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12 Multivariate Analysis of 
Interest Rate Risk 
Roger N. Craine and James L. Pierce 

12.1 Introduction 

Much of the literature on the adequacy of bank capital is concerned with 
such factors as default risk and faulty management. These factors are 
important, but they neglect the role that purely stochastic elements can 
play in affecting the capital of a well-managed bank, even if it is free of 
default risk. Because banks raise funds by issuing liabilities with matur­
ities different from those of the assets they acquire, changes in the 
interest rates paid on these liabilities relative to the interest rates on 
assets will affect earnings and, hence, bank capital. 

As long as assets and liabilities have different maturities, there is no 
way to avoid the risk of unanticipated movements in the interest rate 
spread. 1 One role of bank capital is to provide a buffer that absorbs 
fluctuations in bank earnings caused by unexpected changes in the term 
structure of interest rates. Thus, banks are self-insuring against term 
structure risk through their capital account. Interest rate risk represents a 
claim on bank capital just as does default risk. It becomes important, 
therefore, to assess the size of this claim relative to the size of the capital 
position. This paper presents an empirical measure of the size of interest 
rate risk. 

The efficient markets hypothesis requires that forward interest rates 
equal expected interest rates where these expectations incorporate all 
available information-that is, where the expectations are rational. This 
requirement, assuming linear optimal forecasts, implies that forecast 

Roger N. Craine and James L. Pierce are assistant professor and professor of economics 
at the University of California, Berkeley. 

1. In principle, it is possible to have insurance against term structure risk. Such insur­
ance is beyond the scope of this paper. 
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revisions (expectations) are serially uncorrelated. The magnitude of the 
forecast errors, however, depends on the unspecified information set. 

Most previous work applying efficient market models to interest rates 
uses a single equation, or a single time series, to forecast interest rates. 
These models imply restrictions on the dynamic structure or the informa­
tion set or both. In this paper we show that by explicitly modeling the 
dynamic interaction between short and long rates and by including the 
inflation rate in the information set we can substantially reduce the 
variance of the forecasts, that is, interest rate risk. The information used 
in the more complicated model is readily available and should be incorpo­
rated in a rational expectation. 

Section 12.2 presents the vector stochastic model of the determination 
of interest rates and shows its relation to a single-series model. Section 
12.3 gives the empirical estimates, and section 12.4 presents the postsam­
ple forecasts and compares them with forecasts from a random walk 
specification. 

12.2 The Model 

12.2.1 Efficient Markets Definition 

A form of the efficient markets hypothesis contends that the rperiod 
forward interest rate 1F1 + i should equal the expectation of the spot rate 
I'* 1 + i made at time t for period t + j where the expectation incorporates 
all the currently available information 0 1; that is, 

(1) 1F1 + i== 1'*1 + j== E(r1 + jl01). 

If the forward rate deviates from the expected future spot rate, then 
expected profits exist, and, except for transaction costs, the forward rate 
will be forced to the expected spot rate. Under these conditions it has 
been shown (e.g., see Samuelson 1972; Sargent 1972; or Shiller 1973) that 
the sequence of forward rates, 

(2) i>O 

satisfies the definition of a martingale; that is, the changes in the forward 
rate or the forecast revisions are serially uncorrelated. To give the 
efficient markets definition some empirical content, it is necessary, of 
course, to assume a probability distribution that describes the spot rate. 

12.2.2 Single-Series Models 

Recently, univariate time-series techniques have been used to model 
the determination of individual interest rates, (e.g., see Brick and 
Thompson 1978 and Nelson and Schwert 1977). In this part we discuss the 
assumptions behind single-series models and their relation to the efficient 
markets assumptions. We show that because single-series models empir-
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ically do not satisfy the efficient market assumption, a multivariate 
approach is called for. 

Assume that the first difference of the one-period spot rate r1 is a 
stationary stochastic process with a finite variance (which by itself is a 
fairly weak assumption), so that it may be given the autoregressive 
moving average (ARMA) representation, 

(3) a(z)r1 = b(z)u1 , 

where u is a mean zero, serially uncorrelated, constant variance (white 
noise) error. The coefficients in equation (3) are polynomials in the lag 
operator z, 

a(z) == .I a(i)zi 
1=0 

b(z) ==.I b(i)i , 
I= 0 

and the lag operator z is defined as zix1=x1 _ i· Wold has shown that the 
prediction / 1 + i at time t of the spot rate r 1 + i that has minimum expected 
variance and that is a linear function of the observable single series r1 , 

r1 _ 1 , . . is given by 
00 

(4) lt + 1· = . I w(i + j)ut- ; , 
I =0 

where 

b(z) "' . 
w(z) ==- == .I w(t) . 

a(z) 1=0 

Thus, if it is assumed (a) that the available information !l1 consists of the 
single time series, r, and (b) that the forecasts are linear, then the efficient 
markets hypothesis implies that the expectations of future spot rates 
should equal the forecasts from single-series ARMA models. 

