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4
Bayesian Variable Selection for 
Nowcasting Economic Time Series

Steven L. Scott and Hal R. Varian

4.1 Introduction

Computers are now in the middle of many economic transactions. The 
details of these “computer- mediated transactions” can be captured in data-
bases and used in subsequent analyses (Varian 2010). However, such data-
bases can contain vast amounts of data, so it is normally necessary to do 
some sort of data reduction.

Our motivating example for this work is Google Trends, a system that pro-
duces an index of search activity on queries entered into Google. A related 
system, Google Correlate, produces an index of queries that are correlated 
with a time series entered by a user. There are many uses for these data, but 
in this chapter we focus on how to use the data to make short- run forecasts 
of economic metrics.

Choi and Varian (2009a, 2009b, 2011, 2012) described how to use search 
engine data to forecast contemporaneous values of macroeconomic indi-
cators. This type of contemporaneous forecasting, or “nowcasting,” is of 
particular interest to central banks, and there have been several subsequent 
research studies from researches at these institutions. See, for example, Arola 
and Galan (2012), McLaren and Shanbhoge (2011), Hellerstein and Middel-
dorp (2012), Suhoy (2009), and Carrière- Swallow and Labbé (2011). Choi 
and Varian (2012) contains several other references to work in this area. Wu 
and Brynjolfsson (chapter 3, this volume) describe an application of Google 
Trends data to the real estate market using cross- state data.

Steven L. Scott is a statistician at Google, Inc. Hal R. Varian is the chief economist at Google, 
Inc. and emeritus professor at the University of California at Berkeley.

For acknowledgments, sources of research support, and disclosure of the authors’ material 
financial relationships, if  any, please see http://www.nber.org/chapters/c12995.ack.
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In these studies, the researchers selected predictors using their judgment 
of  relevance to the particular prediction problem. For example, it seems 
natural that search engine queries in the “vehicle shopping” category would 
be good candidates for forecasting automobile sales while queries such as 
“file for unemployment” would be useful in forecasting initial claims for 
unemployment benefits.

One difficulty with using human judgment is that it does not easily scale 
to models where the number of possible predictors exceeds the number of 
observations—the so- called “fat regression” problem. For example, the 
Google Trends service provides data for millions of search queries and hun-
dreds of search categories extending back to January 1, 2004. Even if  we 
restrict ourselves to using only category data, we have several hundred pos-
sible predictors and about 100 months of data. In this chapter we describe 
a scalable approach to time series prediction for fat regressions of this sort.

4.2 Approaches to Variable Selection

Castle, Qin, and Reed (2009) and Castle, Fawcett, and Hendry (2010) 
describe and compare twenty- one techniques for variable selection for time- 
series forecasting. These techniques fall into four major categories:

•  Significance testing (forward and backward stepwise regression, Gets)
•  Information criteria (AIC, BIC)
•  Principle component and factor models (e.g., Stock and Watson 2010)
•  Lasso, ridge regression, and other penalized regression models (e.g., 

Hastie, Tibshirani, and Friedman 2009)

Our approach combines three statistical methods into an integrated sys-
tem we call Bayesian Structural Time Series, or BSTS for short. The three 
methods are:

•  a “basic structural model” for trend and seasonality, estimated using 
Kalman filters;

•  spike and slab regression for variable selection; and
•  Bayesian model averaging over the best performing models for the final 

forecast.

We briefly review each of these methods and describe how they fit into 
our framework.

4.2.1 Structural Time Series and the Kalman Filter

Harvey (1991), Durbin and Koopman (2001), Petris, Petrone, and Cam-
pagnoli (2009) and many others have advocated the use of Kalman filters for 
time series forecasting. The “basic structural model” decomposes the time 
series into four components: a level, a local trend, seasonal effects, and an 
error term. The model described here drops the seasonal effect for simplic-
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ity and adds a regression component; it is then called a “local linear trend 
model with regressors.”

This model is a stochastic generalization of  the classic constant- trend 
regression model

   yt = � + bt + �xt + et .

In this classic model the level (μ) and trend (b) parameters are constant, 
(xt) is a vector of contemporaneous regressors, β is a vector of regression 
coefficients, and et is an error term.

In a local linear trend model each of these structural components is sto-
chastic. In particular, the level and slope terms each follow a random walk 
model.

