Contributors

Anin Aroonruengsawat
Faculty of Economics
Thammasat University
2 Prachan Road
Bangkok 10200, Thailand

Maximilian Auffhammer
Department of Agricultural and Resource Economics
207 Giannini Hall
University of California, Berkeley
Berkeley, CA 94720-3310

Karen Clay
Heinz College
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Price V. Fishback
Department of Economics
University of Arizona
Tucson, AZ 85721

Jonathan F. Fox
Department of Economics
University of Arizona
Tucson, AZ 85721

Michael Haines
Department of Economics
217 Persson Hall
Colgate University
13 Oak Drive
Hamilton, NY 13346

Zeynep K. Hansen
Department of Economics
Boise State University
1910 University Drive
Boise, ID 83725-1620

Trevor Kollmann
Department of Economics
University of Arizona
Tucson, AZ 85721

John Landon-Lane
Department of Economics
Rutgers University
75 Hamilton Street
New Brunswick, NJ 08901-1248

Gary D. Libecap
Bren School of Environmental Science & Management
4412 Bren Hall
University of California, Santa Barbara
Santa Barbara, CA 93106
Scott E. Lowe
Department of Economics
Boise State University
1910 University Drive
Boise, ID 83725-1620

Alan L. Olmstead
Department of Economics
University of California, Davis
Davis, CA 95616

Robert S. Pindyck
Sloan School of Management
Room E62-522
MIT
100 Main Street
Cambridge, MA 02139

Paul W. Rhode
Department of Economics
205 Lorch Hall
University of Michigan
611 Tappan Street
Ann Arbor, MI 48109-1220

Michael J. Roberts
Department of Agricultural and Resource Economics
North Carolina State University
Box 8109
Raleigh, NC 27695-8109

Hugh Rockoff
Department of Economics
Rutgers University
75 Hamilton Street
New Brunswick, NJ 08901-1248

Wolfram Schlenker
Department of Economics and School of International and Public Affairs
Columbia University
420 West 118th Street, MC 3323
New York, NY 10027

Richard H. Steckel
Department of Economics
410 Arps Hall
Ohio State University
1945 North High Street
Columbus, OH 43210-1172

Richard Sutch
Department of Economics
University of California, Riverside
Riverside, CA 92507

Melissa Thomasson
Department of Economics
Miami University
Oxford, OH 45056

Werner Troesken
Department of Economics
University of Pittsburgh
Pittsburgh, PA 15260

Martin L. Weitzman
Department of Economics
Harvard University
Littauer 313
Cambridge, MA 02138
Author Index

