age, education, and occupation. This turns out to result in very imprecise projections, since projections of employment by occupation, without considerations by age and education, already have large errors. To avoid introducing these errors into our projections, we limit ourselves to projections using our baseline specification.

33. Our projection method differs from Aaronson and Sullivan (2001) in the following ways: we distinguish five racial groups instead of four, define employment more narrowly to be consistent with our sample selection, and use ACS data.

34. Because the first ACS data were released in 2002, we cannot use ACS data for the estimation of the EPOP and educational attainment models. Instead, we estimate these models using 1992–1997 data from the CPS-ORG for this historical forecast. The full technical details of this projection are provided in the Projections of Educational Attainment and Employment subsection of the appendix.
difference result is consistent with projections by Aaronson and Sullivan (2001), which used a slightly different model specification and CPS-ASEC data rather than ACS.

The remaining lines in figure 2.7, panel A, plot counterfactual indices that replace (a) projected demographics with observed demographics, and (b) projected log-wage regression parameters with observed parameters. The line labeled “2002 betas; observed demographics” is much closer to the

Fig. 2.7 Decomposition of forecast errors from 2002 to 2013.

A, projected hours distribution of x_i and projected β_i;
B, projected EPOP ratios and education rates for observed βs.

Notes: The EPOP and educational attainment models used to construct historical forecasts are based on 1992–1997 CPS-ORG data. Forecast index in panel A is based on extrapolated cohort effects holding βs constant at their 2002 values. Observed betas in panel A is the same as all projected in panel B. Real-time betas used for all four indices.
actual index than the forecast index, suggesting that errors in the projected demographic variables account for a substantial portion of the forecast error over the period. In contrast, the line labeled “Observed betas; projected demographics” is very close to our baseline projection and far from the observed index. This suggests that time variation in the log-wage regression parameters accounts for a very small portion of the forecast errors. Panel A also shows that the bulk of the forecast errors accumulate during the Great Recession. In other words, deviations in demographics, \hat{H}_{it}, from their projections, \hat{H}_{it}, in the Great Recession account for much of the forecast error.

Figure 2.7, panel B, takes a closer look at the specific demographic variables contributing to the large projection errors. The lines labeled “All observed” and “All projected” are the “Observed index” and “Observed betas; projected demographics” lines from panel A. The line labeled “Observed age and education; projected employment” reflects an alternative index based on observed components of the demographics, less the EPOP ratios, for which we use projections. The difference between this line and the “All observed” index isolates the effect of projection errors in EPOP ratios across worker types. As can be seen from the figure, these errors account for about one-third of the cumulative forecast error in labor-quality growth and are especially important after the onset of the Great Recession in 2008. The line “Observed age; projected education and employment” shows that projection errors in educational attainment also account for about one-third of the forecast error in labor-quality growth. The remaining error owes to misses in the census’s population projections. 35 Notably, the projection errors for education and population accumulate relatively smoothly over our sample period.

2.5.3 Projections of Future Labor-Quality Growth

Going forward most commentators project labor-quality growth will be slower than its historical pace. This view stems from the fact that the exceptional increases in US educational attainment during the twentieth century seem unlikely to be repeated (Goldin and Katz 2009). However, as we will show, this oversimplifies the uncertainties surrounding the future path of labor-quality growth both in the medium and the longer run. To illustrate these uncertainties and how they relate to various components of labor-quality growth, we consider three potential future paths for educational attainment and employment-to-population rates and assess how these paths affect estimates of future labor-quality growth in the medium and longer run. These alternative paths, which are briefly described below and fully explained in the third section of the appendix, illustrate the mechanics of how different economic forces influence future labor quality. Given the lim-

35. Since this is not a formal decomposition, we are not accounting for the nonlinear contributions associated with interactions between the census demographics, distribution of education, and employment rates. These interactions, however, appear to be relatively minor compared to the first-order contributions of demographics, education, and employment.
ited role of the β (which capture relative returns to experience and education) in the accuracy of the historical projections, we hold at them fixed at their 2013 values.\footnote{An alternative approach to projections of education and employment would be to use a statistical model, following Aaronson and Sullivan (2001). Experiments with this methodology produced variable results that appear less reliable, especially in the more distant future, than the methods we employ here.} To allow sufficient time for the economy to recover from the effects of the Great Recession, we define the medium term as 2015–2022. The longer run is 2022–2025.

For employment to population, we consider three alternative paths. The paths are meant to illustrate a range of potential outcomes.

1. **Cyclical rebound, or “revert”**: Age-education-specific EPOP rates return to 2007 values, between 2015 and 2022, and remain there. This scenario corresponds to the view that the changes in EPOP rates for specific age-education groups were cyclical.\footnote{Both the cyclical (a) and structural (b) paths allow for a demographically (or educationally) driven structural decline in the aggregate employment-to-population ratio. However, they do not allow a structural decline (or increase) in age-education specific EPOPs.}

2. **Structural change, or “persist”**: Age-education-specific EPOP rates remain at 2013 levels. This scenario corresponds to the view that much of the decline in EPOP rates following the Great Recession is permanent.

3. **Extrapolated 2002–2007 structural trends in EPOPs**: The final path allows for heterogeneous paths across groups. Specifically, it extrapolates the declining EPOP rates of young people (with heterogeneity across education groups), the increasing EPOP rates of older people (particularly the more educated), and the widening gap between the EPOP rates of more and less educated prime-age people (Dennett and Modestino 2013; Burtless 2013; Aaronson et al. 2014).

The paths above illustrate how changes in various EPOP rates affect future US labor-quality growth.

We also consider three alternative paths for educational attainment. Again, these paths are meant to highlight a range of potential outcomes.

1. **Revert to precrisis levels**. During the Great Recession enrollment and graduation rates rose. This path assumes that the increase was a temporary cyclical effect and rates will return to their precrisis levels.

