11.1 Introduction

Linked employer-employee data fill an important gap in the set of data used to study entrepreneurship, shedding light on questions that cannot be addressed using firm- or individual-level data alone. For researchers interested in start-up firms and their founders, data identifying the transition of the entrepreneur from the workforce to founding a new firm is of inherent interest. How workers move from being employees to entrepreneurs, whom they recruit for start-up teams, and what predicts starts, successes, and failures is key to understanding the dynamics of entrepreneurial activity in the United States. Policymakers are interested in entrepreneurship in part because they are interested in job growth. Linked employer-employee data show who works for new firms and whether these firms are creating “good” jobs. Labor market agglomeration effects are widely acknowledged to be important in the spatial clustering of technological or innovative industries. Yet labor market flows across firms are difficult to understand with existing business- or household-level data sets.

In this chapter, we discuss the potential of linked employer-employee
data for the study of entrepreneurship, and provide a road map for researchers interested in using these data. We will discuss both the confidential microdata and public-use data derived from linked employer-employee data. Linked employer-employee microdata for the United States are currently available to approved researchers working in restricted data centers. However, the Census Bureau has recently stepped up efforts to create new public-use data about young firms using linked employer-employee data as part of the Longitudinal Employer-Household Dynamics (LEHD) program. The result is new public-use data on workforce composition, hiring, turnover, and earnings paid to workers at young firms. Because these new statistics are sourced from administrative data, they are available at much finer geographic and industry detail than is usually available in public-use statistics. While lacking the flexibility of the confidential microdata, these new statistics bring many of the benefits of the linked employer-employee data into the public domain for easier research access.

Specifically, our goals in this chapter are threefold:

1. To familiarize researchers with the US linked employer-employee data and how it can be used in entrepreneurship research;
2. to describe newly available public-use statistics derived from linked employer-employee data and provide examples of how they can be used to study entrepreneurship; and
3. to outline future plans to expand the set of available data to study entrepreneurship by linking in new administrative data sources on self-employment and partnerships, as well as identifying the employment history and human capital formation of entrepreneurs themselves.

This chapter begins with a brief overview of the current landscape of data available for empirical research on entrepreneurship. We then describe the linked employer-employee microdata in more detail, and provide information on how to access the data. Subsequent sections describe new public-use statistics tabulated from the linked employer-employee data, and provide specific examples of how they can be used to study workforce and earnings dynamics in new firms. Section 11.5 of the chapter outlines a vision for future work to build a new statistical infrastructure from linked administrative data to support entrepreneurship research. Section 11.6 concludes.

11.2 An Overview of Available Data for Entrepreneurship Research

Entrepreneurship has long been acknowledged to play an important role in modern economies by spurring innovation, creating jobs, and enhancing productivity. However, only in the last few decades has entrepreneurship flourished as a research area within economics. Data on entrepreneurial activity are necessary for any empirical research on the determinants of entrepreneurship and the impact of entrepreneurship on the economy. Yet the existing statistical infrastructure is in many ways inadequate to investi-
gate questions around business formation and innovative activity. Despite several new data sources made available in the last decade, many important data gaps remain.

Currently available data to study entrepreneurship include firm-level or owner-level microdata, as well as published aggregate statistics. Table 11.1 details the most commonly used publically available data in entrepreneurship research. Information on entrepreneurs typically comes from household- or business-level surveys, mostly as cross-sectional snapshots, although a few smaller panel data sets are available. The Current Population Survey (CPS), the Survey of Consumer Finance (SCF), the Panel Study of Income Dynamics (PSID), the National Longitudinal Surveys (NLS), and the other household surveys listed here ask a similar small set of questions concerning self-employment and business ownership.\(^1\) Data on both founders and their businesses are available in the Census Bureau’s Survey of Business Owners (SBO), and the Kauffman Firm Survey (KFS). With regard to business-level data on new firms, statistics on start-ups and established firms are available in the Business Dynamics Statistics (BDS) and the Business Employment Dynamics (BED). The creation of the BDS and BED has led to a growth of research documenting the importance of new businesses for job creation and economic growth. The Quarterly Workforce Indicators (QWI), derived from LEHD microdata, are a relatively recent addition to this list, which we will describe in greater detail later in this chapter.

Most existing data sources are limited in their ability to depict the interaction between start-ups and their human assets, including owner, founding team members, and early employees. The omission of human capital, which can strongly influence both the nature and the success of a new business, increasingly leaves researchers of entrepreneurship at a disadvantage as the US economy becomes more service oriented and knowledge based. Data that contain information on owners or workers are typically unable to follow the business over time, or else only provide dynamic information on a limited sample of business entrants. These shortcomings make it difficult to study the impact of factors such as owner characteristics and experience on the outcomes of start-ups, and measure the potentially changing effects over time.

The scope of entrepreneurship research is broad, but there are many research questions for which longitudinally linked employer-employee data are especially useful. Table 11.2 lists some of the overarching questions in the field of entrepreneurship research (with a selection of representative studies), along with some specific examples of how linked employer-employee data can be employed in the study of these topics. For instance several researchers have noted that young firms typically hire younger workers (e.g., Ouimet and Zarutskie 2014), spawning wider interest in exploring how