(1) 
   yt = �t + zt + vt vt ~ N(0,V )

(2) 
   �t = �t−1 + bt−1 + w1t w1t ~ N(0,W1)

(3)   bt = bt−1 + w2t w2t ~ N(0,W2)

(4)   zt = �xt

The unknown parameters to be estimated in this system are the variance 
terms   (V,W1,W2) and the regression coefficients, β.

If  we drop the trend and regression coefficients by setting bt = 0 and β = 
0, the “local trend model” becomes the “local level” model. When V = 0, the 
local level model is a random walk, so the best forecast of   yt+1 is  yt. When W1 
= 0, the local level model is a constant mean model, so the best forecast of 

  yt+1 is the average of all previously observed values of  yt. Hence, the local 
level model has two popular time series models as special cases.

It is easy to add a seasonal component to the local linear trend model, in 
which case it is referred to as the “basic structural model.” In the appendix 
we describe a general structural time series model that contains these and 
other models in the literature as special cases.

It is also possible to allow for time- varying regression coefficients by 
simply including them as another set of  state variables. In practice, one 
would want to limit this to just a few coefficients, particularly when dealing 
with small sample sizes.

4.2.2 Spike- and- Slab Variable Selection

The spike- and- slab approach to model selection was developed by George 
and McCulloch (1997) and Madigan and Raftery (1994).

Let γ denote a vector of zeros and ones that indicates whether or not a 
particular regressor is included in a regression. More precisely, γ is a vec-
tor the same length as β, where γi = 1 indicates    �i ≠ 0 and    �i = 0 indicates 

   �i = 0. Let βγ indicate the subset of β for which γi = 1, and let σ2 be the 
residual variance from the regression model.
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A spike- and- slab prior for the joint distribution of (β, γ, σ–2) can be fac-
tored in the usual way.

(5)    
p(�,�,�−2) = p(�� |�,�−2)p(�−2 |�)p(�).

There are several ways to specify functional forms for these prior distribu-
tions. Here, we describe a particularly convenient choice.

The “spike” part of a spike- and- slab prior refers to the point mass at zero, 
for which we assume a Bernoulli distribution for each i, so that the prior is 
a product of Bernoulli’s:

(1) 
   
� ~

i
∏�i

�i(1 − �i)1−�i.

When detailed prior information is unavailable, it is convenient to set all πi 
equal to the same number, π. Alternatively, the researcher might expect that 
on average only k out of K possible coefficients are nonzero. In this case it 
is natural to set π = k/K. In our particular application, where we will use 
Google Trends categories as predictors, we may have prior beliefs about 
which categories are likely to be relevant.

More complex choices of p(γ) can be made as well. For example, a non- 
Bernoulli model could be used to encode rules such as the hierarchical prin-
ciple (no high order interactions without lower order interactions). The 
MCMC methods described below are robust to the specific choice of the 
prior.

The “slab” component is a prior for the values of the nonzero coefficients, 
conditional on knowledge of which coefficients are nonzero. Let b be a vec-
tor of prior guesses for regression coefficients, let Ω–1 be a prior precision 
matrix, and let 

  
��

−1 denote rows and columns of  Ω–1 for which    �i = 1. A 
conditionally conjugate “slab” prior is:

(7) 
   
�� |�,�2 ~  (b�,�2(��

−1)−1),
1
�2

~ �
df
2

,
ss
2( ).

It is conventional to assume b = 0 (with the possible exception of  the 
intercept term) and     �−1 ∝ XTX, in which case equation (7) is known as Zell-
ner’s g- prior (Chipman et al. 2001). Because     X

TX / �2 is the total Fisher 
information in the full data, it is reasonable to parametrize     �

−1 = �(XTX) / n, 
the average information available from κ observations.

One issue with Zellner’s g- prior is that when the design matrix contains 
truly redundant predictors (as is the case when the number of possible pre-
dictors exceeds the number of observations), then   XTX is rank deficient, 
which means that for some values of    �, p(�, � |�) is improper. We can restore 
propriety by averaging   XTX with its diagonal, so that

    
�−1 = �

n
[wXTX + (1 − w)diag(XTX)].



Bayesian Variable Selection for Nowcasting Economic Time Series    123

The final values that need to be chosen are df and ss. These can be elicited 
by asking the modeler for the R2 statistic he expects to obtain from the regres-
sion, and the weight he would like to assign to that guess, measured in terms 
of the equivalent number of observations. The df parameter is the equivalent 
number of observations, and 

  
ss = df (1 − R2)sy

2.
Software implementing the spike- and- slab prior can make reasonable 

default choices for expected model size, κ, expected R2, and df, thereby giv-
ing the modeler the option either to accept the defaults, or to provide his 
own inputs.