Brick and Thompson estimated equations for (the first difference of) 
seven federal and municipal interest rates of the form2 

(5) k = 1, 2, ... 7. 

Although the errors from the single-series models are serially uncorre­
lated and they contain all the information in the single-series, they may be 
correlated with other information that would be used in a rational ex­
pectation. 

Brick and Thompson cross-correlated the residuals from the single­
series models to determine if there was additional information about the 
lead-lag structure contained in the other interest rate series. For example, 
assume the errors for two series-the short-rate us and the long-rate 
uL-have the following relationship: 

2. They found that a random walk representation was adequate for most of the series 
(Brick and Thompson 1978, p. 96). 
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Usr = asL(z)uLr + Cs(z)e2r' 

where e1 and e2 are independent white-noise errors. 3 The cross­
covariances 

(7) E(uLr ' Usr- ;) = X.L,s;- oo < i < oo 

will have some nonzero values and will be two-sided (i.e., i ~ 0) unless aLs 
(z) or asL(z) is identically equal zero. Brick and Thompson found signif­
icant sample cross-correlations, leading them to conclude that, "there 
was apparently a complex feedforward-feedback relationship [between 
the rates] rather than a simple leading or lagging relationship." But they 
contend that the relationship is not stable over time. 4 

12.2.3 A Vector Model 

Brick and Thompson's results indicate that there is significant informa­
tion in the other interest rate series so that expectations in an efficient 
market should incorporate this information. In other words, the assump­
tion in the second section is too restrictive. If the cross-series information 
is stable, it can be incorporated in a more general vector ARMA repre­
sentation. To derive a bivariate form of this model, substitute the defini­
tion of the errors from the single-series model, equation (5), 

ak(z) 
ukr = bk(z) rkr' (8) 

into the equation (6), which defines the relationship between the single­
series errors and gives the bivariate stochastic process 

aL(z) rL aLs(z)as(z) rs 
1 - r_ c (z)e 

bL(z) bs(z) - L Lr 
(9) 

asL(z)adz) rL as(z) rs 
1 + -- 1 = c (z)e 

bL(z) bs(z) 5 51
• 

Notice that both current and lagged long and short rates determine the 
current long rate and the current short rate. 5 

The variance of the forecasts from the bivariate model conditional on 
the information set that includes both series (!11= rL, _ 

1 
, rL

1
_ 

2 
... , 

r
51 

_ 
1 

, r
51 

_ 
2 

, ... ) is necessarily less than or equal to the forecast variance 

3. The polynomial coefficients are restricted, since each series uk is serially uncorre­
lated. See Granger and Newbold (1975). 

4. Brick and Thompson (1978, p. 98 and pp. 101-2). 
5. Sims (1972) has shown that distributed lag estimates of a single equation, for example, 

term structure models, from the bivariante system (2.3.2) cannot be interpreted as a causal 
or behavioral relation because the feedback has been ignored. 
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from the single-series models. The bivariate model includes the addition­
al restriction that the cross-covariances 

-co<i<co 

(as well as the autocovariances) are equal to zero. As a result the vector of 
forecast revisions, 

[ I f_ I + j - I - lf_ 1 + j ] 1 j :2:::0 

where 

is serially uncorrelated. 
The basic model used in this paper is a slight generalization of the 

bivariate model. We also included the first difference of the inflation rate, 
p, as an exogenous driving variable. The inflation rate was included in the 
information set because theory and previous empirical work suggest that 
it should be (see Modigliani and Shiller 1973) and because of its easy 
observability. The vector ARMA model is 

(10) A(z)l: 1 = B(z)p1 + C(z)g_ 1, 

where !. is the two-element column vector containing the first difference 
of the long rate r L and the short rate rs and e is a corresponding two­
element white-noise error vector. The coefficients are matrix polyno­
mials in the lag operator z. The first term in the autoregressive power 
series is normalized to an identity, 

A(z) =I+ A(1)z + ... , 

so that (10) is a reduced form, and the moving average matrix polynomial 
C(z) is diagonal so that each equation contains a single moving average 
error. 6 The first difference of the inflation rate is assumed to follow the 
independent ARMA stationary-stochastic process, 

(11) 

where dis a white-noise error. 