\(^1\) For a summary of studies using the National Longitudinal Survey of Youth 1979 (NLSY79) to study entrepreneurship, see Fairlie (2005).
<table>
<thead>
<tr>
<th>Data set(s)</th>
<th>Sampling unit or frame</th>
<th>Key variables</th>
<th>Frequency</th>
<th>Level of detail</th>
<th>Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly Workforce Indicators (QWI)</td>
<td>Job (worker-establishment pair)</td>
<td>Employment, job creation and destruction, hires and separations, earnings and starting earnings by firm age or size.</td>
<td>Quarterly: 1990 (start year varies by state) current. Nine-month lag.</td>
<td>National- and county-level data. Industry detail up to four-digit NAICS. Worker age, sex, education, race/ethnicity.</td>
<td>Provides worker demographics, earnings, and turnover as well as job creation and destruction at young firms. Available at very detailed geography and industry. High frequency and relatively current.</td>
</tr>
<tr>
<td>Household surveys: Current Population Survey (CPS), National Longitudinal Surveys (NLS/NLSY), Survey of Income and Program Participation (SIPP), Panel Study of Income Dynamics (PSID), Survey of Consumer Finance (SCF)</td>
<td>Household</td>
<td>Detailed job and earnings histories of potential entrepreneurs, self-employment entry and exit.</td>
<td>Varies</td>
<td>Individual level. Confidential and restricted versions with more detail often available through application process</td>
<td>Wide variety of information on potential entrepreneurs, although samples are often small.</td>
</tr>
<tr>
<td>Census Business Register Statistics: County/ZIP Code Business Patterns, Nonemployer Statistics, Statistics of US Businesses (SUSB)</td>
<td>Establishment</td>
<td>Establishment counts, employment and payroll by establishment, and enterprise-size class.</td>
<td>Annually since the late 1990s</td>
<td>Statistics for industry sectors generally available at the county level and above.</td>
<td>Establishment counts of small businesses at fine levels of geography, and ability to distinguish nonemployers</td>
</tr>
<tr>
<td>Survey of Business Owners (SBO)/Characteristics of Business Owners (CBO)</td>
<td>Business owner</td>
<td>Owner demographics, geography, industry, firm receipts and employment size, detailed information on financing and revenues</td>
<td>Every five years since 2007</td>
<td>SBO: National, state, and county by NAICS two- through six-digit industry for selected geographies. CBO: National by industry.</td>
<td>Rich set of variables describing the individual owners and their business finances</td>
</tr>
<tr>
<td>Question</td>
<td>Selected empirical papers</td>
<td>Selected data sets used</td>
<td>Potential value added</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the dynamics of new business formation and growth?</td>
<td>Birch (1979); Dunne, Roberts, and Samuelson (1989); Acs and Mueller (2008); Davis and Haltiwanger (2014)</td>
<td>Dun and Bradstreet microdata, Census of Manufactures microdata, Longitudinal Estab. and Ent. Microdata (LEEM), Quarterly Workforce Indicators</td>
<td>QWI and J2J: Ability to observe labor dynamics at firms zero to one year old, stratified by a variety of observable characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How does entrepreneurship depend on the available labor force?</td>
<td>Combes, Duranton, and Gobillon (2008); Doms, Lewis, and Robb (2010); Ouimet and Zarutskie (2014); Figueiredo, Guimarães, and Woodward (2014)</td>
<td>French microdata, Kauffman Firm Survey, Decennial Census, LEHD microdata, Portuguese Administrative microdata</td>
<td>QWI and J2J: Observe demographics of the labor force at young firms such as age, sex, race, and education</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
labor-related factors can influence the success of new ventures. Detailed data on labor market flows across firms are well suited for investigating subjects like agglomeration economies, labor market spillovers, and spin-off firms (e.g., Agarwal et al. [2013], using LEHD microdata). Highly spatial public-use data on young firms by detailed industry can help explain why regional growth appears to be correlated with the presence of many small/young firms (e.g., Glaeser, Kerr, and Ponzetto 2010). Data linking business owners and their employment histories can help identify the determinants of entrepreneurship and new business success, a large literature that includes the work of Evans and Leighton (1989), Hurst and Lusardi (2004), and Hamilton (2000). Planned integration of self-employment data with linked employer-employee data would enable further investigation into the distinction between types of entrepreneurship. As only a small subset of entrepreneurs starts new businesses with an intent to grow, identifying potential high-growth entrepreneurs is of great economic and policy interest (e.g., Hurst and Pugsley 2011; Chatterjee and Rossi-Hansberg 2012).

11.3 The Longitudinal Employer-Household Dynamics (LEHD) Data

The Longitudinal Employer-Household Dynamics (LEHD) program at the US Census Bureau has built over the last decade a comprehensive linked employer-employee data set for the United States. The result of this effort is a comprehensive longitudinal database covering over 95 percent of US private-sector jobs and most public-sector employment.

The LEHD data system is extraordinarily complex, linking data across multiple agencies, blending administrative and survey data, and filling data gaps with additional source data whenever possible. The LEHD job-level data come primarily from quarterly worker-level earnings submitted by employers for the administration of state unemployment insurance (UI) benefit programs. Information on federal jobs (not covered by state UI programs) is provided to the census by the Office of Personnel Management (OPM).2 These job-level records are linked to establishment-level data collected for the Bureau of Labor Statistics’ Quarterly Census of Employment and Wages (QCEW) and Census Bureau’s Longitudinal Business Database (LBD) data to obtain further information about the employer. Demographic information about individual workers is obtained via links to census surveys and Social Security administrative data. Residential information on workers comes primarily from Internal Revenue Service (IRS) address data. Ongoing work to integrate administrative data on self-employed workers is described later in this chapter.

As is evident from the description above, the LEHD data rely on data-

2. State UI covers most private employment, as well as state and local government employment. There are notable exceptions to coverage, namely most small agricultural employers, religious institutions, and much of the nonprofit sector. Office of Personnel Management federal employment data includes the civilian workforce, but not the armed forces or the postal service.
sharing agreements with multiple state and federal agencies to provide critical inputs to the linked employer-employee data. Key among these are data-sharing agreements between state governments and the Census Bureau through the Local Employment Dynamics (LED) partnership. State agencies provide the principal job-level data (state UI records of employee-specific total quarterly wage and salary payments) as well as QCEW data. As of this writing, all fifty states, the District of Columbia, Puerto Rico, and the Virgin Islands have provided data to the LEHD program through this partnership. Because states joined the partnership at different times with different amounts of data archived, the set of available states in the LEHD data varies by year; states with the longest panels have data that begins in the early 1990s and the last state, Massachusetts, enters in 2010.

These noncompulsory data-sharing agreements make LEHD unique among statistical programs. While the LEHD program has been enormously successful in bringing together multiple agencies to share data to create universe-level data on jobs in the United States, the voluntary nature of these agreements (state and federal partners receive no compensation for participation in the program) is a great risk to the long-term viability of the data program. Withdrawal of data-sharing partners from the program risks the integrity of many of the products provided from the LEHD data and the usability of the data for research. These data-sharing agreements also have implications for researcher access to the confidential microdata, outlined in the next section.