2. **Persist at 2013 educational plateau**. This alternative assumes that the uptick in educational attainment in recent years persists through future cohorts. Specifically, 2013 rates of educational attainment carry forward for each cohort over the next decade.

3. **Extrapolate 2007–2013 trends in education**. The final path assumes that the uptick in educational attainment over the past several years represents a resumed upward trend. Projections are based on age-specific time trends in educational attainment from logistic regressions.
Table 2.2 Labor-quality growth projections, 2015–2022

<table>
<thead>
<tr>
<th>Education</th>
<th>Trend</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrapolated 2007–2013 trends in EPOP (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revert to precrisis EPOPs (II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persist at 2013 EPOPs (III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Extrapolate 2007–2013 trends in education</td>
<td>0.25/1.21</td>
<td>−0.20/0.86</td>
</tr>
<tr>
<td>2. Revert to precrisis education</td>
<td>0.19/1.20</td>
<td>−0.27/0.88</td>
</tr>
<tr>
<td>3. Persist at 2013 education</td>
<td>0.25/1.22</td>
<td>−0.21/0.88</td>
</tr>
</tbody>
</table>

Notes: Reported are average annual log-growth rates for 2015–2022.

Row scenarios: (1) Uptick in educational attainment since Great Recession reflects a permanent acceleration in educational attainment of those age thirty and younger. (2) Uptick since 2008 is fully cyclical and educational attainment reverts to its 2008 level. (3) Uptick in educational attainment since Great Recession reflects a step increase in educational attainment of those age thirty and younger.

Column scenarios: (I) Pre–Great Recession (2002–2007) trends in EPOP continue. (II) EPOP ratios in 2025 have reverted to their 2007 levels. (III) EPOP ratios will remain at their 2013 levels. More details about these scenarios can be found in section 2.5.3.

Table 2.2 shows projections for 2015–2022. All scenarios incorporate the Census Bureau's population projections by age group. In addition, the scenarios incorporate differing medium-run cyclical dynamics for employment rates and education. The columns of the table show the three alternative EPOP assumptions. The rows show the three educational attainment assumptions. For each cell, the first number shows growth in labor quality and the second shows growth in hours. (Note that, since we do not model average hours worked, hours grow at the same rate as employment growth.)

A notable takeaway from table 2.2 is the potentially negative correlation in the medium run between growth in hours and growth in labor quality. The negative correlation appears in the two “level” EPOP scenarios. The “persist” (structural) scenario results in 0.35–0.36 percentage point faster labor-quality growth than the “revert” (cyclical) scenario. However, this is fully offset by 0.35–0.39 percentage point slower growth in hours. As a result, growth of total labor input grows at 0.59–0.67 percentage point per year in all of the scenarios in columns (2) and (3). This negative correlation highlights the importance of jointly modeling these two variables to obtain a forecast for quality-adjusted hours.

The near invariance of quality-adjusted-hours growth across the level scenarios seems surprising at first glance. Intuitively, an extra hour of work

38. This is equivalent to assuming that all workers work the same number of hours, a counterfactual assumption, but one that has been relatively innocuous historically (see figures 2.6 and 2A.4).
should add *something* to quality-adjusted hours—albeit more if it involves higher-skilled workers. The reason for the near invariance in table 2.2 is that low-skilled and high-skilled workers have seen an opposite pattern in EPOP ratios since 2007. Employment rates of lower-skilled workers have fallen, while rates for higher-skilled workers have risen. Thus, the “revert” scenario includes not only a rise in employment by lower-skilled workers, but also a decline by higher-skilled workers.

The first column of table 2.2, which extrapolates 2002–2007 EPOP trends, looks quite different from the others. In this case, we see markedly stronger growth in both labor quality and hours. For lower-skilled workers, there was little prerecession trend in EPOP rates. For this group of workers, this extrapolation-based scenario thus looks similar to the “revert” scenario, which boosts hours but holds labor quality down. But for higher-skilled and older workers, the prerecession trend was to increase employment rates. These workers tended to be below their estimated trend in 2013. Hence, in this scenario, these workers add both hours and skills to the labor force between 2015 and 2022. For both groups, hours increase quickly as employment rates rise. For labor quality, the extra hours of high-skilled workers dominate and labor quality rises more quickly.

Finally, looking down the columns, for none of the cases do the education scenarios matter much between 2015 and 2022. Extrapolating the rising educational trend from 2007 to 2013 (row 1) matters only a few basis points over this time period. The dominant force in the medium run is thus what happens to employment rates.

Turning to the longer run, table 2.3 shows projections for 2022–2025. These scenarios assume that all cyclical/transitional dynamics will have taken place by 2022. In the longer run, educational trends do matter. Looking down the three columns, the educational-extrapolation row implies almost two-tenths percentage point faster growth in labor quality than the “revert” or “persist” rows, with minimal difference in hours worked. Of course, this educational-extrapolation path assumes a considerable acceleration in educational attainment relative to what we have seen since World War II. Our reading of the data so far is that there is little indication that such an educational acceleration is actually happening. Rather, we view one of the plateau scenarios for educational attainment as more plausible—either the scenario where educational attainment for entering cohorts reverts to its 2007 levels, or where it persists at its 2013 levels. The CPS data suggest that some of the Great Recession-induced increase in educational attainment of younger cohorts may already be reversing.39 The “revert” and “persist” rows of table 2.3 are very similar for both labor quality and hours. Relative to the revert or persist scenarios—which are very similar—we take the

39. Additional evidence for a reversal comes from census data on college enrollments relative to the population age sixteen to twenty-four. That enrollment rate peaked in 2011 and has since retreated somewhat.
The Outlook for US Labor-Quality Growth

91

Table 2.3 Labor-quality growth projections, 2022–2025

<table>
<thead>
<tr>
<th>EPOP ratio</th>
<th>Trend</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extrapolated 2002–2007 trends in EPOP (I)</td>
<td>Revert to precrisis EPOPs (II)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Extrapolate 2007–2013 trends in education</td>
<td>0.47/0.60</td>
<td>0.28/0.37</td>
</tr>
<tr>
<td>2. Revert to precrisis educational attainment</td>
<td>0.30/0.59</td>
<td>0.09/0.42</td>
</tr>
<tr>
<td>3. Persist at 2013 educational attainment</td>
<td>0.32/0.60</td>
<td>0.12/0.41</td>
</tr>
</tbody>
</table>

Notes: Reported are average annual log-growth rates for 2022–2025.