4.2.3 Bayesian Model Averaging

Bayesian inference with spike- and- slab priors is an effective way to imple-
ment Bayesian model averaging over the space of time series regression mod-
els. As described below, we estimate the model by sampling from the poste-
rior distribution of the parameters in the model. Each draw of parameters 
from the posterior can be combined with the available data to yield a forecast 
of   yt+1 for that particular draw. Repeating these draws many times gives us 
an estimate of the posterior distribution of the forecast   yt+1.

This approach is motivated by the Madigan and Raftery (1994) proof 
that averaging over an ensemble of models does no worse than using the 
best single model in the ensemble. See Volinsky (2012) for links to tools and 
applications of Bayesian model averaging.

4.3 Estimating the Model

The Kalman filter, spike- and- slab regression, and model averaging all 
have natural Bayesian interpretations and tend to play well together. The 
basic parameters we need to estimate are γ (which variables are in the regres-
sion), β (the regression coefficients), and the variances of the error terms 

  (V,W1,W2,W3).
As the appendix describes in detail, we specify priors for each of these 

parameters and then sample from the posterior distribution using Markov 
Chain Monte Carlo (MCMC) techniques. There are a number of attractive 
short cuts available that make this sampling process quite efficient. These are 
described in more detail in the appendix and in a companion paper, Scott 
and Varian (2014).

These techniques yield a sample from the posterior distribution for the 
parameters that can then be used to construct a posterior distribution for 
forecasts of time series of interest.

4.4 Fun with Priors

We have already indicated that it is possible to use an informative prior to 
describe beliefs about the expected number of predictors. It is also possible 
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to use a prior in the regression to indicate likely relationships. For example, 
one might expect that automobile purchases are likely to be correlated with 
automotive- related queries.

A less obvious example involves using data- based priors for estimating 
the state and observation variances,   (V,W1,W2,W3). Even though the Google 
Trends data only goes back to January 2004, economic time series are often 
much longer. One can estimate posterior distribution of the parameters in 
the univariate Kalman filter using the long series, then use this posterior 
distribution as the prior distribution for the shorter series where the Google 
Trends data are available.

4.5 Nowcasting Consumer Sentiment

To illustrate the use of BSTS for nowcasting, we examine the University 
of Michigan monthly survey of Consumer Sentiment from January 2004 to 
April 2012. We focus on “nowcasting” since we expect that queries at time t 
could be related to sentiment at time t but are not necessarily predictive of 
sentiment in the more distant future.

Our data from Google Trends starts at January 2004, and our sample 
ends in April 2012, giving us 100 observations. For predictors, we use 151 
categories from Google Trends that have some connection with economics. 
These potential predictors were chosen from the roughly 300 query catego-
ries using the authors’ judgment.

Our problem is to find a good set of predictors for 100 observations cho-
sen from a set of 151 possible predictors. This qualifies as a mildly obese, if  
not truly fat, regression.

The Consumer Sentiment index is not highly seasonal, but many of the 
potential predictors are seasonal, so we first deseasonalize the data by using 
the R command stl. We then detrend the predictors by regressing each pre-
dictor on a simple time trend. A visual inspection of the time series of the 
predictors indicated that these techniques were sufficient to “whiten” the 
data.

We then applied the BSTS estimation procedure described earlier. Figure 
4.1 shows the inclusion probability for the top five predictors. A white bar 
indicates that the predictor has a positive relationship with consumer senti-
ment and a black bar indicates a negative relationship. The length of the bar 
measures the proportion of the estimated models in which that predictor 
was present.

The top predictor is financial planning, which is included in almost all of 
the models explored. The top queries in this category in the United States 
can be found on the Google Trends web page. They are “schwab,” “401k,” 
“charles schwab,” “ira,” “smith barney,” “fidelity 401k,” “john hancock,” 
“403b,” “401k withdrawl,” and “roth ira.”

The second most probable predictor is investing, which tends to have a 
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negative relationship with confidence. The top queries in this category are 
“stock,” “gold,” “fidelity,” “stocks,” “stock market,” “silver,” “gold price,” 
“mutual,” “scottrade,” and “finance.”