12.3 Empirical Estimates 

12.3.1 Data and Preliminary Specification Tests 

The data for the model estimation consist of monthly time-series 
observations on three variables-the long interest rate, which is Moody's 
BAA corporate bond rate, the short rate, which is the four- to six-month 

6. The normalization involves no loss in generality if we allow the reduced-form error 
vector to be contemporaneously correlated, since it is still serially uncorrelated. 
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prime commercial paper rate, and the inflation rate, which is the sea­
sonally adjusted annual growth rate of the consumer price index. The 
data come from the NBER data bank, and the period of observations is 
from 1953-3 (post-Korean War) to 1971-7 (just before the wage-price 
freeze). 

The series were first-differenced and the first twenty-four sample auto­
correlations were calculated for the entire period and for the sample split 
into pre- and post-1965 data. The autocorrelations tended to die out, 
indicating that the series were stationary. Brick and Thompson, however, 
found a significant (at the 95 percent confidence level) increase in the 
sample variance of their post-1965 data. Our series displayed a similar 
increase in the sample variance for the post-1965 data. In contrast to 
Brick and Thompson's results, however, the point estimates of all but one 
of the sample autocorrelations from the pre-1965 data fell within the 
confidence ban (two standard errors) of post-1965 estimates, and the 
majority were within one standard error. From this we concluded that the 
time structure was stationary but that the white-noise errors, uk in equa­
tion (5), were heteroskedastic. If there was a one-time shift in the error 
variance, or if the model variance is bounded, and if the model can be 
correctly identified, then the final model parameter estimates are consis­
tent but not asymptotically efficient. 7 

We also did a preliminary test of the causal structure specified in the 
vector model (10). Sims (1977)8 suggested an exogeneity test based on the 
standard regression model 

(12) y =Xb + u, 

where the hypothesis that X is strictly exogenous is the hypothesis that 
E(uiX) = 0. If exogeneity holds for this model with sample size up to 
T + s, then we can add to the right-hand side of (12) the variable Z, whose 
t th component is the t + s th component of X, to get 

(13) y = Xb + Zc + u. 

On the null hypothesis that (12) satisfies the assumptions of the Gauss­
Markov theorem, (13) does also, with c = 0. Testing c = 0 by standard 
methods thus tests the null hypothesis of strict exogeneity of X in (12). 9 

To test the hypothesis that the inflation rate was exogenous in the long 
interest rate equation, we ran the autoregressive model 

12 12 12 
(14) 

7. The vector model was estimated using a FIML technique (see Wall1976) so that if the 
errors were homoskedastic the estimates would be asymptotically efficient. 

8. Also see Sims (1972). 
9. Sims (1977, p. 24). 
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12 
+ :l C; Pr + i = Ur 

I= 1 

and tested the null hypothesis that the coefficient vector c = 0. We then 
tested for exogeneity of the short rate in the long rate equation by 
replacing the led values of the (first difference of the) inflation rate with 
led values of the (first difference of the) short rate. Table 12.1 reports the 
F values for all combinations of the three variabies. The critical Fc12,294) 

value at the 5 percent level is approximately 1.79; the starred values are 
significant. The first row in table 12.1 indicates that the null hypothesis 
that short rates are exogenous in the long rate equation can be rejected, 
element (1 ,2); but the null hypothesis that the inflation rate is exogenous 
cannot be rejected, element (1,3). Row 2 presents a similar picture for 
the short rate. Row 3 indicates that we cannot reject the null hypothesis 
that the short interest rate is exogenous in the inflation equation, but we 
reject the null hypothesis that the long rate is exogenous. In short, table 
12.1 supports the specification of the vector model (10) and (11). There is 
feedback between the two interest rates, but a unidirectional flow from 
the inflation rate to the long rate. 

12.3.2 Estimation 

Estimation of the vector model (10) is an iterative multistage proce­
dure that is described in Granger and Newbold (1975), chapter 7. Briefly, 
the technique is to: 

1. Fit single-series models to each endogenous variable using univari­
ate techniques. Differencing may be necessary to obtain stationarity-for 
example, equation (5). 

