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Annals of Economic and Social Measurement, 5/1, 1976 

MAXIMUM LIKELIHOOD ESTIMATION OF MOVING AVERAGE 

PROCESSES 

BY DENISE R. Ossporn’' 

This article demonstrates the computational practicality of the maximum likelihood estimation of moving 
average processes by non-linear optimization. Because of rounding errors and identification problems, the 
roots of the process are restricted. Aspects of inference and some examples are also discussed. 

1. INTRODUCTION 

A q-th order pure moving average process is defined by 

(1.1) W, = €, +O, &,_1 +. . . + Og€:-¢ 

where the {e,} are assumed to be NID(0, a”). The process (1.1) is written more 

compactly in terms of the lag operator, L, as 

(1.2) w, = O(L)e, 

where Lx, = x,_,, and 0(L) is defined as the polynomial (1+ 6,L +...+0,L*). 

If the roots of 

(1.3) a(L)=0 

lie outside the unit circle, then (1.1) is said to be invertible (Box and Jenkins, 

1971). An equivalent invertibility condition is that the representation 

q 
(1.4) 6(L)= [| (1-a@L) 

i=1 

has all |a;|< 1. It is well-known that there may be as many as 2* moving average 

processes, obtained by inverting the roots of a given MA(q) process subject to the 

requirement that the coefficients be real, which have identical autocorrelation 

properties. As a result, it is customary to impose the invertibility condition in 

order to identify the parameters. 

To date, the estimation of the vector of parameters 0’ = (@,,..., 6,) by a full 

maximum likelihood procedure has generally been regarded as computationally 

impractical, and a number of alternative approaches have been suggested. Early 

contributors, such as Durbin (1959) and Walker (1961), were forced to look to 

methods other than maximum likelihood because the maximization of the likeli- 

hood function could not be carried out by linear methods. With the development 

of non-linear optimization routines, a class of non-linear least squares estimators 

has come into common use: these have sometimes been claimed as maximum 

likelihood, but they are in fact only asymptotically so. The least squares estimators 
are usually derived by assuming that the pre-sample period disturbances e*’ 

I am greatly indebted to Dr. K. F. Wallis for his advice and to Professor J. D. Sargan who 
suggested the constrained estimation procedure to me. I would also like to thank members of the 
Econometric Methodology Workshop Group at LSE for helpful discussion, and the referee for his 
comments on an earlier draft. 
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= (€\_,, . . . €o) are fixed numbers; then the iogarithm of the likelihood function is, 

for a sample of n observations, 

1 
(1.5) L(®, o?) = —= log (27) —~ log (0?) -—s S(®) 

2 2 20 

where S(®)=e’'e and e’=(e,_,,..., €,). Differentiating (1.5) with respect to a” 

and equating this to zero, we obtain the maximum likelihood estimator of a” as 

(1.6) g7=50) 
n 

Substituting for o’ in (1.5), the concentrated log likelihood function is 

nin S(0) n 
(1.7) L(0) = oe log (277) . a 

so that minimizing the residual sum of squares, S(@), is equivalent fo maximizing 

(1.5). 

The estimators within this least squares class differ in their treatment of the 

“starting residuals”, e*’ = ace -- -3 ON Astrém and Bohlin (1966) set e* = 0; the 

Phillips method (detailed by Trivedi, 1970) is to estimate the e* as nuisance 

parameters; Box and Jenkins (1971) suggest either equating them to their 

expected value of zero (the Astrém and Bohlin method) or “back forecasting” 

them. Once the e* are given, all other residuals can be computed recursively from 

(1.1) for given parameter values. The applications of these methods to time series 

and econometric estimation are numerous. Although the effect of these different 

treatments is not clear, Nelson (1974) compares the two Box—Jenkins estimators 

for the first-order moving average case, and Hendry and Trivedi (1972) study the 

small sample properties of the Phillips estimator. 

The derivation of (1.5), and hence the least squares estimators, depends on 

the assumption that the pre-sample period disturbances are constants: if these are 

recognized as random variables, then the “full” likelihood function is o'tained, 

and its logarithm is given by 

1 
(1.8) L0,02)= — "log (24) — 2 log (0?) — + log |[V|—=+5 (w’V'w) 

2 2 2 Jo 

where o°V is the variance-covariance matrix of w, and w’ = (w,,..., W,,). Pesaran 

(1973) has shown that the maximization of (1.8) is feasible in the first-order 

moving average case, because V can be reduced to a diagonal matrix by an 

orthogonal transformation. However, the method does not generalize to higher 

order cases. Anderson (1973) has suggested a rather different procedure based on 

the (exact) likelihood equations for the autocovariances of the process. 

Box and Jenkins have clarified the relationship between (1.5) and (1.8) by 

showing that the latter may be written as ; 

20 
(1.9) L(®, 0?) = — "log (27) —" log (2) —+ log |X’X|-—5 S(@) 

2 2 2 2 
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where |X’X| =|V| and the e* used in computing S(@) are obtained by least squares 

(see below). Therefore, the non-linear least squares estimators of 6 omit the term 

involving |V|, and may introduce further levels of approximation, depending on 

the treatment of starting residuals. But clearly they are asymptotically maximum 

likelihood.” 