Row scenarios: (1) Uptick in educational attainment since Great Recession reflects a permanent acceleration in educational attainment of those age thirty and younger. (2) Uptick since 2008 is fully cyclical and educational attainment reverts to its 2008 level. (3) Uptick in educational attainment since Great Recession reflects a step increase in educational attainment of those age thirty and younger.

Column scenarios: (I) Pre–Great Recession (2002–2007) trends in EPOP continue. (II) EPOP ratios in 2025 have reverted to their 2007 levels. (III) EPOP ratios will remain at their 2013 levels. More details about these scenarios can be found in the third section of the appendix.

Finally, we consider the importance of employment rates for longer-run projections of labor quality. In the longer run, only trends in EPOP rates matter. Indeed, the two “level” columns look very similar to each other, showing that in the longer run it makes little difference whether we revert to precrisis EPOPs or remain at 2013 EPOPs.

2.5.4 Putting It All Together

The previous section highlighted the uncertainties around any forecast of labor-quality growth both in the medium and longer run. Here we provide a judgmental assessment of the most likely path for labor quality in the longer run. Looking at the bottom right two cells of Table 2.3, where education plateaus and EPOPs remain level, we project labor-quality growth of about 0.1 percent per year and hours growth of a little above 0.4 percent per year. Quality-adjusted hours in these scenarios grow a little above 0.5 percent per year.

Although these “level” scenarios are a reasonable benchmark for the future, continuing shifts in EPOPs also seem plausible. Earlier, we found that these shifts were central to driving labor-quality growth from 2002 to 2013. This was also the case for the 2002–2007 period, before the employment effects of the Great Recession. Going forward, there is certainly the potential for technological advances to continue to generate job polarization, to displace low- and medium-skilled workers, and/or to entice high-skilled
workers to increase their labor supply. If these trends were all to continue at their 2002–2007 pace, then it would lead to some longer-run boost in labor quality, though the effect on hours is ambiguous.

One particular unknown in this regard is whether older, more educated workers will continue to work longer than they have historically. For example, suppose we extrapolate EPOP trends only for those older than fifty-five years of age—a situation that would boost both labor quality and hours. With that limited extrapolation, we would see hours growth of about 0.55 percent and labor-quality growth of about 0.15 percent, implying quality-adjusted hours growth of about 0.70 percent per year. In the 2022–2025 period, these figures are not affected by whether other employment rates revert to prerecession levels or remain at 2013 levels.

Trends for individuals younger than age fifty-five are more nuanced and challenging to predict. In the extrapolation scenarios, educated prime-age workers tend to work more, while less educated prime-age workers tend to work less. We think it is unlikely that the trends continue at the earlier pace captured by the extrapolation column in table 2.3, but, qualitatively, the trends might continue in the same direction. That would suggest that it is plausible labor quality grows a little faster than 0.15 percent per year (the pace in the previous paragraph, where we extrapolate EPOP trends only for those older than age fifty-five). The effect on hours would be small, since the trends somewhat offset.

Thus, in the longer run, a projection of 0.10–0.25 percent growth in labor quality and perhaps 0.4 to 0.55 for hours is a plausible judgmental baseline.

2.6 Conclusion

Historically, rising labor quality was an important source of growth in US GDP per hour. Going forward, this source of growth is likely to slow markedly. Indeed, our preferred forecast is that, in the longer run (2022–2025), labor quality is likely to rise in the range of 0.10 to 0.25 percent per year. This implies that growth in quality-adjusted hours in the range of 0.5 to 0.8 percent per year is plausible, with a range of 0.7 to 0.8 percent per year seeming perhaps most likely. To see a faster pace of labor-quality growth, closer to its historical average pace, would require a renewed, and sustained, upward trend in educational attainment. In a typical macro model, the slowdown in labor-quality growth passes through one-for-one to slower growth in productivity and GDP.

In the twentieth century, the main driver of labor-quality growth was rising educational attainment (Fernald and Jones 2014; Ho and Jorgenson 1999). In contrast, in our empirical estimates and forecasts for the twenty-first century, we find a very different source of labor-quality growth: the diverging trends in employment rates for workers of different skills. Since 2002, employment rates for more educated, older individuals have risen, whereas employment rates for less educated, younger individuals have fallen.
These diverging trends explain why previous forecasts that labor quality would plateau (Aaronson and Sullivan 2001) went awry—from 2002 to 2013, labor quality turned out to grow at a pace even faster than it did in the second half of the twentieth century because of changing employment dynamics.

These forecast misses point to a broader lesson: it is essential to jointly examine growth in hours and growth in labor quality. Labor quality and hours are strongly negatively correlated in the short run, which implies that quality-adjusted hours are less variable than either quality or hours alone. Looking at hours or labor-quality growth independently can lead to inaccurate projections of potential output growth.

Going forward, movements in employment-to-population rates for different worker types continue to be central to how future labor quality will evolve. In the medium run (2015–2022), an important source of uncertainty is whether the diverging employment-rate movements seen since 2007 are cyclical or structural. If employment rates (based on age and education) revert to 2007 levels, then growth in labor quality is likely to be negative as lower-skilled workers return to employment. In this case, labor quality in the next few years will at least partially offset the strong growth since 2007. In contrast, if the changes since 2007 are structural, then growth in labor quality will be considerably stronger, albeit not at rates seen historically.

But, once again, these alternative paths illustrate the importance of jointly modeling labor quality and hours. Quality-adjusted labor input turns out to grow at remarkably similar rates in the scenarios where employment-to-population rates revert to 2007 values (cyclical), or remain at 2013 values (structural), leaving overall output growth unchanged.