Ackerman, A. S. E., 294n7
Allen, M., 32n6, 35
Alley, W. M., 10
Alston, J. M., 188n45
Alston, L. J., 88
Andreadis, K. M., 254
Andrew, A. P., 75
Andrews, D. G., 35
Antonovsky, A., 151
Archer, D., 39
Baker, M. B., 32, 32n6
Baker, O. E., 171n4
Ball, C. R., 177n13, 177n16, 177n17
Barrett, S., 58n5
Baxter, L. W., 313, 314
Beeson, P. E., 151
Bergey, D. H., 135
Bernanke, B. S., 83n3
Bernstein, J., 151
Betrán, J., 201n7, 206n15
Bleakley, H., 135
Bogart, E. L., 75
Bogue, A. G., 76, 77, 78, 206n15
Booth, W. H., 292
Bordo, M. D., 75
Boss, A. D., 184n35
Bowman, M. L., 181n33
Boyer, J. G., 56
Brannon, Y. S., 151
Brazell, J. H., 285, 295
Brimblecombe, P. T., 291
Brodie, F. J., 281, 283, 295, 296
Brouwer, C., 257n1
Buller, A. H. R., 177n15, 184n34
Caborne, W. F., 291
Calandri, K., 313, 314
Calomiris, C. W., 75
Cardwell, V. B., 203n11
Carleton, M. A., 178n18, 178n22
Carlson, M., 75
Carlton, M. A., 172
Carpenter, A., 294n7
Carter, S. B., 202, 209
Castleberry, R. M., 202n9, 203n11
Chan, Y. C., 136n10
Chandler, T. J., 285
Chapin, F. S., 227
Chay, K., 151
Clark, J. A., 177n16, 177n17
Clemow, F. G., 136
Clifford, W. B., 151
Cline, W. R., 253, 313
Cohen, W., 158
Collier, J. W., 204
Collings, G. H., 188n45
Coman, K., 74
Constantine, J. H., 188n45
Cook, E. R., 11, 11n3
Cooley, T. F., 103
Craig, L. A., 128n12, 133n5, 151, 172n7
Creighton, C., 133
Crossley, B. W., 181n33
Crowley, C., 314
Crum, C. W., 202n9, 203n11
Culver, J. C., 210n18, 210n20, 210n21, 211, 212, 213, 214, 215, 216
Cunfer, G., 132n2
Dasgupta, P., 40, 58
David, P. A., 201n4
Davis, J. H., 75, 92
Davis, L. E., 86
Debreu, G., 58n6
DeCabuim, S. J., 103
Dehejia, R., 151
Dell, M., 55, 55n3
Deschênes, O., 109, 133, 228n1, 253, 314, 324, 341
Dieter, L., 29n3
Dietz, S., 56
Dines, W. H., 306
Dotti, L. P., 82
Dowell, A. A., 204n12
Duffo, E., 266, 276
Durost, D. D., 202n9, 209, 215n24
Duvick, D. N., 202, 203, 206n15, 210, 216
Fernandez-Cornejo, J., 216
Ferrie, J. P., 140
Field, C. B., 169n1
Fishback, P. V., 128n12, 140, 151, 152, 158
Fisher, A. C., 228, 229, 253
Fisher, F. M., 312
Fite, G. C., 188n46
Fitzgerald, D., 212, 212n23, 219
Fogel, R. W., 151
Fox, J., 141
Franco, G., 314
Frankland, E., 284n2
Frazier, I., 176n9
Friedman, M., 15, 74, 75
Fuglie, K., 216
Galloway, P. R., 128n12, 133n5
Gardner, J., 158
Gibbs, M., 313
Goodrich, C., 176n10, 179n26
Greenstone, M., 109, 133, 151, 227n1, 253, 314, 324, 341
Griliches, Z., 18, 199, 201, 201n4, 201n6, 204, 205n14, 216, 217
Gross, N., 220
Gruenspecht, H., 313
Haines, M. R., 128n12, 133n5, 151, 152, 172n7
Hake, K. D., 185n41
Hall, B., 201n5
Hamilton, D. E., 101
Handy, R. B., 184n38
Hanemann, W. M., 229, 229n4, 253, 326