The inclusion of the energy category is likely due to gasoline prices, which 
are known to have a negative relationship with consumer sentiment in the 
United States. We have no explanation for the search engine inclusion, 
though a visual inspection of the series shows that it does change direction 
at about the time the recession started. We speculate that the financial crisis 
influenced queries relating to economic conditions, which were classified as 
being related to both business news and search engines.

Figure 4.2 shows the posterior distribution of the one- step- ahead forecast 
along with the actual observations.

Note that the regression parameters are estimated using the entire sample 
of data, but the forecasts for period t are made using the value of consumer 
sentiment at t – 1 and the observed query categories at time t (for the included 
categories).

Fig. 4.1 Top five predictors for consumer sentiment
Note: Bars show the probability of inclusion. Shading indicates the sign of the coefficient.
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The model predicts reasonably well with a mean absolute one- step- ahead 
prediction error of about 4.5 percent. A naive AR(1) model has a mean abso-
lute one- step- ahead prediction error of 5.2 percent, indicating an improve-
ment of about 14 percent. See figure 4.3 for a time series plot of the actual, 
AR(1), and BSTS one- step- ahead predictions.

As we have seen, the BSTS system can decompose the forecast into the 
trend and regression components. The trend component is basically the uni-
variate Kalman filter forecast, while the regression component uses the pre-
dictors from the query categories. Figure 4.4 illustrates the contribution of 
each state variable and regressor to the fit. The faint line in each panel is the 
previous fit.

Fig. 4.2 Posterior distribution of forecast and the observations

Fig. 4.3 Actual, base AR(1), regression, and BSTS one- step- ahead predictions



Fig. 4.4 Decomposition of forecast for consumer sentiment using Google 
Trends data
Note: Variables are ordered by probability of inclusion, mean absolute error is given in title, 
and residuals are shown at the bottom of each panel.



128    Steven L. Scott and Hal R. Varian

4.6 Nowcasting Gun Sales

The National Instant Criminal Background Check (NICS) is a service 
offered by the FBI to federal firearms licensees that can quickly determine 
whether a prospective buyer is eligible to buy firearms or explosives. A 
monthly report on the number of checks conducted is available on the Web.1

We downloaded the NICS data and fed it to Google Correlate, which 
produced 100 queries that were highly correlated with this series. The first 
ten were “stack on,” “bread,” “44 mag,” “buckeye outdoors,” “mossberg,”  
“g star,” “ruger 44,” “baking,” “.308,” and “savage 22.” Most of these queries 
are related to weapons; the exceptions (bread and baking) have to do with 
the fact that hunting season starts at about the same time as Thanksgiving 
in many states.

We used BSTS to find the best predictors from this set for the NICS 
background check data. Since the data was highly seasonal, we used both a 
local linear trend and seasonal state variables. The best predictor by far was 
“gun stores” which, interestingly, only ranked 36th on the list of correlates. 
The in- sample MAE of the simple model using only trend + seasonal was 
0.34, but adding “gun stores” cut the MAE to 0.15, a substantial reduction. 
Figure 4.5 shows how adding trend, seasonal, and query data improves the 
in- sample fit.

We also ran BSTS using all 585 verticals produced by Google Trends to fit 
the 107 observations of monthly NICS data. The two most probable predic-
tors are shown in table 4.1. The category “Recreation::Outdoors::Hunting: 
and:Shooting” is by far the most probable predictor. The forecast decom-
position is shown in figure 4.6, which indicates a substantial contribution 
by the regression component.

4.7 Summary

We have described a Bayesian approach to variable selection for time 
series that combines Kalman filtering, spike- and- slab regressions, and model 
averaging. Although the system was developed for nowcasting using Google 
Trends data, there are many other possible applications.

For example, Brodersen et al. (2013) describe how to use BSTS to esti-
mate ad effectiveness. The basic idea is to build a BSTS model that predicts 
website visits using trend, seasonal, and regression components. When an 
ad campaign is initiated, this model can be used to predict the counter-
factual—what would have happened in the absence of the campaign. The 
difference between the actual and the counterfactual is the causal effect of 
the ad campaign.

We have focused on nowcasting since, in most cases, the action taken by 

1. http://www.fbi.gov/about- us/cjis/nics/reports/080112_1998_2012_Monthly_Yearly 
_Totals.pdf.
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individuals is contemporaneous with the related queries. But in some cases, 
such as vacation planning or housing purchases, the relevant queries may 
precede the actions by several months. In such cases queries may help in 
longer- term forecasting. (See, e.g., Choi and Liu 2011.)