Appendix

Data Details

ACS, CPS-ASEC, and CPS-ORG

To verify the robustness of our results, we calculate them for three commonly used US data sets that each allow for the construction of measures of labor-quality growth. The first is the American Community Survey (ACS), which is a smaller, annual version of the decennial census and collects a relatively narrow range of demographic and socioeconomic data on a sample of about 1 percent of the population (approximately three million individuals) each year. The second, the CPS-ORG, consists of the outgoing rotation groups from the Current Population Survey (CPS). This is the quarter of

40. The sample of the ACS has been expanded twice and has only been a 1 percent sample of the population since 2006. In 2000, its first year, the sample was just under 400,000 individuals, and between 2001 and 2005 the sample was slightly over one million.
CPS respondents that are asked about their earnings and income in any given month. This results in an annual sample of about 135,000 individuals. The final data set, CPS-ASEC, is the Annual Social and Economic Supplement to the Current Population Survey, also known as the March supplement. It contains annual earnings and income data from the full March CPS sample (70,000 individuals). Though based on different samples and sampling methods, each of the data sets allows for the construction of similar hourly wages, as well as the six variables of education, age, sex, race/ethnicity, industry, and occupation, that are our main focus.

For each data set we construct the sample of workers to cover those in the civilian noninstitutional population ages sixteen and older that are employed in the private business sector (specifically, excluding anyone with self-employment or government employment earnings) and have both positive earnings and positive hours. The sample period is 2002–2013, because that is the period for which we have a consistent set of occupation and industry crosswalks and data from all three data sets.41

We define wages as hourly wages. Wages are constructed in slightly different ways in each of the data sets because of differences in reference period and questions asked. In the CPS-ORG, we use the hourly wage as constructed in the National Bureau of Economic Research’s CPS Labor Extracts (Feenberg and Roth 2007). For the CPS-ASEC and ACS we define hourly wages as total annual earnings divided by the product of usual hours worked per week and weeks worked per year.42 All wages are deflated into real 2005 dollars using the Consumer Price Index for All Urban Consumers, and wages exclude self-employment, self-owned business, and farm income.

Projections of Educational Attainment and Employment

The Census Bureau’s 2000 National Population Projections provides projections of the age, gender, and race/ethnicity distribution of the population, but to forecast labor quality we need to further break these cells down by educational attainment and employment rates. To do so we follow a methodology similar to that used by Aaronson and Sullivan (2001)—our primary

41. In principle, the CPS-ASEC is available starting in 1962 onward and the CPS-ORG from 1979 onward if industry and occupation are omitted or approximate crosswalks are used. The ACS is available from 2000 onward without any need for adjustments.

42. In 2008 the ACS switched from collecting weeks worked as a continuous to a categorical value (thirteen weeks or less, fourteen to twenty-six weeks, twenty-seven to thirty-nine weeks, forty to forty-seven weeks, forty-eight or forty-nine weeks, and fifty to fifty-two weeks). Prior to 2008, the distribution of weeks worked within those ranges was remarkably stable over time, so we imputed a continuous value of weeks worked using the pre-2008 mean of people reporting weeks worked within a given range. We also tested using a more complex regression model on demographic characteristics to impute weeks worked, but found that it gave little more variation or precision in predicted weeks worked than using the pre-2008 mean. The same approach is used by the BLS for pre-1975 data, which has the same issue (Bureau of Labor Statistics 1993, 77).
adjustments are that we use five race/ethnicity categories instead of four and
we define employment more narrowly as being employed exclusively in the
private business sector to match the sample selection stated in the previous
section. Given that the methodology is substantively unchanged, this section
is largely a restatement of box 1 from Aaronson and Sullivan (2001, 65).

Let \(p_{it} = P[y_{it} = j] \) for \(j = 1, \ldots, 5 \) by the probability that individual \(i \) in
year \(t \) has educational attainment \(j \), where the five levels of attainment are
less than high school, high school graduate (including GEDs), some college
(including associate’s degree holders), college graduates (bachelor’s), and
postgraduates, and let \(q_{it}^j = P[y_{it} \geq j | y_{it} \geq j - 1] \) for \(j = 2, \ldots, 5 \) be the prob-
ability of attaining education \(j \) given that the individual has completed the
“prerequisite” education (e.g., for \(j = 4 \) this is the probability of an individual
having completed college given that they have completed some college). We
predict \(\hat{q}_{it}^j \) using a logistic regression of the form

\[
\log \frac{q_{it}^j}{1 - q_{it}^j} = \sum_a D_{it}^a \alpha_{ja} + \sum_b D_{it}^b \beta_{jb} + x_{it} \gamma_j,
\]

(2A.1)

and \(\hat{q}_{ab}^j = \frac{\exp(\alpha_{ja} + \beta_{jb})}{1 + \exp(\alpha_{ja} + \beta_{jb})} \)

where \(D_{it}^a \) and \(D_{it}^b \) are dummies for being age \(a \) and born in year \(b \), and \(x_{it} \)
is a vector of control variables. From \(\hat{q}_{ab}^j \) it is possible to calculate
\(\hat{p}_{ab}^j = \prod_{i=2}^{j} \hat{q}_{ab}^i (1 - \hat{q}_{ab}^{i+1}) \), which can be interpreted as the predicted share of
people born in year \(b \) with education \(j \) at age \(a \) or, since age, year, and birth year
are perfectly collinear, the predicted share of people of age \(a \) with education
\(j \) in year \(b + a \). The models for education level \(j \) are estimated on the sample of
people with at least \(j - 1 \) education and who are above an education-level-
specific age threshold. 43 For the projections for the forecast error decomposi-
tion exercises in section 2.5.2 the models are estimated on the CPS-ORGs from
1992 through 1999, the same period Aaronson and Sullivan used for their
forecasts. 44

The idea behind these models is that educational attainment follows some
sort of life-cycle pattern, with the probability of completing a certain level
of education increasing rapidly for people younger than age thirty and then
more gradually for those who are older. This life-cycle pattern is assumed
to be the same for different cohorts, but cohorts born in different years are
allowed to have uniformly higher or lower log odds of completing a given
level of education. For high school, some college, and college levels of educa-

43. The thresholds are eighteen for high school, nineteen for some college, twenty-two for
college, and twenty-six for postgraduate.