The ability to identify firm age is a recent enhancement to the LEHD data, a highly valuable additional characteristic for researchers interested in entrepreneurship. Firm age is obtained via links to the microdata that underlie the Longitudinal Business Database (LBD), which also serves as the source data for the Census Bureau’s Business Dynamics Statistics (BDS). As in the BDS, firm age is defined as the age of the oldest establishment in the national firm. An establishment is age zero in the first year that it reports any positive payroll, and ages chronologically thereafter. Firm age is robust to ownership changes such as mergers, spin-offs, and ownership changes. For example, a new legal entity spun off as a result of merger and acquisition activity will not be considered a new firm; instead, it is assigned the age of its oldest establishment at the time of its formation.

A comprehensive description of the LEHD data is available in Abowd et al. (2009). A detailed discussion of the methodology used to add firm age to the LEHD data is provided in Haltiwanger et al. (2014).

11.3.1 Researcher Access to LEHD Microdata

Researchers can apply for access to LEHD microdata by submitting a research proposal through the Federal Research Data Center (FRDC) network. Applications for microdata access for research undergo a formal approval process that includes review of the proposal by the Census Bureau.
as well as by state and federal agencies that have supplied worker and firm data to the LEHD program. Projects approved to use the confidential microdata are conducted in a secure research data center with all output undergoing a formal disclosure review process before being permitted for dissemination outside the secure facilities.3

The proposal review process for LEHD confidential data access is complicated by the many data-sharing agreements between data partners and the US Census Bureau. Any FRDC proposal requesting access to IRS data must be approved by the IRS (whether a proposal using LEHD data needs IRS approval depends on the data requested, but firm age, likely of critical interest to entrepreneurship researchers, is sourced from IRS data). State agreements vary, with some states choosing to allow their state data in pooled multistate research samples for research projects approved by the Census Bureau. Other state partners choose to review proposals and approve or deny data access on a project-by-project basis.4

In short, acquiring confidential LEHD microdata access for entrepreneurship research can be classified as a “high-cost/high-reward” activity. The scope of research projects that benefit from such rich microdata is vast. This is particularly true in the interdisciplinary field of entrepreneurship research, where many topics deal with the fundamental interactions between workers and firms. For instance, LEHD data allow identification of spin-off firms and the employment history of their start-up teams. Employment with start-up firms is considered a risky but potentially high-reward career strategy—linked employer-employee data can measure both the risks and the long-term earnings benefits of joining a start-up team. Acquiring talented employees is critical for start-up success—better understanding of how labor market agglomeration effects spur industry growth would help policymakers interested in encouraging local entrepreneurship efforts. These examples obviously represent only a handful of possible topics for research using linked employer-employee data. Additionally, the LEHD microdata can be linked to other person and firm-level data, expanding the set of possible research questions even further.

Although LEHD microdata access offers the broadest possibilities for projects in entrepreneurship research, the relatively high cost of obtaining access to the data (writing a successful proposal, obtaining necessary approvals, possible travel to a research data center) is prohibitive for many researchers. This is especially true for younger researchers (e.g., graduate

3. More information on how to apply for confidential microdata research access through the FRDC network is available on the Center for Economic Studies website: https://www.census.gov/ces/.

4. Under all LED data-use agreements, any state or substate tabulation or estimate released from LEHD data must be approved by the state partner. Tables and estimates in research papers must have a minimum of three states contributing to the estimate or cell to avoid this requirement.
students, junior faculty). Policymakers and journalists interested in entrepreneurship often need quick answers to immediate questions. Thus, in the next few sections of this chapter we focus primarily on new public-use statistics on young firms created from the LEHD data, which can be accessed by the broader research and policy community.

11.3.2 LEHD Public-Use Data for Entrepreneurship Research

In this section, we briefly describe three public-use data products derived from LEHD microdata, with a focus on new data on firm age. In the following section, we illustrate the value of these statistics for entrepreneurship research by means of examples. Table 11.3 provides an overall summary of this new data, including variables, frequency, and stratification levels, also highlighting the strengths of these statistics relative to other available data.

The Quarterly Workforce Indicators (QWI)

The Quarterly Workforce Indicators (QWI) are a set of thirty-two economic indicators providing employment, hires and separations, business expansion and contraction, as well as earnings for the universe of UI-covered employment in the United States. Data are available by worker demographics (sex, age, education, as well as race and ethnicity) and firm characteristics (firm age, size) as well as at fine levels of detail by workplace geography (county and Workforce Investment Board area) and industry (highly detailed four-digit North American Industry Classification System [NAICS] codes).

The QWI statistics by firm age are quite new (the first release was in 2013), made possible by the recent enhancements to the LEHD microdata discussed earlier in this chapter. The QWI provide data for five firm-age tabulation levels, with the youngest firm category being firms less than two years old. While the ability to examine employment growth at young firms is not a unique feature of the QWI, several indicators are uniquely available in the QWI: earnings at start-ups, earnings of new hires at start-ups, hires, separations, and turnover. Moreover, the QWI are tabulated for new businesses down to the county level, a level of geographic detail not widely available in other statistics. Finally, as we show in a later example, the QWI are unique in allowing the composition of the start-up workforce to be examined: for example, the share of young workers, of women, of racial minorities, or of highly educated workers employed at start-ups.