Hanes, C., 75, 92
Hansen, J., 30n4
Hansen, Z. K., 82, 132n2, 178n25, 195n1, 255
Hargreaves, M. W. M., 179n27
Hart, J. F., 185n41, 188n46
Hays, W. M., 184n36
Heal, G., 57n6
Heibloem, M., 257n1
Heim, R. R., Jr., 9
Hendrickson, L. G., 184n35
Herrick, G. W., 135
Hewitt, C. G., 135
Hibbard, B. H., 178n21
Hope, C. W., 56n4
Hornbeck, R., 195n1
Horrace, W. C., 158
Houthakker, H. S., 312
Humphreys, M., 135
Hyde, J., 210n18, 210n20, 210n21, 211, 212, 213, 214, 215, 216
Inglis, M., 313
James, J. A., 86
Jenkins, M. T., 199, 213
Jesness, O. B., 204
Jevons, W. S., 15, 73, 74
Johnson, P. R., 202n9
Johnson, W. D., 176n11
Jones, B. F., 55, 55n3
Joult, F., 314
Jugeneheimer, R. W., 208
Kantor, S., 151, 152, 158
Kaplan, G. A., 151
Karl, T. R., 105
Kashiwagi, T., 139
Kawachi, I., 151
Kaysen, C., 312
Kelly, D. L., 253
Kennedy, B. P., 151
Kerby, T. A., 185n41
Keynes, J. M., 15, 74
Klippart, J. H., 170n3
Kolstad, C. D., 253
Komlos, J., 128n12, 133n5
Kousky, C., 12
Kramer, R. A., 101
Krißröm, B., 58n6
Krull, C. F., 202n9, 203n11
Krusic, P. J., 11
Landon-Lane, J., 92
Lange, F., 101, 187n44
Larson, D. F., 107, 123
Lauszus, D., 140
Lawther, P. J., 298
Lee, H., 213
Lempfert, R. G. K., 284, 286, 287, 288n5
Lettenmaier, D. P., 254
Libecap, G. D., 2, 82, 132n2, 178n25, 195n1, 255
Linder, P., 313
Lleras-Muney, A., 151
Lord, R., 206n16, 211n22
Lucas, R. E., Jr., 58n6
Luekel, R. W., 178n21, 178n23
Lytle, C. D., 136
MacCallum, F. O., 139
MacNutt, J. S., 134n7
Maddala, G. S., 106
Mäler, K.-G., 58n5
Malin, J. C., 177n14, 178n19, 178n21
Mansur, E., 313
Martin, A. J., 307
Martin, J. H., 177n16, 177n17
Mathews, O. R., 178n21, 178n23
Matthews, M. S., 103
May, E., 212, 213, 214
McDonald, J. R., 139
McIntyre, S., 5
Mendelsohn, R., 48n1, 56n4, 229n4, 253, 313
Miller, R. C., 81
Mitchell, B. R., 283, 298
Mitchell, G. T., 253
Mitchell, W. C., 74
Mitzhener, K. J., 75
Monath, T. P., 157
Moore, H. L., 74
Moran, E., 313
Morrison, W., 313
Mossman, R. C., 283
Mundlak, Y., 107, 123
Nelson, G. C., 227, 246
Nishiura, H., 139
Nordhaus, W. D., 12, 25n1, 28, 28n2, 48n1, 52, 56n4, 229n4, 253
Norrie, K. H., 177n15
Officer, L. H., 103
Olken, B. A., 55, 55n3
Olmstead, A. L., 12, 17, 101, 152, 176n10, 177n12, 187n43, 187n44, 199, 201n8, 206n16, 254
Ortiz, R., 170n2, 171
Owens, J. S., 292
Pachauri, R. K., 3
Palmer, W. C., 9, 10
Pande, R., 266, 276
Persson, U. M., 25n1, 27, 28
Pielke, R. A., Jr., 254
Pindyck, R. S., 48, 49n2, 66, 68
Pisani, D. J., 19, 256
Poehlman, J. M., 185n39, 185n40
Pond, G. A., 184n35
Poore, G. V., 290
Prothrow-Stith, D., 151
Quaim, M., 245
Quisenberry, K. S., 177n14
Ramirez, C. D., 75
Redenius, S. A., 86, 86n4