44. Ideally, this would have been estimated on ACS data to ensure consistency between these
projection models and the log-wage regression. However, in order to distinguish age and cohort
effects the projection model must be estimated on multiple years of data. Since there is no pre-
2000 data for the ACS, this forces us to rely on another data set to construct the education and
employment projections.
tion the model is estimated separately for each of ten gender-race-ethnicity combinations without any control variables \((x_i)\). For postgraduates some of the gender-race-ethnicity samples become quite small, so the model is estimated separately for men and women with race/ethnicity dummies included as controls. The estimated model is then used to predict the fraction of individuals with each level of educational attainment based on the Census Bureau projections of the age, gender, and race/ethnicity distribution of the population.

The projection model is only able to estimate birth-year coefficients \((\beta_{jb})\) for birth years that are observed in the sample. However, some birth years that are too young to be observed in the sample will be old enough to be in the sample by later years of the projections—a child born in 2000 is too young to be in any of our current samples, but by 2025 they will be twenty-five years old and of critical importance to our forecasts. Therefore, we define these unobserved cohort coefficients by a linear extrapolation using the last fifteen birth-year coefficients (not including the most recent).\footnote{The most recent coefficient is omitted because it is based on just one year of observations, making the sample size quite small.} In effect, this approach extrapolates recent trends in educational attainment into the future.

This process yields projections of the population distribution of age and educational attainment, the key variables for our baseline Mincer specification. However, to construct our forecast of labor quality we must also project the EPOP rates for these worker types. Our EPOP projection model is identical to the educational attainment projection model, except educational attainment is added as a control variable. Rather than using the standard BLS definition of employment, we define employment as being employed exclusively in the private business sector—this makes our definition consistent with the sample selection used to construct our labor-quality measures.

Projection Scenarios for Educational Attainment and Employment

The Fisher Ideal index does not have the circularity property, so the labor-quality growth calculated from comparing a target year to a base year is not necessarily the same as the growth calculated from cumulated year-over-year changes. However, this is not true for the labor-quality growth projections because our assumption that the log-wage regression coefficients are constant over time means that the Fisher Ideal index collapses into the Laspeyres index, which does have the circularity property. This allows us to construct alternative projection scenarios based on assumptions about the education and employment distribution in a target year alone, without having to make assumptions about the path of educational attainment or EPOP between now and then. Therefore our projection scenarios discussed in sec-
tion 2.5 are based on the Census Bureau age projections for the years 2022 and 2025 and the education and employment assumptions described below.

Baseline labor quality in 2015 is calculated by applying the empirical 2013 education and employment distributions by age from the ACS to the Census Bureau population projections for 2015. That is, we calculate the share of twenty-five-year-olds that have a college degree, the share of twenty-five-year-olds with college degrees that are employed, and then combine that with the census projection of the number of twenty-five-year olds in 2015 to estimate the number of college-educated, twenty-five-year-old workers in 2015. This same baseline distribution is used in all nine labor-quality projections.46

Education Scenarios

All three education scenarios assume that the educational distribution for those older than age thirty will stay the same as they age. For example, the educational attainment of fifty-two-year-olds in 2025 is assumed to be the same as that of forty-year-olds in 2013 (the most recent year in our data). Although nontraditional educational attainment, differential mortality rates, and immigration make it unlikely that this assumption strictly holds, those forces are marginal enough that they are unlikely to cause substantial deviations. Where the scenarios differ is in their assumptions on the educational attainment of (a) people age thirty and younger in the projection year (the “young group”), and (b) the educational attainment of people younger than age thirty in 2013 that will be older than thirty in the projection year (e.g., thirty-one- to forty-two-year-olds in 2025, the “middle group”). The educational attainment of the young group, which was in middle school or below during the Great Recession and thus unlikely to have been driven by cyclical factors—their educational attainment can be thought of as representing a “normal” level. Unlike the young group, those in the middle group were making critical education decisions (such as whether to drop out of high school or college and whether to enroll in college or graduate school) during the Great Recession and its aftermath. Therefore, if “educational sheltering” has been a strong force during and after the Great Recession, as posited by Barrow and Davis (2012), Sherk (2013), and Johnson (2013), then their attainment may deviate from the norm.

Revert to precrisis educational plateau. The first education scenario assumes that the educational attainment of young people reverts to its precrisis levels. This reflects the possibility that the uptick in enrollment and graduation rates over the past several years is simply a temporary cyclical effect of the Great Recession. For the young group, this scenario assumes they will have the same distribution of educational attainment as people of

46. Note that the differences between the growth rates in the different scenarios is completely independent of the baseline, since we report log growth.
the same age in 2007. For those in the middle age group, whose attainment may have been increased by “educational sheltering” effects, this scenario assumes that they will either have the educational attainment of someone that age in 2007 or their current educational attainment, whichever is higher. That is, they will have at least the educational attainment that would have been expected of them before the recession, and they may have a little more if the recession encouraged them to stay in school. Specifically, let \(q^a_j \) be the probability of someone with age \(a \) having at least education \(j \) in 2007, let \(q^a_{j-12} \) be the probability of someone that will be age \(a \) in 2025 having at least education \(j \) in 2013, and let \(q^a_j = \max(q^a_j, q^a_{j-12}) \). Then for this scenario the share of people of age \(a = 31, \ldots, 42 \) with education \(j \) will be \(p^a_j = q^a_j / (q^a_j + 1) \).