As more and more data becomes available the problem of “fat regressions” 
will arise in many other contexts and we anticipate there will be considerable 
interest in model selection. Given the widespread availability of “big data” it 

Fig. 4.5 Decomposition of forecast for NICS using correlate data
Note: Variables are ordered by probability of inclusion, mean absolute error is given in the 
title, and residuals are shown at the bottom of each panel.

Table 4.1 Google Trends predictors for NICS checks

 Category  Mean  Inc. prob.  

Recreation::outdoors::hunting:and:shooting 1,056,208 0.97
 Travel::adventure:travel  –84,467  0.09  
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seems strange that so much attention is paid to sampling uncertainty when 
the real issue in most cases is model uncertainty. We believe that Bayesian 
methods such as those we have described allow for better ways to describe 
model uncertainty. (See Varian [2014] for further discussion.)

It is widely recognized that averaging many small models tends to give 
better out- of- sample forecasting performance than using a single complex 
model. Bayesian methods give a principled way to perform such averaging 
which should, in turn, lead to better forecasts.

Appendix

Structural Time Series Models

Here we describe our Bayesian Structural Time Series model. More detail 
can be found in Scott and Varian (2014). We focus on structural time series 
models of the standard form

Fig. 4.6 Decomposition of forecast for NICS using Google Trends data
Note: Variables are ordered by probability of inclusion, mean absolute error is given in the 
title, and residuals are shown at the bottom of each panel.
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(8) 

   

yt = Zt
T�t + � t � t ~  (0, Ht)

�t+1 = Tt�t + Rt�t �t ~  (0,Qt).

Here yt is time series to be modeled and the vector αt is a latent variable 
indicating the state of the model; it contains any trend, seasonal, or other 
components deemed necessary by the modeler.

Zt is a vector of coefficients applied to the state variables,   �t  is a normally 
distributed error term with mean zero, and Ht is its variance. Each state 
component contributes to the block diagonal transition matrix Tt, the rect-
angular block diagonal residual matrix Rt, and the observation vector Zt. 
The error term 𝛈t has covariance matrix Qt.

The model matrices (Z, T, R, H, Q) can be used to construct the Kalman 
filter, which can then be used to forecast future values yt+τ from current 
observations 

  ( y1,, yt). One attractive feature of the Kalman filter is that it 
has a natural Bayesian interpretation and can easily be combined with the 
variable selection and model averaging techniques we have chosen.

Regression

Regressors can be included in a structural time series model in either a 
static framework (where the regression coefficients are fixed) or dynamic 
framework (where the regression coefficients can change over time).

In a dynamic regression the coefficients are a component of the state vec-
tor, which evolve over time according to some stochastic process. In a static 
regression, by contrast, the coefficients are fixed, unknown parameters. A 
convenient way to include a static regression component in the model is to 
set αt = 1, tt = 1, qt = 0, and zt = βtxt. This specification adds βtxt to the con-
tributions of the other state components in a computationally efficient way 
because it only adds one additional state to the model. A small dimension 
is helpful because the Kalman recursions are quadratic in the dimension of 
the state space.

Estimating the Model Using Markov Chain Monte Carlo

We estimate the posterior distribution of  the model parameters using 
Markov Chain Monte Carlo. Let θ denote the collection of model param-
eters (β, σ, ψ) where ψ is the collection of all model parameters associated 
with state components other than the static regression. Then the complete 
data posterior distribution is:

(9) 
     
p(�, � | y) ∝ p(�)p(�0)

t=1

n

∏ p(yt |�t,�)p(�t |�t−1,�).

In order to sample from the posterior distribution we use an efficient 
Gibbs sampling algorithm that alternates between draws of p(𝛂|θ, y) and 
p(θ|𝛂, y), which produces a sequence 

   (�, �)0, (�, �)1, from a Markov chain 
with stationary distribution p(θ|𝛂, y).

The key point is that, conditional on 𝛂, the time series and regression 
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components of the model are independent. Thus the draw from p(θ | 𝛂, y) 
decomposes into several independent draws from the different conditional 
posterior distributions of the state components. In particular,      p(�,�, �−2 |�, y) 
=      p(� |�, y)p(�, �−2 |�, y).