LEHD Origin Destination Employment Statistics (LODES)

LEHD Origin Destination Employment Statistics (LODES) provide employment data by both place of work and place of residence at block-level
<table>
<thead>
<tr>
<th>Variable</th>
<th>Available in</th>
<th>Frequency</th>
<th>Most granular geographic detail</th>
<th>Most granular industry detail</th>
<th>Worker demographics</th>
<th>Fills a gap in public-use statistics by allowing researchers to</th>
<th>Also available in (most granular level of detail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment by firm age</td>
<td>QWI</td>
<td>Quarterly</td>
<td>County</td>
<td>NAICS4</td>
<td>Age, sex, education, race/ethnicity</td>
<td>Examine demographics of workers at young firms and within detailed industries. Map detailed substate geographic industry clusters</td>
<td>BDS (MSA-year-industry sector)</td>
</tr>
<tr>
<td>Employment by firm age</td>
<td>LODES</td>
<td>Annual</td>
<td>Census block</td>
<td>All industries</td>
<td>All demographic groups</td>
<td>Map clusters of young firms at very detailed geographies</td>
<td>BDS (MSA-year-industry sector)</td>
</tr>
<tr>
<td>Hires/separations by firm age</td>
<td>QWI</td>
<td>Quarterly</td>
<td>County</td>
<td>NAICS4</td>
<td>Age, sex, education, race/ethnicity</td>
<td>Examine churn at young firms within detailed industries/geographies</td>
<td>None</td>
</tr>
<tr>
<td>Earnings and starting earnings by firm age</td>
<td>QWI</td>
<td>Quarterly</td>
<td>County</td>
<td>NAICS4</td>
<td>Age, sex, education, race/ethnicity</td>
<td>Examine earnings at young firms by worker demographics</td>
<td>None</td>
</tr>
<tr>
<td>Job-to-job moves by firm age</td>
<td>J2J</td>
<td>Quarterly</td>
<td>State</td>
<td>Industry sector</td>
<td>All demographic groups</td>
<td>Examine where early start-up employees are coming from and going to after separating</td>
<td>None</td>
</tr>
<tr>
<td>Hires/separations to nonemployment by firm age</td>
<td>J2J</td>
<td>Quarterly</td>
<td>State</td>
<td>Industry sector</td>
<td>All demographic groups</td>
<td>Decompose worker churn at young firms into workers moving to and from other jobs versus moving in and out of nonemployment</td>
<td>None</td>
</tr>
</tbody>
</table>
The ability to analyze employment by both place of residence as well as place of work is critical for identifying regional labor markets and understanding the interconnectedness of geographic areas that lie across state and metro area boundaries. A combination of noise infusion (similar to QWI) and synthetic data methods is used to protect worker and firm characteristics, including residential location. A web-based mapping application, OnTheMap, provides an easy-to-use interface for mapping small-area workforce characteristics. The application also provides tabulations to accompany the workforce maps on employer and worker characteristics, and allows users to create custom analyses of geographies. For researchers interested in entrepreneurship, a key feature of interest is highly detailed block-level data of employment at new firms. For example, figure 11.1 uses LODES data in OnTheMap to show the spatial concentration of new firms near the Stanford University campus in Palo Alto, California.

Job-to-Job Flows (J2J)

Job-to-Job Flows (J2J) is a brand new data product from the Census Bureau on the flows of workers between employers, with data first released...
in December of 2014. Job-to-Job Flows is the first public-use data product that exploits the ability of the linked employer-employee microdata to follow workers across firms, across industries, and across labor markets.

The J2J statistics and the underlying microdata should prove particularly valuable to researchers of entrepreneurship. A unique feature of the database is its ability to provide a dynamic view of the workforce in the early years of a business, permitting examination of the role that gender, age, industry experience, and experience working at other new businesses plays in the success or failure of new firms. Additionally, the potential to study start-up teams as groups of workers moving from their previous employers to the newly established firm is also unique to linked employer-employee data. While there is no information about each individual’s role or title in the company, strategies have been employed to identify founders (see Agarwal et al. 2013) using LEHD microdata. Finally, the ability to identify coworkers and network effects from working in new technologies may also be interesting to researchers studying agglomeration economies and their role in forming industrial clusters.

As of this writing, the J2J data are in beta stage, with more detailed tabulations planned for later releases. A full description of the methodology used for deriving the worker flow estimates from the LEHD data is available in Hyatt et al. (2014).

11.4 Some Examples of Analysis Using the Quarterly Workforce Indicators and Job-to-Job Flows

In this section, we provide some specific examples of how the public-use QWI and J2J data can be used to answer questions of interest to researchers studying entrepreneurship.

11.4.1 Who Works at Start-Ups?

We begin by presenting simple descriptive statistics from the QWI on the population of workers employed at start-ups. Table 11.4 compares the workforce composition of start-ups to that of more established businesses, where start-ups are defined as businesses of age zero to one year and established businesses are grouped into two age categories, two to ten years old and older than ten years.

Comparing the percentages across the columns in table 11.4, we see that start-ups disproportionately employ more young workers, with workers age fourteen to twenty-four representing 20.2 percent of the workforce at start-ups (versus 14.5 percent overall). Employment at younger firms also skews toward females (51.0 percent) and the less educated. Young firms are also more likely to employ Asian and Hispanic workers. Obviously, some of the differences in demographics across young and old firms are driven by industry composition (e.g., leisure and hospitality firms are overrepresented
among young firms). These same statistics are available within detailed industries, so users can measure how the demographics of new firms in a given industry compare to more established firms.

11.4.2 Did Changing Demographics Contribute to the Decline in Start-Ups?

Next, we use the QWI to explore whether the composition of firms or the workforce can account for changes in certain economic indicators that we care about. Specifically, we turn to the important question of what has caused the documented decline in employment at start-ups.\(^6\) We begin the

\(^6\) This topic is discussed in a number of recent papers including Haltiwanger, Jarmin, and Miranda (2012), Hyatt and Spletzer (2013), Decker (2014), Decker et al. (2014a, 2014b), Davis and Haltiwanger (2014), Pugsley and Sahin (2014), and Dinlersoz, Hyatt, and Janicki (2015).
analysis in the year 2000, after which the employment share of start-ups began to decline and the earnings paid by new firms eroded.\(^7\) We consider the share of employment at start-ups, the trend in the earnings differential between start-ups and established firms, as well as measures of employment reallocation: job creation, job destruction, hires, and separations.