Persist at 2013 educational plateau. The second scenario assumes that the educational attainment of young people persists at its 2013 rate, reflecting the possibility that there was a step increase in educational attainment over the past several years, but that attainment has once again reached a plateau. This scenario assumes that people in the young group will have the same distribution of educational attainment as someone of the same age in 2013. For the middle group we have to account for the fact that the increase in educational attainment was gradual and had not fully propagated through for those older than age thirty, but people younger than thirty will often go on to further education, meaning that there is no clear baseline group. To get a baseline for this group we calculate the probability \(q^j \) in 2013 of completing at least education \(j \) for the five-year age group that are young enough to have experienced a sheltering effect, but old enough that we would expect them to have completed that level of education already. For this scenario we define the expected educational attainment distribution of the middle group as \(p^j = q^j - q^{j+1} \).

Extrapolate 2007–2013 trends in education. The final scenario assumes that the uptick in educational attainment over the past several years represents a resumed upward trend in education attainment rather than a temporary cyclical boost or a one-off step increase. Age-specific time trends in educational attainment are estimated from logistic regressions of the form

\[
\log \frac{q^a_j}{1 - q^a_j} = \sum_{a} \left[\text{year} \cdot D^a_{\text{it}} \beta_a + D^a_{\text{it}} \gamma_s \right].
\]

47. Recent research suggests that the housing boom depressed educational attainment by providing good job opportunities to low-skilled workers, in which case the educational attainment patterns from the boom years would be unusually low (Charles, Hurst, and Notowidigdo 2015). That would suggest that this may be a particularly pessimistic implementation of this “cyclical uptick” hypothesis. However, we believe this is still a useful scenario to consider as it provides a plausible worst-case scenario for education trends.

48. For high school we use nineteen to twenty-three, for some college we use twenty-three to twenty-seven, for college we use twenty-five to twenty-nine, and for postgraduate we use thirty to thirty-four. Less than high school is the residual category.
As in the second section, these logits are estimated on the population of people with education \(j - 1\) or higher, and they are estimated on 2007–2013 data. Let \(q_{a}^{2013}\) be the probability that a person of age \(a\) had education \(j\) or higher in 2013. Then this scenario assumes that the probability of having at least education \(j\) at age \(a\) in 2025 is the probability of having education \(j\) in 2013 plus the age-specific time trend—that is, they have probability \(q_{a}^{j} = \text{invlogit}[\logit(q_{a}^{2013}) + 12 \cdot \beta_{a}]\) of having at least education \(j\) at age \(a\) in 2025.

As in the other cases, we then recover the share of people with education \(j\) at age \(a\) in 2025 as \(p_{a}^{j} = \frac{q_{a}^{j}}{q_{a}^{j} + 1}\). This is the same for 2022 except \(q_{a}^{j} = \text{invlogit}[\logit(q_{a}^{2013}) + 9 \cdot \beta_{a}]\).

Employment Scenarios

The employment scenarios are much more straightforward to construct because there is little to no need to keep track of the stock of employment—the fact that 85 percent of twenty-nine-year-old college graduates were employed in 2013 does not impose particularly binding constraints on our assumptions about the EPOP rate of forty-one-year-old college graduates in 2025. Therefore, our two baseline employment scenarios simply assume that the EPOP rates for specific age-education groups in the projection year will be the same as in some other base year. For the revert to precrisis EPOP scenario, we assume that the probability of a person of age \(a\) with education \(j\) being employed in the projection year is the same as it would have been in 2007.\(^{49}\) This scenario corresponds to the view that the entire decline in EPOP rates for specific age-education groups is cyclical.\(^{50}\) The second employment scenario is the inverse of this and assumes that the entire change in the EPOP rates of specific age-education groups is structural and will persist at 2013 EPOPs.\(^{51}\)

Extrapolated 2002–2007 structural trends in EPOPs. The final scenario extrapolates certain precrisis trends in employment patterns out to the projection year. In particular, it extrapolates the declining EPOP rates of young people (with heterogeneity across education groups), the increasing EPOP rates of older people (particularly the more educated), and the widening gap between the EPOP rates of more and less educated working-age people

\(^{49}\) As with the first education scenario, this may be an extreme assumption on what the precrisis norm was—if the housing boom boosted EPOP rates to abnormal levels, then this scenario overstates the baseline EPOP rates. Similar to the education case, we believe this remains a useful scenario to consider as it illustrates a sort of best-case scenario for employment rates.

\(^{50}\) This still allows for a demographically (or educationally) driven structural decline in the aggregate employment-to-population ratio. What it does not allow for is a structural decline (or increase) in EPOP for specific age-education groups. For example, it does not allow for a structural decline in students working part time, or a structural increase in older people staying employed past the traditional retirement age.

\(^{51}\) This scenario may be too pessimistic in that the labor market has clearly continued to improve since 2013. Once more recent ACS data becomes available we will revise this scenario to reflect the most recent year of data available. However, this once again provides a sort of outlier case with unusually low EPOP rates.
Given that we have preselected the trends that are extrapolated, this scenario can be accused of cherry picking. We do not deny that vulnerability, and we do not intend this scenario to be understood as a probable outcome. Again, these scenarios are primarily intended to illustrate the mechanics of labor-quality growth and what factors are most critical to the setting expectations about future labor-quality growth in the United States, as well as to impose certain bounds on plausible forecasts of labor-quality growth.