Sampling α

The idea of using Kalman filtering to sample the state in a linear Gauss-
ian structural time series model was independently proposed by Carter and 
Kohn (1994) and Frühwirth- Schnatter (1994). Various improvements to the 
early algorithms have been made by de Jong and Shepard (1995), Rue (2001), 
and others. We use the method proposed by Durbin and Koopman (2002), 
who observed that the variance of p(α|θ, y) does not depend on the numerical 
value of y. Durbin and Koopman (2001) describe a fast smoothing method 
for computing E(𝛂|  y, θ) using the Kalman filter.

Thus one may simulate a fake data set (y*, 𝛂*) ~ p(y, 𝛂| θ) by simply iterat-
ing equation (8). Then the fast mean smoother can be used to subtract the 
conditional mean E(𝛂*| θ, y*) from 𝛂*, which is now mean zero with the cor-
rect variance. A second fast smoother can be used to add in E(𝛂| y, θ), yield-
ing a draw of 𝛂 with the correct moments. Because p(𝛂| y, θ) is  Gaussian, 
the correct moments imply the correct distribution.

Sampling θ

Many of the usual models for state components are simple random walks, 
whose variance parameters are trivial to sample conditional on 𝛂. For ex-
ample, consider the state variables for the local linear trend model described 
in equation (4):

   

�t+1 = �t + �t + �0t

�t+1 = �t + �1t

where η0 and η1 are independent Gaussian error terms with variances   �0
2  

and   �1
2. With independent Gamma priors on    �0

−2 ~ �(df0 / 2, ss0 / 2) and 

   
�1

−2 ~ �(df1 / 2, ss1 / 2), their full conditional is the product of two independent 
Gamma distributions

    
p(�0

−2, �1
2 |�) = �

df0 + n − 1
2

,
SS0

2( )�
df1 + n − 1

2
,
SS1

2( ),
where SS0 = ss0 +   ∑t=2

n (μt – μt–1 – δt–1)
2 and SS1 = ss1 +   ∑t=2

n (δt – δt–1)
2. These 

complete data sufficient statistics are observed given 𝛂, so drawing   �0
−2 and 

  �1
−2 from their full conditional distribution is trivial. Most of the traditional 

state models can be handled similarly, including the seasonal component of 
the BSM and dynamic regression coefficients.

The full conditional for (β, σ–2) is likewise independent of the other state 
components, with 

    yt = yt − Zt
T�t + �Txt ~  (�txt, �2). Thus, by subtracting 
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the contributions from the other state components from each yt we are left 
with a standard spike- and- slab regression. The posterior distribution can be 
simulated efficiently by drawing from p(γ | 𝛂, y) using a sequence of Gibbs 
sampling steps, and then drawing from the well- known closed form p(βγ, 
σ–2| γ, 𝛂, y). This technique is known as “stochastic search variable selection” 
(George and McCulloch 1997). There have been many suggested improve-
ments to the SSVS algorithm (notably Ghosh and Clyde 2011), but we have 
obtained satisfactory results with the basic algorithm.

The conditional posteriors for βγ and σ–2 can be found in standard texts 
(e.g., Gelman et al. 2002). They are:

(10) 
     
p(�| y,�,�,�−2) =  ( ��,�2V�),  and p(�−2 | y,�,�) = �

df + n
2

,
ss + S

2






where the complete data sufficient statistics are 
    
V�

−1 = XTX� + ��
−1, �� = 

     V�(XT
y� + ��

−1b�), and 
    
S = ∑t=1

n ( yt − xt
T
��)2 + ( �� − b�)T ��

−1( �� − b�). The dis-
tribution for p(γ | 𝛂, y) can be shown to be

(11) 
     
p(�| y,�) ∝ |��

−1| −1/2

|V�
−1| −1/2

S−(df +n) / 2.

Let | γ | denote the number of included components. Under Zellner’s g- prior 
it is easy to see that

   

|��
−1|

|V�|
= � / n

1 + � / n






|�|

is decreasing in |γ |. It is true in general that 
    
|��

−1| ≤ |��
−1 + XTX� |, which 

implies that p(γ | y, 𝛂) prefers models with few predictors and small residual 
variation.

Equation (11) can be used in a Gibbs sampling algorithm that draws 
each γi given γ–i (the elements of  γ other than γi). Each full conditional 
distribution is proportional to equation (11), and γi can only assume two 
possible values. Notice that p(γ | y, 𝛂) only requires matrix computations for 
those variables that are actually included in the model. Thus if  the model 
is sparse, the Gibbs sampler involves many inexpensive decompositions of 
small matrices, which makes SSVS computationally tractable even for prob-
lems with a relatively large number of predictors.
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