We begin by describing the trends over time, although the decompositions that follow will only pertain to the endpoints of the trends plotted in these figures, which span from 2000Q2 to 2012Q2. Figures 11.2A and 11.2B present the trends in employment and earnings for two age categories: “start-up” firms, those age zero to one, and all other firms, that is, those age two or older. Figure 11.2A shows that the employment share at young firms has declined throughout the first decade of the twenty-first century, consistent with the evidence in the literature referenced above. The earnings series in figure 11.2B shows divergent trends for young and old firms. Consistent with the evidence first documented by Brown and Medoff (2003), earnings at young firms are lower than earnings at older firms. The average earnings of workers at the youngest firms have declined in real terms throughout the first decade of the twenty-first century, but the earnings at older businesses have shown a modest increase, consistent with the findings of Haltiwanger et al. (2012) and Dinlersoz. Hyatt, and Janicki (2015).

Information on the composition of the workforce by firm age can be used to answer questions related to the decline of start-ups and of business and employment dynamics more generally, a much discussed topic. Following Hyatt and Spletzer (2013), we will measure the effect of compositional changes using a standard decomposition technique to separate between-group differences from trends within groups for employment shares and earnings at start-ups (age zero to one) and all other businesses (age two or older). In such a shift-share analysis, an aggregate \(Y_t\) can be written as \(\sum_i Y_{it} S_i\), where \(i\) indexes groups of the workforce or businesses (such as worker age or industry sector), and \(S_i\) is the share of the population that the group represents. We then decompose the difference \(\Delta Y_t = Y_t - Y_{t-1}\) according to:

\[
\Delta Y_t = \sum_i \Delta Y_{it} S_i + \sum_i Y_{it} \Delta S_i,
\]

where \(Y_{it}\) denotes the mean such that \(Y_{it} = (Y_{it} + Y_{it-1}) / 2\), and likewise \(S_{it}\). In other words, the decline in employment dynamics is equal to the change in

\(^7\) Another reason for starting in 2000 is that most of the states in the statistics above had entered the program as of that time, thus the analysis can be conducted on a balanced panel. Different states enter the LEHD data at different times. The year 2000 was chosen as a starting point because most of the country is in the scope of the data set by that year. The states included are AK, CA, CO, CT, DE, FL, GA, HI, ID, IL, IN, IA, KS, LA, ME, MD, MN, MO, MT, NE, NV, NJ, NM, NY, NC, ND, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VT, VA, WA, WY, and WI. Comparisons are between 2000:Q2 and 2012:Q2. The year 2000 corresponds to the start of the job-to-job flows data, as described below. Furthermore, the year 2000 is a good starting point to consider the decline in entrepreneurial employment (see Dinlersoz, Hyatt, and Janicki 2015).
Fig. 11.2A Employment shares by firm age
Notes: Authors’ calculation of the Quarterly Workforce Indicators. All data are seasonally adjusted.

Fig. 11.2B Real quarterly earnings by firm age
Notes: Authors’ calculation of the Quarterly Workforce Indicators. All data are seasonally adjusted.
the dynamics of each group weighted by the group’s average employment share (the within effect), plus the change in each group’s employment share weighted by the group’s average measure of dynamics (the composition effect).

The first column of table 11.5 contains the results of this shift-share analysis for the change in the employment at young firms relative to old firms between 2002Q2 and 2012Q2. Letting Y_t be the share of employment at start-ups, each row reports the percentage of ΔY_t that is attributable to the composition effect of a given group ($\sum_i Y_i \cdot \Delta S_i$). The intuition for this analysis is that different types of workers may be different inputs to the production process, or that the demands for the output of different industries may lead to the shifts in business entry/exit rates for those industries. For example, younger workers may be more productive at start-ups, as in Ouimet and Zarutskie (2014) and Acemoglu, Akcigit, and Celik (2014), or have fewer resources to wait for a higher wage offer from an older firm as in Dinlersoz, Hyatt, and Janicki (2015). However, as shown in table 11.5, most of the changes in composition should have in fact increased the share of start-ups, not decreased it, although the effects of changes in industry composition and worker demographics are fairly small. The main exception to this is the aging of the US workforce, a demographic trend that does appear tied to the decline in employment share at start-ups. The increase in the share of older workers, and their tendency to work at established businesses, explains 9.4 percent of the decrease in the share of employment at start-ups.

Figure 11.2B shows the average real earnings for workers who worked the entire quarter at start-ups and established firms between 2000 and 2012. As can be seen in the graph, earnings at established firms are rising over this period, while earnings at start-ups are falling. In the second column of table 11.5, we decompose the rising earnings premium at established firms by observable characteristics of firms and workers in the QWI. The formula

Table 11.5 Employment composition on differences in employment and earnings (2000:Q2 vs. 2012:Q2)

<table>
<thead>
<tr>
<th></th>
<th>Employment (%)</th>
<th>Start-up earnings penalty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>0.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Age</td>
<td>9.4</td>
<td>11.1</td>
</tr>
<tr>
<td>Education</td>
<td>-0.3</td>
<td>15.4</td>
</tr>
<tr>
<td>Race</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>-1.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Industry</td>
<td>-10.9</td>
<td>33.4</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations of the Quarterly Workforce Indicators.

Note: Employment shares and comparisons are of those age zero to one in the Quarterly Workforce Indicators versus those age two or older. See text for exact formulas.
for this composition change is slightly different, as it compares changes in two groups with each other. We calculate the percentage that the changes in the shares in each of the two categories explain, given the average earnings for the categories, as follows:

\[
\frac{\sum \Delta \text{Share}_{\text{Old},x} \cdot \bar{\text{Earn}}_{x} - \sum \Delta \text{Share}_{\text{Young},x} \cdot \bar{\text{Earn}}_{x}}{\Delta \text{Earn}_{\text{Old}} - \Delta \text{Earn}_{\text{Young}}}
\]

This provides a measure of how the change in a share for a subset of the population defined by a characteristic \(x\), as well as in the average earnings for that particular characteristic, is related to the change in earnings at young firms relative to old firms. Unlike our results for employment shares at start-ups, changes in industry composition and worker demographics explain a considerable part of the apparent increased earnings premium for working at an established firm. For example, changes in the industry composition across young and older firms explains about one-third of the decline in relative earnings at start-ups. Workers at established firms are also trending toward the older and more educated, relative to younger firms. However, since these effects are measured independently of the change in the industry distribution, they may in fact be interrelated, and thus their impacts are not necessarily additive.