Redish, A., 75
Reichart, T. A., 137
Reilly, J., 278, 279
Reisinger, A., 3
Reiss, P. C., 326
Reitz, L. P., 177n14
Reyes, J. W., 151
Rhode, P. W., 12, 17, 75, 92, 101, 152, 176n10, 177n12, 187n43, 187n44, 201n8, 206n16, 254
Rideal, S., 292
Roberts, M. J., 225, 235, 253, 325
Robinson, J. L., 199
Robinson, W. W., 256
Rockoff, H., 75, 92
Roe, G. H., 32, 32n6, 35
Rogers, J. S., 204
Rogers, L., 133
Rosenau, M. J., 134
Rosenthal, D., 313
Rostapshova, O., 12
Routh, C. H. F., 134n7
Ruhl, C. J., 151
Runge, C. A., 201n7, 206n15
Russell, W. A., 203n11
Russell, W. J., 284, 284n1, 284n2
Ryan, B., 220
Sagripanti, J.-L., 136
Salmon, S. C., 178n20, 178n21, 178n23, 178n24
Sanstad, A., 314
Saward, F. E., 292
Schaefer, T. W., 298
Schlenker, W., 225, 229, 229n4, 235, 253, 325
Schlesinger, A., Jr., 211
Schlesinger, M. E., 32n6
Schlict, P., 286n3
Schubert, S. D., 195
Schwartz, A. H., 15, 74, 75
Schweikart, L., 82
Scott, R. H., 296
Sedgwick, W. T., 134n7
Shaw, D., 229n4, 253
Shaw, L. H., 202n9, 209
Shuey, P., 298
Sleper, D. A., 185n39, 185n40
Smil, V., 203n10
Smiley, G., 86
Smith, C. W., 201n7, 206n15
Smith, V. H., 188n45
Snowden, K., 78
Snyder, R. L., 249
Sokolov, A. P., 65, 169n1
Spinzig, C., 133
Sprague, G. F., 201, 204, 204n13, 215
Sprague, O. M. W., 75
Steckel, R., 128n12, 133n5, 151, 180n29, 180n30, 181n31, 181n32
Stephens, S. G., 185n39
Stern, N., 57, 253
Sterner, T., 25n1, 27, 28
Stokey, N., 54
Sutch, R. C., 202n9, 203n10, 229, 230
Sylla, R., 86
Taylor, L. D., 312
Thomasson, M., 146, 151n11
Thornwaite, C. W., 9
Thorp, W. L., 101
Tol, R. S. J., 56
Treber, J., 146, 151n11
Troesken, W., 136n8, 139, 140, 151
Trotter, P. S., 101
Troyer, A. F., 184n35, 184n36, 206n16
Turner, J., 188n45
Unstead, J. F., 171n4
Urban, N., 210, 210n18
Ward, T., 177n15
Ware, J. O., 184n37, 184n38, 185n42, 188n45
Webb, W. P., 176n9
Weidmann, M., 136n10
Weiss, T., 128, 133n5, 151, 172n7
Weitzman, M. L., 31n5, 41n10, 41n11, 43, 43n12, 48n1, 51, 52, 253
Whipple, G. C., 135
White, M. W., 326
White, W. C., 298
Wigley, T. M. L., 32n6
Wise, W., 294, 296
Wright, C. D., 293
Wu, S., 106
Yusuf, S., 136
Zilberman, D., 245
Zinsser, H., 136
Zuber, M. S., 199
adaptation, 254; Californian residential electricity consumption and, 338–41
adverse weather. *See* droughts; extreme weather
agriculture: climate change and, 225–26; economic historians on how weather affects, 73–76; historical data for, 259–62; weather, financial markets, and, 15; western water supplies and, 254–55; western water supply infrastructure and, 254–55
American agricultural development, hallmarks of, 171–72
Andrew, A. Piatt, 75
anticyclones, London fogs and, 285