To implement the third employment scenario we follow an approach similar to that in the education trends scenario above. To extract age and education-specific time trends in employment we run the following logistic regression on the sample of sixteen- to twenty-four- and fifty-five- to sixty-nine-year-olds over the 2002–2007 period

\[
\log \frac{p_{at}}{1 - p_{at}} = \sum_a \sum_j \text{[year} \cdot D^a_{it} \cdot D^j_{it} \beta_{aj} + D^a_{it} \cdot D^j_{it} \gamma_{aj}],
\]

and to extract education-specific time trends in employment among prime-age workers, we run the following logistic regression on twenty-five- to fifty-four-year-olds over the same period

\[
\log \frac{p_{at}}{1 - p_{at}} = \sum_j \text{[year} \cdot D^j_{it} \beta_j + D^j_{it} \gamma_j],
\]

where \(p_{at}\) is the probability of individual \(i\) being employed in year \(t\), \(D^a_{it}\) is an indicator for being age \(a\), and \(D^j_{it}\) is an indicator for having education \(j\). Let \(p_{aj}^{2007}\) be the probability that a person of age \(a\) with education \(j\) was employed in 2007. Then this employment trends scenario assumes that the probability of a person of age \(a\) and education \(j\) being employed in 2025 is the probability of being employed in 2007 plus the relevant age- and education-specific time trend. For sixteen- to twenty-four- and fifty-five- to sixty-nine-year-olds this is \(p_{aj} = \text{invlogit}([\logit(p_{aj}^{2007}) + 18 \cdot \beta_{aj}]),\) and for twenty-five- to fifty-four-year-olds it is \(p_{aj} = \text{invlogit}([\logit(p_{aj}^{2007}) + 18 \cdot \beta_j]).\) The 2022 projection is the same, except the \(\beta_s\) are multiplied by 15 instead.

Robustness Checks

In this section of the appendix we present additional results that illustrate that our qualitative results are unchanged when we change some of the underlying assumptions, specifications, and across data sets.

Adding Control Variables to the Baseline Mincer Regression

Throughout the main text we limited ourselves to parsimonious baseline Mincer regression. However, prior implementations of such specifications

\[52\] For people age seventy and older there is no time trend added in and their EPOP rate in the projection year is assumed to be the same as it was in 2007.
have included control variables to ensure that only productivity-induced wage differentials are reflected in the estimated wages (Aaronson and Sullivan 2001; Bureau of Labor Statistics 1993). Here we consider the robustness of our results to including standard control variables, such as part-time status, marital status, veteran status, race, and geographic location.

As discussed in subsection 2.3.2, it is critical that the variables included in the labor-quality specification \(x_j\) be (a) correlated with wages, and (b) that the correlation is driven by differentials in the marginal product of labor. A desirable property of a regression-based framework like equation (9) is that it allows for the inclusion of control variables, \(z_j\), that may be correlated with both individual wages, \(w_j\), and the variables meant to quantify marginal product differentials, \(x_j\). The resulting generalized regression framework is

\[
(2A.6) \quad w_j = x_j^\prime \beta + z_j^\prime \gamma + \varepsilon_j.
\]

Because we attribute only the part of wage variations explained by the variables in \(x_j\) to marginal product differentials, we impute the log marginal product of a worker as \(x_j^\prime \hat{\beta}\). The inclusion of these control variables does not alter our definitions of \(\sigma_j\) and \(\hat{\sigma}_j\). They continue to be based on \(x_j\) and \(\hat{\beta}\).

What is less clear is the appropriate measure of fit when considering a regression with controls. Consider, for example, a set of controls \(z\) that predict wages \((\gamma \neq 0)\), but for which the correlation between any element \(x\) of \(x\) and any element \(z\) of \(z\) is zero \((\text{corr}(x, z) = 0)\). In this case the regression \(R^2\) will increase, making the specification appear more appealing than the version without \(z\) despite the fact that substantive components of the regression, \(x\) and \(\hat{\beta}\), remain unchanged.\(^53\) An alternative approach would be to consider the partial \(R^2\)-squared with respect to \(x\), \(\tau_x^2\). However, then maximizing \(\tau_x^2\) is not necessarily desirable. For example, if the association between a control variable \(z\) and the core variables \(x\) has the same sign as the association between \(z\) and wages \(w\), then the \(\tau_x^2\) will decline in the regression with \(z\). But the \(\tau_x^2\) declined precisely because \(z\) had been a source of omitted variable bias and we are now controlling for that.

Ultimately, the selection of \(z\) operates on an orthogonal basis from the selection of \(x\) in a properly controlled regression. As discussed in subsection 2.3.2, the desirability of higher \(R^2\) is entirely conditional on the assumption that \(W_j = \exp(x_j^\prime \beta) = c \cdot W\) — if any omitted variable bias is loaded onto \(\beta\), then this assumption is violated. In principle, this means that one should optimize \(z\) for each separate specification of \(x\), at which point we can compare the \(\tau_x^2\) of the controlled regressions as is done in subsection 2.3.2.

Rather than undertaking this highly multidimensional and daunting task, we consider whether it is likely to be of first-order importance to any of our results. Specifically, we consider the impact of including two standard sets of controls in our baseline Mincer and baseline + occupation specifications. The first set of controls is a set of indicators for part-time

\(^53\) The standard errors will also slightly increase because of the loss of degrees of freedom.
employment, marriage, and race, which are the controls included in the specification used by Aaronson and Sullivan (2001). The second set of controls is similar to the Bureau of Labor Statistics (1993), and includes indicators for part-time employment, veteran status, and which census division the individual lives in.

Figure 2A.1, panel A, which is comparable to figure 2.2, plots the adjusted R^2 against the 80th percentile standard error of the predictions (σ_{80}). This shows that, as expected, the inclusion of the additional variables increases both R^2 and σ_{80}. The Aaronson and Sullivan (2001) controls improve the fit slightly more and increase imprecision slightly less than the Bureau of Labor Statistics (1993) controls. However, as can be seen in figure 2A.1, panel B, there is almost no change in the partial R^2 with respect to x, suggesting that either the control variables are not a significant source of omitted variable bias or that the biases they induce balance out, on average. This suggests that the impact of including these control variables on measured labor-quality growth is likely to be quite limited. This is confirmed in figure 2A.1, panel C, which plots the resulting labor-quality indices. The indices with the Bureau of Labor Statistics (1993) controls are virtually indistinguishable from their uncontrolled counterparts, while the Aaronson and Sullivan (2001) controls appear to exert a modest negative drag on labor quality, on the order of a couple hundredths of a percentage point per year. These results suggest to us that control variables are not of first-order importance in measuring or forecasting labor-quality growth.