In turn, table 11.6 shows how the change in the composition of employment by firm age explains the decline in four employment dynamics measures: hires, separations, job creation, and destruction. These measures exploit the dynamic aspect of the LEHD data: workers and business size are linked longitudinally to create these measures. This decomposition is again computed according to equation (2) above. Results show that the shift away from entrepreneurship explains a substantial portion in the decline of such dynamics, due to the fact that start-ups are more volatile in terms of employment dynamics. The table shows that the decline in start-ups explains 9.3 percent of the decline in hires and 6.8 percent of the decline in separations. These results are similar to what Hyatt and Spletzer (2013) found using the LEHD microdata.

The above examples show how the demographic and industrial detail of the QWI can be used to study the composition of start-up employment and its effects on economic dynamics. However, note that these exercises only scratch the surface of what can be learned from these statistics. All of the measures used here can be cross-tabulated on multiple levels, and are also available at narrow geographic detail, allowing for much more complex analyses.

8. Additionally, the decline in start-ups explains 25.8 percent of the decline in job creation, but only 9.5 percent of the decline in job destruction. These results are similar to what Decker et al. (2014b) found using the BDS.
11.4.3 Where Do Early Employees Come From?

The new Job-to-Job Flows (J2J) data allow us to identify movements of workers into start-up firms from other employers. Figures 11.3A, 11.3B, and 11.3C show a comparison of worker flows across three classes of employers: young firms (less than two years), established firms (more than eleven years), and small firms of all ages (less than twenty employees). Employment growth in each employer class is the sum of net employment flows (i.e., hires of nonemployed workers minus separations to nonemployment) and new worker reallocation (i.e., hires of workers away from other firms minus separations employees to other firms). This decomposition allows us see how firms grow, either through the poaching of workers from other firms or through net employment flows.

Figure 11.3A depicts the hire and separation rates at start-up firms from 2000 to 2013. As can be seen in the figure, new firms obtain a significant share of their early employment growth by poaching workers away from more established firms. Flows into new firms from established firms are much higher than separations from new firms to more established employers. Poaching hires were highest during the 2000–2002 period, when half of new firm hires were of workers moving from other jobs. Overall, this decomposition allows us see how firms grow, either through the poaching of workers from other firms or through net employment flows.

As a comparison, figure 11.3B shows this decomposition for established firms. In contrast to start-ups, net employment growth at established firms is much smaller, and occurs exclusively via net employment flows. We find in other analyses (not shown) that the high contribution of job-to-job flows to employment growth at young firms disappears by the time firms are two to three years old. This may suggest that the high growth rate from worker reallocation at the youngest firms is driven by start-up teams transitioning from their previous jobs at older firms to the new firm.

As an additional comparison, we show the flows at businesses (of all ages) with fewer than twenty employees in figure 11.3C. This decomposition for small businesses looks more like that for older established firms.

Table 11.6 Change in employment dynamics due to decline in start-ups (2000–2012)

<table>
<thead>
<tr>
<th></th>
<th>Hires (%)</th>
<th>Separations (%)</th>
<th>Job creation (%)</th>
<th>Job destruction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:Q2</td>
<td>30.0</td>
<td>27.1</td>
<td>8.6</td>
<td>5.7</td>
</tr>
<tr>
<td>2012:Q2</td>
<td>20.5</td>
<td>17.4</td>
<td>7.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Change</td>
<td>–9.5</td>
<td>–9.7</td>
<td>–1.5</td>
<td>–1.7</td>
</tr>
<tr>
<td>Percent of change explained firm age:</td>
<td>9.3</td>
<td>6.8</td>
<td>25.8</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations from the Quarterly Workforce Indicators. See text for formulas.
Fig. 11.3A Hires and separations at young firms (0–1 year old), 2000–2013
Notes: Authors' calculations from national Job-to-Job Flows data, beta 2014:Q1 release. All data are seasonally adjusted.

Fig. 11.3B Hires and separations at established firms (11+ years old), 2000–2013
Notes: Authors' calculations from national Job-to-Job Flows data, beta 2014:Q1 release. All data are seasonally adjusted.
than for younger firms. Net worker reallocation to small firms from larger firms is low, although very slightly positive. Haltiwanger, Jarmin, and Miranda (2013) find that, controlling for age, it is young firms rather than small firms that disproportionately drive job creation. Here we find that a pattern of employment growth through worker relocation (workers voting with their feet) characterizes new firms but not small firms, generally. That workers are willing to move from established (and presumably more stable and higher-paying) employers to start-ups suggests that for early employees, working at a new firm offers opportunities for advancement and career growth not available to them at more established firms.

At press time, the J2J data are quite new, and do not yet provide as many tabulation levels as the QWI. The possibilities for analysis will only expand as the J2J statistics release more detailed tabulations.

11.5 Looking Forward: The Potential for New Data on Entrepreneurship

While substantial progress has been made in the last few years making linked employer-employee data more useful and accessible for entrepreneur-

9. Haltiwanger, Hyatt, and McEntarfer (2015) point out that the fact that worker relocation does not in fact redistribute workers away from small firms to large firms is inconsistent with a number of important labor market models, particularly Burdett and Mortensen (1998).
ship research, the work we have described so far represents only a fraction of possible ways to expand the frontier of data available for research. In particular, linking in additional data on business owners and creating new measures of the dynamics of entrepreneurship would be an important advance in the statistical infrastructure for studying new business formation. In this section, we discuss the potential for including more information on entrepreneurs and their firms from linked employer-employee data, and discuss some results from work-to-date on integrating these new sources of data.