2. Calculate the cross-correlations between the single-series residuals 
and use them to identify the transfer functions between the residuals-for 
example, equation (6). 

3. Identify the error structures-that is, the transfer function for the 
errors in the bivariate model. 

4. Estimate the bivariate model-for example, equation (9). 
5. Calculate the cross-covariances between the residuals from the 

bivariate model and the residuals from the single-series model for the 

Table 12.1 Pseudo-Sims Test F Values 

Coefficients on Future Values 
Dependent 
Variable rL rs p 

rL 1.92* 0.45 
rs 2.62* 0.99 
p 6.41 * 0.49 

*Value is significant. 
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exogenous variable and use these to identify the transfer function on the 
exogenous variable. 

6. Estimate the complete model. 
7. Check the adequacy of the representation and, if necessary, modify 

and reestimate it. 
Our estimates of the single-series models for the interest rates show a 

fairly simple time structure, but they are definitely more complicated 
than the random walk, accepted by Brick and Thompson: 

(15) (1- .31z- .20z6 + .20z7
)rL1 = (1 + .37z)u11 

(.084) (.067) (.075) (.084) 

6"2
u 1 = .0089 

(16) (1- .30z3
- .14z12)r51 = (1 + .56z + .29z2)u21 

(.082) (.070) (.067) (.082) 

6~,2 = .0514 

The autoregressive structure reflects complicated seasonal movements, 
and there are moving average errors whose effects persist for up to three 
months. 

The cross-correlations of the single-series residuals given in table 12.2 
indicate a significant relationship between the residuals of the short rate 
and the residuals of the long rate (column 1) at lags 1, 4, 8, and possibly 
14; the asymptotic standard error of the cross-correlations is approx­
imately .06. Somewhat to our surprise, however, the cross-correlations 
between the residuals of the long rate and the lagged residuals from the 
short rate showed no significant relationship. The cross-correlations in 
table 12.2 seem to indicate a recursive bivariate relationship in which 
lagged short rates and long rates plus an error process cause the short 
rate, but only lagged long rates plus an error process cause the long rate. 
Based on the Sims test and economic theory (intuition?) we decided to 
contradict the rule of parsimonious parameterization and allowed for 
feedback. 

The parameter estimates for the complete model in rational distributed 
lag to1;:->at are given in equations (17) and (18), with the summary 
statistics-parameter estimates and standard errors, and the covariance 
matrix of the estimated residuals-given in table 12.3. 

(17) 

5 7 8 .07z rst 
(1 + .123z + .129z + .208z )rL = 2 1 1- .454z- .537z 
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Table 12.2 

(18) 

Cross-Correlation of the Single-Series Residuals 

Correlations Correlations 
Lag U's' U,L(z) a,L, u,,(z) 

.1424 .0827 
2 -.0590 .0005 
3 -.0941 .0288 
4 -.1707 .0201 
5 -.0957 .0187 
6 -.0045 -.0123 
7 -.0642 -.0099 
8 -.1743 .0467 
9 .0713 -.0636 

10 -.0164 .0365 
11 .0282 .0608 
12 .0570 .0991 
13 -.0108 -.0641 
14 -.1278 .0928 
15 -.0888 .0154 
16 .0077 .0065 
17 -.0773 .0911 
18 .0377 -.0228 
19 .0758 -.0535 
20 .0404 .0144 
21 -.0100 .0066 
22 -.0147 -.0958 
23 -.0626 -.0347 
24 .0408 .0703 

+ (.437 + .46z)p1 + (1 + .495z)e11 

+ ciz)e21 

(1 + .3523 + .143z7 + .149z8 )rs1 

.326z rLr 

(1- .07lz + .214z2 + .725z3
) 

+ (.863 + .363z)p1 + (1 + .445z + .207z2)e21 • 

The final model exhibits a strong feedback relation between the in­
terest rates, with the inflation rate exerting a driving influence on both. 
The more complicated vector model yields a substantial reduction in the 
residual variance (recall that all the series are first differences) of 12 
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Table 12.3 Final Estimates 

Estimated Standard 
B,1 (Lag) Parameters Errors 

Equation (17) 

all (5) .123172 .094460 
all (7) -.128601 .084685 
all (8) -.207969* .094560 

al'I(1) - .453966* .069506 
aji(2) .536739* .068979 
an(!) .069834* .013565 
b1(0) .436824* .092618 
b1(1) .459561* .097379 
C1(1) .495315* .093891 