Additional Results for CPS-ORG and CPS-ASEC

The majority of the results presented in the main text were produced using data from the ACS, but it is possible to conduct the same exercises using both the CPS-ORG and CPS-ASEC. In this section, we evaluate the robustness of key results from the main text in these alternative data sources. All of the qualitative results hold up, with some minor differences in magnitude.

Figure 2A.2, panels A and B, plot the adjusted R^2 against the 80th percentile standard error (σ_{80}) of the same specifications considered in section 2.3 and figure 2.2 for the CPS-ORG and CPS-ASEC, respectively. As we note in the main text, the large sample size of the ACS is relatively favorable to stratum-based specifications: with the CPS data sets, which are more than an order of magnitude smaller, the standard errors are an order of magnitude higher. In fact, the CPS-ASEC is small enough that for some of the more granular specifications, more than 20 percent of the observations are in single-observation cells with infinite standard errors.

54. We use five race/ethnicity indicators where they used four race indicators—we distinguish Hispanics from non-Hispanic whites, blacks, Asians, and other.
55. The Bureau of Labor Statistics (1993) specification also includes indicators for whether the individual is in a central city or balance of a standard metropolitan statistical area (SMSA)/core-based statistical area (CBSA) or in a rural area, which we omit.
Fig. 2A.1 Impact of including controls in Mincer specifications. A, fit of both core and control variables; B, fit of the core variables only; C, labor-quality indices, with and without controls.
leaving $\bar{\sigma}_{80}$ undefined.\footnote{We substitute the highest observed percentile standard error, which is the source of the vertical lines in the upper-right region of the figure.} However, the trade-off between fit and precision is still clearly visible, the age and education or age, education, and occupation specifications strike a reasonable balance between fit and precision, and the baseline and baseline + occupation Mincer specifications dominate the stratum-based specifications. In short, the results are entirely consistent with our findings from the ACS.

Figure 2A.3, panels A and B, plot the 2002–2013 labor-quality indices presented in section 2.4 and figure 2.3 for the CPS-ORG and CPS-ASEC, respectively. Once again the results are quite similar to those found in the

\footnote{We substitute the highest observed percentile standard error, which is the source of the vertical lines in the upper-right region of the figure.}
ACS. The overfit specification (which includes all six variables considered in section 2.3) and the underfit specification (which includes all variables except age and education) both show very little labor-quality growth over the first decade of the twenty-first century. In the case of the CPS-ASEC, the overfit and underfit specifications are quite noisy, with implausible jumps and changes in direction.

All of the age and education specifications (with or without occupation)
and the baseline and baseline + occupation Mincer specifications, by contrast, are clustered together and quite similar to the ACS results in figure 2.3, panel A, although the CPS-ORG specifications show about 0.5 percent less cumulative labor-quality growth by 2013. The CPS-ORG results are also slightly more closely clustered than those for the other two data sets. This may be because hourly wages are measured directly in the CPS-ORG, whereas in the CPS-ASEC and ACS hourly wages are noisily derived from annual earnings divided by the product of usual weekly hours and weeks worked per year.

One notable difference is that ACS indices show an unexpected decline in labor quality between 2005 and 2006, while the CPS-based indices do not. This appears to be a data artifact induced by the tripling of the ACS sample size in 2006. A similar jump occurs when we calculate labor-quality growth between 2000 and 2001 in the ACS (not reported), and there also appears to be a slight tick in the 2012–2013 period for the ASEC, which saw a sample size change in 2013. Why changing sample size can induce these sharp adjustments in labor quality is somewhat unclear and bears more careful investigation.

Figure 2A.4, panels A and B, plot the 2002–2013 counterfactual labor-quality indices presented in section 2.4 and figure 2.4 for the CPS-ORG and CPS-ASEC, respectively. The results are qualitatively the same in the CPS data sets as in the ACS, with changes in average hours worked contributing relatively little to labor-quality growth, while changes in population demographics and demographic-specific EPOP rates both contributing significantly. However, there are two quantitative differences.

First, average hours appear to matter less in the CPS data sets. This is likely due to the fact that the ACS uses a categorical measure weeks worked after 2008, which induces additional noise in the measurement of average hours relative to the other two data sets. This is consistent with the fact that hours only make a significant difference after 2008. The relative unimportance of hours further strengthens our conviction that projecting average hours is not critical to a labor-quality forecast and that attempts to do so are likely to introduce as much forecast error as they address.

Second, whereas for the ACS the evolution of EPOP rates induced more labor-quality growth than changing demographics (compare the thick dashed and thick solid lines), in the two CPS data sets the contributions of employment and demographics are almost equal. Additionally, the contribution of EPOP rates, reflected in the thick dashed lines, is more obviously cyclical for the two CPS data sets—it is virtually flat before and after the Great Recession, with a substantial step increase during the Great Recession. The ACS, by contrast, shows significant labor-quality growth from EPOP rates even before the Great Recession, with the Great Recession simply accelerating the trend.

These observations have important implications for which of the sce-
narios presented in section 2.5 one finds most compelling. If one believes the CPS data sets more accurately reflect the role of the employment margin in driving labor-quality growth, then the two plateau scenarios appear most compelling: they suggest that the United States experienced an unusual upskilling of employment during the Great Recession that will either persist or unwind, while offering little evidence of a pre–Great Recession upskilling trend in employment. If, on the other hand, one believes that the ACS data more accurately reflects the contribution of employment composition

Fig. 2A.4 Counterfactual indices for 2002 base-year hours, employment, and population (CPS data sets). A, CPS-ORG; B, CPS-ASEC.

Note: Betas from 2002 wage regression.
to labor quality, then there appears to have been a significant pre–Great Recession structural trend, suggesting that the labor-quality growth from employment composition is unlikely to fully unwind and may even continue to drive a significant portion of labor-quality growth going forward.

References