11.5.1 Linking Data on Business Owners

Efforts are currently underway to enhance the set of available data on business owners and the self-employed by integrating data on sole proprietors and partnerships into the LEHD data infrastructure. A prototype microdata file is being created that covers the universe of active US sole proprietorships and partnerships, both with and without employees, from 2002 through 2013. The Census Bureau is undertaking research into using these data for new public-use statistics on the dynamics of business ownership.\(^\text{10}\)

The universe of this data set encompasses all unincorporated businesses owned and run by one or more individuals. The data that we integrate originate primarily from individual federal income tax returns, such as income filings from Schedules C and K1, payroll tax records for employers (Form 941), and applications for an Employer Identification Number (EIN) for employers (Form SS-4). The scope of our data includes owners of sole proprietorships, partnerships, and Subchapter S corporations. Owners of limited liability companies (LLCs) and the like are included as long as they do not elect to be taxed by the IRS as a corporation. The individual business owners can then be linked via a personal identifier to the LEHD job-level database, thus providing an employment history for each owner. More details on how the data are constructed are provided in Garcia-Perez et al. (2013).

This linking of information on business ownership and employment status joins information in a way that is not available in other data sources, permitting a unique view of the path to entrepreneurship. Individuals starting businesses bring with them a preexisting stock of human capital through their past experience, both in the labor market and also as prior business owners. The potential statistics derived from this unique data source will allow researchers to study the intersection of these two employment spheres, which has been little explored up to this point.

One challenge in the study of entrepreneurship is the lack of a cleanly defined measure of entrepreneurial activity. Measurement aside, there is, in fact, no consistent definition in the literature of what entrepreneurship

10. This builds on previous work integrating the employer and nonemployer business data (see Davis et al. 2009).
is. At its narrowest, entrepreneurs have been identified as the founders of innovative new businesses that grow rapidly in both employment and output and thus drive national measures of economic growth. More broadly, the word entrepreneur has at its root “one who starts” and thus can refer to the founder of any business regardless of size or outcome.

More broadly still, entrepreneurial activity is associated with business ownership of any kind (with or without employees) and with self-employment, which is in turn equally hard to define. In fact, for tax purposes in the United States, contract and contingent workers are defined as self-employed and their earnings treated as self-employment earnings.

Taken independently, each of these varied concepts of entrepreneurial activity has value and each measure reveals a different facet of the economy. Rises and falls among innovative, high-growth businesses have obvious implications for national employment and output. The set of all business starts with or without employees tells us, at a minimum, about the economy’s capacity to support such efforts. The set of small self-owned businesses without employees combined with the pool of contract or contingent workers serves as an alternative measure of employment in a changing economy. This count may also measure what the development literature calls the informal labor market.

To better understand the implications of a rise or fall in these varied measures of entrepreneurial activity, we must recognize that each of these events, the start of a new business (with or without employees) or the transition to contingent work, reflects a choice made by the owner. These choices are in turn influenced by the owner’s personal preentry economic environment. In addition, trends in the varying concepts of entrepreneurship likely are interrelated. For example, ownership of a business without employees in many cases precedes the “birth” of an employer business. Thus, our ability to extract information from these trends is greatly enhanced by placing them in a broader context.

The linked employer-employee data constructed by the LEHD program have the potential to provide this context. Specifically, statistics released from these data may improve our understanding of entrepreneurial dynamics in three ways. First, as noted, it is the use of federal tax filings by sole proprietorships, partnerships, and Subchapter S corporations that gives the LEHD program its ability to identify business owners. Knowledge of the type of originating tax form combined with the presence or absence of employees allows us to disentangle these varied types of entrepreneurship and to separately examine trends in each. Second, by combining administrative data on the universe of individual business owners with the universe of covered wage and salary work, the resulting data set permits us to observe an owner’s preownership wage and salary work history, and thus to potentially generate statistics based on prior employment, earnings, and industry experience. Third, we can follow individuals as they transition between owner-
ship of businesses without employees, employer businesses, and traditional work, and explore the interconnection between these spheres. In short, by identifying differing types of business ownership and by integrating each with employment and earnings history and prior ownership experience for the owner, the program has the potential to release a set of statistics that gives insight into what each of these measures may be telling us about the vitality of the economy.

We will next describe the type of statistics the program has the ability to create to measure conventional self-employment, as well as self-employment as an alternate form of employment (what the literature has termed the “gig economy”). We follow with a more developed discussion of how linked employer-employee-owner data may further our knowledge of entrepreneurship by tracking the events that precede and follow the birth of a business.

11.5.2 Self-Employment and the “Gig Economy”

The vast majority of businesses that report earnings have no employees. While self-employment counts have stagnated in survey reports in recent years, the count of these nonemployer sole-proprietor businesses have continued to rise.\(^{11}\) This count includes any person who receives income as a statutory employee or contingent worker or who operates a business or practice for profit with regularity and continuity.\(^{12}\) Internet businesses, freelancers, contract workers, consultants, and so forth, all are included in this measure.

The rise in employment arrangements of this type is linked in part to technology, which has significantly lowered the entry cost for these businesses. The US economy has become much more service oriented and thus the capital requirements associated with business entry are low. The pros and cons of this trend have been widely discussed and can be viewed from the perspective of the employer, the worker, or the economy as a whole. From an employer’s perspective, the availability of an on-demand workforce lowers labor costs and provides flexibility. From the worker’s perspective, a less formal work arrangement often precludes other benefits of employment such as stability and health insurance coverage, yet does provide an alternative to conventional work when faced with unemployment or underemploy-

11. In a recent interview, Laurence Katz described preliminary work with Alan Krueger to investigate the discrepancy between steady trends in self-employment in survey data and increases in self-employment suggested by tax data. Rob Wile, “There are probably way more people in the ‘gig economy’ than we realize.” July 27, 2015, Fusion.net.

12. Data on nonemployer sole proprietors originate from filings of IRS 1949 Schedule C. The Schedule C instructions state “use Schedule C (Form 1040) to report income or loss from a business you operated or a profession you practiced as a sole proprietor. An activity qualifies as a business if your primary purpose for engaging in the activity is for income or profit and you are involved in the activity with continuity and regularity. For example, a sporadic activity or a hobby does not qualify as a business. Also use Schedule C to report (a) wages and expenses you had as a statutory employee, (b) income and deductions of certain qualified joint ventures, and (c) certain income shown on Form 1099-MISC, Miscellaneous Income.”
ment. For the economy as a whole, a rise in unemployment is one of the mechanisms through which the economy is theorized to self-correct during recessions. Thus, unlike a rise in conventional entrepreneurship, which is viewed as a driving force of economic growth, it is not clear whether we should regard the rise in the numbers of nonemployer sole proprietors as a sign of economic strength.