Equation (18) 

an(3) .351979* .086579 
a22(7) .143352 .087456 
a22(8) .148512 .094050 
a;b(1) -.070607 .089722 
a:l'z(2) .214318* .086498 
a:)'2(3) .724717* .094354 
azi(1) .326328* .093421 
b2(0) .863319* .099563 
b2(1) .352870* .106983 
c2(1) .445171* .089041 
c2(2) .207059* .075655 

Residual Covariance Matrix 

rL rs 
rL .5353E-02 .6856E-02 
rs .6856E-02 .3065E-01 

percent for the long rate and 15 percent for the short rate from the 
single-series specification. It is also interesting from a theoretical point of 
view that the inclusion of the other rate and the inflation term makes most 
of the seasonal autoregressive parameters insignificant; the seasonal 
patterns seem to be explained by the complicated interaction of the 
interest rates plus the inflation term. We have not reestimated the model 
with the insignificant parameters deleted. 

12.4 Predictions with the Model 

We conducted several experiments to assess the predictive perfor­
mance of the model. It was tested outside the sample period for the 
period August 1971 through October 1977-the last date for which we 
had collected data. 

The test of the model is particularly severe because the postsample 
period contained the effects of an incredible number of large shocks to 
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interest rates. Among these were price controls in their various phases, 
devaluation, and OPEC. To these shocks one must add the effects of 
monetary policy in 1974-probably the most restrictive monetary policy 
ever experienced in the United States-the deepest recession since the 
1930s, and an unusually high and variable rate of inflation. It is asking a 
great deal of any model to predict the movements of interest rates during 
this six-year period. 

Although the accuracy of the predictions deteriorated outside the 
sample period, the model performed very well over this difficult period. 
The mean squared error of the forecasts were calculated for one-period­
ahead forecasts. The errors of the one-period forecast are plotted in 
figures 12.1 and 12.2 and are compared with the errors from a random 
'0 
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walk specification in table 12.4. Table 12.4 contains the variance of the 
residuals in the sample period and the mean squared errors from the 
one-step-ahead model predictions and a random walk specification. 
Although the model errors, especially in the short rate, increase substan­
tially for the postsample forecasts, they are still considerably better than 
the random walk specification. 

The lower mean squared forecast errors for the vector model suggest 
that there is a stable time relationship among long- and short-term 
interest rates and the inflation rate. Including the inflation rate does not 
alter this conclusion, because if a random walk properly characterized the 
interest rate processes (the model accepted by Brick and Thompson) then 
the lagged inflation rates would contain no information. 

Figure 12.1 plots actual and predicted values for the commercial paper 
rate. This figure suggests why the accuracy of prediction deteriorated 
outside the sample period. The period 1973-75 experienced unprec­
edented swings in short-term interest rates. During 1973, the commercial 
paper rate soared from 5.8 percent to 10.2 percent. The rate fell tempor­
arily in 1974 before taking off for a high of 11.6 percent in August. By 
May of 1975 the rate was back down to 5.8 percent. 

Figure 12.2 plots actual and predicted values for the BAA rate. As one 
would expect, the fluctuations in the long rate were much less than for 
short rates. The fluctuations were large by historical standards, however, 
and the model predicts them well. 

As a final test of the model, a dynamic simulation was run over the 
period 1959-7 through 1977-10. For this entire period, rs and rL were 
generated endogenously, but the inflation rate was taken as its actual 
value in each month. The model proved to be remarkably stable over this 
eighteen-year period. Given the actual behavior of inflation, there was no 
tendency for the predicted levels of either interest rate to drift very far 
from their actual values. These results confirm the plausible assertion that 
the major problem in forecasting interest rates far into the future lies in 
forecasting the inflation rate. Given the inflation rate, the autoregressive 
processes generating interest rates appear to be highly stable. 

Table 12.4 Mean Squared Errors 

.0053 .0307 Model, sample period 

.0077 .2466 Model, postsample 

.0164 .2993 Random walk, postsample 
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12.5 Conclusions 

The interest rate risk faced by a bank depends on the distribution of the 
interest rate forecasts. The efficient markets criterion requires that all 
available information be used when forming expectations. We have 
shown that single-series models omit significant information that is 
readily available, implying that the forecast variance of these models 
overstates the true interest rate risk. 