bank equity: drought and, 15; effect of drought on rates of return to, 89–95
bank failures: drought and, 15; national, in Kansas (1875–1910), 79–80t
banking systems, local: effect of extreme weather on, 84–87, 89–95
BAU (business as usual) scenarios, 49
birth rates, infant mortality and, 152
Bogart, Ernest Ludlow, 75
bovine tuberculosis (BTB), infant mortality and, 152
branch banking, weather-related agricultural shocks and, 75
Brodie, Frederick J., 281–82

BTB. *See* bovine tuberculosis (BTB), infant mortality and
Burman, Erik, 8
business as usual (BAU) scenarios, 49
California: residential electricity consumption of, 311–12; total electricity consumption in, 311. *See also* electricity consumption
California Alternate Rates for Energy (CARE), 318, 334–35
cap and trade systems, 2
carbon dioxide levels, 29
carbon taxes, 2
CARE. *See* California Alternate Rates for Energy (CARE)
Celsius, Anders, 8
climatic; literature on weather, mortality and, 133–39; weather, noninfant mortality rates, and, 152–55
climate change, 253–54; adaptability of American economy to, 12–13; agriculture production and, 225–26; capacity to adapt to, 5; challenges of representing damages from, 23–24; costs of, 14–17; crises and dealing with, 2; economics of, 31–32; effects of, on North America by end of twenty-first century, 169–70; impact of, on mortality rates,
climate change (continued)
16–17; impact of, on residential electricity consumption, 20–21; implications of study for understanding, 283; importance of international collective action to address, 2; industrialization and, 283; methods of discounting disutilities of, 39–42; modeling impact of warming in, 14; reasons for unpredictability of, 32–35; uncertain economic implications of, 13–14
climate change policy: damages model for, 47–50; multiplicative vs. additive net utility function and, 25–29
climate extremes, structural uncertainty about, 29–32
climate feedback, defined, 35
climate forcing, defined, 35
climate sensitivity, 24–25, 30; “dismal proposition” for fat-tailed infinite-variance, 42–44; reasons for unpredictability of, 32–35
climatic challenges, evidence of adaptation to, 17–19
climatic conditions, variable: government policy and adaptation to, 19–21
corn. See hybrid corn; maize
Crookes, Sir William, 171n4
crop harvests: causes of, 100–101, 102t; data for, 103–6; droughts and, 101–2; global warming and, 245–46
crop prices, weather shocks and, 16
CRRA. See constant relative risk aversion (CRRA) utility function
death rates. See mortality rates
dendochronology, 10–11
DICE. See Dynamic Integrated model of Climate and the Economy (DICE)
feedbacks, climate: defined, 30n4, 35
financial markets, agriculture, and weather, 15
flies, mortality and, 135
fog-related events: defined, 296–97
fogs. See London fogs
forcings, climate, 35
Friedman, Milton, 74, 75