Linked employer-employee-owner data have the potential to create statistics that provide more insight into these trends. For each new nonemployer, we observe their employment and earnings status in time periods preceding self-employment entry. The data thus give us some ability to distinguish those new nonemployers pushed into self-employment by lack of economic opportunity from those lured into self-employment by higher anticipated returns. We can identify those entrants with no wage and salary earnings, those with broken spells of employment, those previously working at a downsizing employer, or those employed but earning significantly less than comparable workers. Similarly, we can identify those entrants with high, above average, or rising wage and salary earnings. An understanding of the forces that influence self-employment entry may help economists understand the rise of business ownership of this type.

11.5.3 Measuring Business Ownership Dynamics

The determinants of entrepreneurial success are a much-studied topic, but many of these factors are determined prior to the beginning of a business. The human capital and prior experience that an entrepreneur brings to a new venture are clearly important, and may not be possible to fully encapsulate in measures such as education level. Moreover, many business starts and business failures occur before the firm hires its first employees. Such small owner-operated businesses are not included in statistics such as the BDS and QWI, where business birth is defined as the moment the firm hires its first worker. In order to identify the characteristics of successful entrepreneurs, and to answer questions like why the rate of entrepreneurship is declining, it may be important to observe these potential job creators at their earliest stages.

Such a link should prove enlightening in the context of the well-documented decline in US start-ups, which has sparked much interest in the underlying causes and implications of this slowdown. Although the overall trend in start-ups may be downward, in reality the composition of new business owners is constantly in flux, with certain types of individuals exhibiting differing and perhaps offsetting trends. To understand the decrease in start-ups requires knowledge of the factors that precede a business and an understanding of how these factors influence the odds of a successful start-up. For example, the self-employment literature recognizes that some are pushed into self-employment by lack of economic opportunity while others are pulled into entrepreneurship by means of comparative advantage.
or innovative idea. Statistics derived from linked sole-proprietor and LEHD data will offer a way to help parse such differences in the paths of potential entrepreneurs.

11.5.4 Don’t Quit Your Day Job: A Look at Self-Employment Dynamics

Researchers are interested in identifying successful transitions to entrepreneurship. One measure of success is the owner’s ability to create a primary source of earnings for themselves from the business. The combined owner-work history data are well suited to explore the following question: What share of self-employed businesses grow enough to allow the owner to leave wage and salary employment?

The left-hand panel of table 11.7 shows the percentage of sole proprietors in 2009 who are engaged in wage and salary work in the same year, as well as in the surrounding years of 2008 and 2010. One of the first facts to stand out is that the majority of self-employed businesses without employees do not in fact grow large enough to supplant the owner’s reliance on some form of wage and salary work. Over 50 percent of nonemployer business owners in 2009 have wage and salary income in that year, a share that is higher for new nonemployer business owners (those in the first year of their business), at around 65 percent. For new employers in 2009, defined as businesses with employees who were not employers in 2008, about 40 percent had wage and salary jobs in 2008, 35 percent have such employment in 2009 (the birth year of their employer business), and 30 percent retain it in the following year 2010. For more established business owners with employees, the wage and salary work rate stabilizes at just above 20 percent.

For employer business owners, we can also capture their experience as operators of businesses without paid employees. In the right-hand panel of

<table>
<thead>
<tr>
<th>Type of 2009 business owner</th>
<th>Percentage with wage and salary income</th>
<th>Percentage with nonemployer income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008 (%)</td>
<td>2009 (%)</td>
</tr>
<tr>
<td>New employers</td>
<td>40.5</td>
<td>34.8</td>
</tr>
<tr>
<td>All employers</td>
<td>21.0</td>
<td>19.9</td>
</tr>
<tr>
<td>New nonemployers</td>
<td>68.3</td>
<td>65.4</td>
</tr>
<tr>
<td>All nonemployers</td>
<td>53.9</td>
<td>50.7</td>
</tr>
</tbody>
</table>

Notes: Table reports percentages of sole-proprietor business owners in 2009 of a given type that also have positive income from wage and salary work and/or nonemployer activity in the years 2008–2010. Sample consists of all observed owner-year pairs of a given business type during 2009. “New employers” are defined as owners who have positive income from an employer business in the year 2009, but no such income in year 2008. Similarly “New nonemployers” are those who have nonemployer business income in 2009, but no such income in 2008.
table 11.7, we see that among new employer business owners in 2009, around 36 percent operated a nonemployer business in the previous year. This rate falls by over half to 17 percent during their first year of employer business activity in 2009, suggesting that it may represent the same businesses that are transitioning as they acquire employees. Note that the percentage of new 2009 employers with nonemployer income rises again in 2010 to 24 percent, perhaps indicating that some new employer businesses have shed their employee within one year, but nonetheless maintained the business. Note again that the rate of nonemployer business holding among all employers remains in the 15–20 percent range, meaning that a substantial fraction of owners maintain other sources of business income simultaneous to running an employer business.

This example clearly shows that there is no single path to entrepreneurship, as the relationship between wage and salary work, self-employment, and running an employer business is quite complicated. These data are uniquely suited to studying the interplay between these types of employment, and the future business owner statistics should enable new exploration into the origins of entrepreneurship.

11.6 Conclusion

Linked employer-employee data have enormous potential for empirical research in entrepreneurship. These data allow an ever-growing community of researchers to develop a clearer picture of how new firms come into being, obtain workers, grow, shrink, and exit, and how this dynamic process is related to employment and economic growth. In this chapter, we described the LEHD-linked employer-employee microdata, introduced public-use data on start-ups tabulated from LEHD data, and highlighted how they fill gaps in the set of available data for the study of entrepreneurship. We provided examples that illustrate the power of the new public data to address questions that previously required access to restricted microdata. Work to expand the utility of this data for entrepreneurship research is still ongoing; we also outlined future plans for development of new data products for empirical research on entrepreneurship.

References