global warming, 131; crop yields and, 245–46; dynamic aggregative model of, 35–39; London fogs and, 283; modeling impact of, 52–57. See also climate change
Gore, Al, 131
government policies, adaption to climate conditions and, 19–21
Great Depression: data and estimation for impact of temperature on mortality rates during, 141–46; impact of climate change and weather on mortality rates during, 16–17; mortality rates during, 132–33
greenhouse gases (GHG), 2; levels of, and climate sensitivity, 29–31; overall weather response to, and challenges to American economy, 11
greenhouse gases (GHG) abatement policy, case for, 60
Green Revolution, 230
growth rates: impact of global warming on, 53–55; willingness to pay and, 59–60
harvests, factors contributing to good or bad, 101–2
heat-tolerant corn: discussion of results for yields of, 243–45; regression model for yields of, 235–36; results of model for yields of, 236–43. See also hybrid corn; maize
Hi-Bred Seed Company, 210–12
Horsely, Reverend, 8
hybrid corn: adoption of, 18; adoption of, during 1930s, 199–204; depressed prices of corn during Great Depression and adoption of, 209–10; drought of 1930s and, 214–15; Dust Bowl and, 195–99; Henry A. Wallace and, 210–14; history of development of, 208–10; illustration of impact of drought on adoption of, 217–19; inventors of, 199; Iowa corn yield tests and superiority of, 204–6; role of research and success in adop-
tion of, 215–17; vigor of, 206–10. See also heat-tolerant corn; Indiana; maize; Wallace, Henry Agard
I AMs. See integrated assessment models (IAMs)
ice core drilling, 29
India: data for corn yields and weather in, 230–35, 247–50; discussion of results of model for heat tolerance of corn yields in, 243–45; regression model for heat tolerance of corn yields in, 235–36; results of model for heat tolerance of corn yields in, 236–43. See also hybrid corn; maize
industrialization, climate change and, 283
infant mortality: annual fluctuations in temperature, precipitation, and, 146–50; birth rates and, 152; bovine tuberculosis and, 152; economic activity and, 151; influence of public health education and prevention on temperature and, 140–41; temperature changes and, 134–35. See also mortality rates
information, mortality rates and, 139–40
instrument readings, for measuring weather, 6–8
integrated assessment models (IAMs), 28–29, 49, 55n4, 56
Intergovernmental Panel on Climate Change (IPCC), 3
Iowa corn yield tests, 204–6, 207t, 211–12
Jevons, William Stanley, 73–74
Jones, Donald F., 199
Kansas: early production of wheat in, 178; national bank failures in (1875–1910), 79–80t; weather-driven financial distress in nineteenth century, 76–81
Keynes, John Maynard, 74
Klippart, John, 170–71, 170n3, 171n4
Kuznets curve. See environmental Kuznets curve (EKC)
Lempfert, R. G. K., 284, 286–88, 288n5
Leonardo da Vinci, 10
local weather, drought and, 100–102
London fogs (continued)
and, 283–88, 283f; effects of laws and changing technologies on, 291–94;
evaluation of evidence on, 281–82;
evaluation of mortality data and, 282;
famous, 294–95; global warming and, 283; history of, 295–97; identification of, 297–98; plotting deaths from, 298–306; population redistribution and reduction of, 288, 289–91; production of coal smoke and, 281; Public Health Act and reduction of, 288–89; reasons economists and economic historians should be interested in, 282–83; Victorian environmentalism and, 288–94
maize: changing distribution of U.S. production of, 180–84; distribution of U.S. production of, 182–83t; evolution of heat-tolerant, 18–19, 227–29; growing of, 206–7. See also heat-tolerant corn;
hybrid corn; Indiana malaria, mortality and, 135
Marquis wheat, 176–78
mercury thermometer, 8
mortality rates: climate, weather, and non-infant, 152–55; data and estimation for impact of temperature on, during Great Depression, 141–46; economic development and, 139–40; flies and, 135; during Great Depression, 132–33; impact of climate and weather on, 16–17; information and, 139–40; literature on climate, weather, and, 133–39; malaria and, 135; mosquitoes and, 135; rainfall and, 139; respiratory diseases and, 136; typhoid and, 135; water-borne diseases and, 134–35; weather and, 139–41. See also infant mortality mosquitoes, mortality and, 135
national meteorological services, 8
National Smoke Abatement Institution (NSAI), 291–92
North American Drought Atlas, The, 11
Oklahoma, weather-driven financial distress during Dust Bowl in, 81–84. See also Dust Bowl
Palmer Drought Severity Index (PDSI), 9–10, 255; rates of return and, 15–16
Pigou, A. C., 74
Pioneer Hi-Bred Seed Company, 18, 210–14
pluviometer (rain gauge), 8
price effects, transportation costs and, 106–9
probability density function (PDF), 24–25, 30
Public Health Act (UK), 20, 288–89
public health education, influence of, on temperature and infant mortality, 140–41
public health technologies, mortality rates and, 141
rainfall, mortality and, 139
rain gauge (pluviometer), 8
rates of return, Palmer Drought Severity Index and, 15–16
Reclamation Fund, 256
Red Fife wheat, 176–77
residential electricity consumption, 20–21; adaptation and, 338–41; alternative data sources for, 322–23; of California, 311–12; econometric estimation of, 324–28; household data for, 315–19; simulations of, 328–35; temperature and population growth and, 337–38; temperature and price simulations of, 335–37; weather data for, 319–22. See also electricity consumption respiratory diseases, mortality and, 136
Russell, Rollo, 284
Schwartz, Anna J., 74, 75
seed types, new: adoption of, 18
smoke abatement technologies, 282
Sprague, O. M, 75
sunspot theory, 73–74
temperature changes, 3–5; data and estimation for impact of, on death rates during Great Depression, 141–46; infant mortality and, 134–35; influence of public health education and prevention on infant mortality and, 140–41; model of, 50–52; mortality and, 134–39
temperature damages, 25–29
transportation costs, price effects and, 106–9
tree rings, study of, 10–11
Turkey-type wheat, 177

United States: adaptability of economy of, to climate change, 12–13; agricultural production of, 225–26; meteorological services of, 8
U.S. Climate Division Dataset (USCDD), 255, 262

Victorian environmentalism, 282. See also London fogs

Wallace, Henry Agard, 18, 199, 210–14, 210n20, 210n21

warming. See global warming
water-borne diseases, mortality and, 134–35
weather: agriculture, financial markets, and, 15; climate, noninfant mortality rates, and, 152–55; impact of, on mortality rates, 16–17; literature on climate, mortality, and, 133–39; local, and drought, 100–102; methods of measuring, 6–11; mortality rates and, 139–40
weather patterns: changes in, 3–5; systematic study of, 8
weather shocks, crop prices and, 16

western water supplies, agriculture and, 254–55
wheat culture, 170–71; westward movement of, 176
willingness to pay (WTP), 48–49, 59n7; direct impact of, 58–59; growth rate impact of, 59–60; as measure of demand side of policy, 60; modeling, 57–58; modeling implication for, 67–68; modeling results for, 60–66; policy implications for, 68–69