Kang (1975) has recently examined the properties of the likelihood and sum 

of squares surfaces. She has shown that the sum of squares function has the 

undesirable properties that it is decreasing as the boundary of the invertibility 

region is crossed (so that the minimum may be at |a;|= 1), and approaches its 

minimum value of zero as |a;|> 00.° On the other hand, the likelihood function is 

stationary on the boundary of the invertibility region, and takes the same value for 

roots a, and 1/a;. Therefore, the assumption that the process is invertible is 

necessary before any estimate can be obtained by a least squares procedure, but in 

maximum likelihood estimation it is simply a condition imposed for identification. 

Using small samples (12 and 25 observations) generated by invertible MA(1) 

processes, Kang went on to compare the relative performance of the maximum 

likelihood estimator, the least squares estimator with computed starting residuals 

and the conditional least squares estimator with zero starting residuals. The first 

two sets of coefficient estimates were obtained by grid searches, while the 

Marquardt algorithm (recommended by Box and Jenkins) was used for the third. 

Although the “full” least squares estimator was the poorest of the three, for given 

0, the conditional least squares estimator had similar mean value to the maximum 

likelihood estimator and often had lower mean square error. However, near the 

boundary of the invertibility region the conditional estimator was biased towards 

zero and, for the smaller sample size, had much larger mean square error than the 

maximum likelihood estimator. 

The purpose of this paper is to show that full maximum likelihood estimation 

of moving average processes by non-linear optimization is a computationally 

practical procedure. The likelihood function and its evaluation are considered in 

more detail in the next section. However, because of rounding errors and the 

question of identification, it is found necessary to restrict the roots of the process 

(Section 3), and a method of ensuring that the estimated process lies within the 

invertibility region is suggested in Section 4. Finally, we look at some aspects of 

inference (Section 5) and some examples (Section 6). The estimation procedure 

may be readily extended to the case of a regression equation with moving average 

errors. 

2. THE LIKELIHOOD FUNCTION 

Box and Jenkins (Appendix A7.4) derive the log likelihood function, equa- 

tion (1.9), where the matrix X is defined, and the starting residuals computed, as 

? The frequency domain estimators of Hannan (1970) are also asymptotically maximum likeli- 
hood, but we restrict our interest to time domain methods. 

> Box and Jenkins (Appendix A7.6, contained only in later printings) also note that outside the 
invertibility region the sum of squares has no meaningful minimum. 
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follows. Writing (1.1) as (n +q) equations in «,, 

E1-q — E1-q 

Eg = Eo 

(2.1) €, = W, — 9, €9— O2€_, —. . .— 0481-4 

&>= W2—O,€, eae ‘ -— O,€2-4 

he W, — OE, tn EY ‘ ee 

then substituting for ¢,, ..., €,-, interms of w,,..., W,-; and €;_4,..., &o, these 

equations may be written such that the right-hand side does not contain the 

sample period disturbances, ¢),..., €,. The system of equations is then 

(2.2) e = Mw+ Xe* 

where the vectors €, w and e* have been defined previously. The coefficient 

matrices M and X are of dimensions (n + q) X n and (n+ q) Xq respectively, and 

their elements are functions of the elements of ®@ only. The maximum likelihood 

estimate, e*, of €*, is obtained from (2.2) by ordinary least squares; that is, 

(2.3) . e* = —(X’X) 'X’Mw 

Differentiating (1.9) with respect to o”, we see that the maximum likelihood 

estimator of a” is still given by (1.6), and the concentrated log likelihood function 

is: 

n 

2 

S(®) 1 
(2.4) L(0) = —= log (2m)—> log =i ie log [X’X| a 

The maximization of the full likelihood function is therefore equivalent to the 

minimization of 

(2.5) L*(@) = n log (S(@)) + log [X’X| 

Consider once again the matrices M and X. The (i, j)-th element of Mis given 

by 

m, =0 p=i, is ct + ies ’ 7 

mi, =0 j>i-q, i=qt+l,..., qtn 

m= 1 j=i-q, i=q+1, -,qtn 

my = —8,m,_1;— 92m,-25—..-—Ogmi-gi I1<i-4 i=qrtl,..., ers 
(2.6) 



and the (i, j)-th element of X is 

xy = 1 i=1,..., 

x =0 iF j, 

Xiy = — O,%i-1j — O2%)-25 —- . .— OgXi-qj i=qtl,...,q+n, 

(2.7) 

Exploiting the recursive relationship in each column of M and X, these matrices 

can be easily formed. 

The dimensions of M, (n + q) X n, are large, but there is no need to store this 

matrix. Use of the relationship 

mM, = m,_, ;- i=2,...,n+q 
(2.8) eae 

m, =0 j=2,...,n 

renders unnecessary the computation and storage of any columns beyond the first, 

and as 

mj) = X;—-1. 
(2.9) eee 

m,,=0 

even this is not required. Combining (2.8) and (2.9), the non-zero elements of the 

j-th column of M may be obtained from the last column of X: 

(2.10) my =X;-i4 j<i-q 

Therefore, (2.5) may be evaluated as follows: X is formed, and e* obtained 

from (2.3) using (2.10). The remaining residuals, e, e, are then computed 

recursively using (2.1). Finally, the sum of squares 

(2.11) S(®)= ¥ e? 
=1— t q 

and L*(@) are evaluated. The required minimum may be achieved via a general 

numerical optimization procedure, and we have chosen the Powell conjugate 

direction method (see Powell, 1964). The Powell method has been found to 

perform satisfactorily in a number of non-linear optimization problems, including 

those involving transformations (Box, 1966) and regression estimation in the 

presence of autoregressive errors (Hendry, 1971). 

3. DIFFICULTIES WITH DirECT EVALUATION 

In practice, the computation of the maximum likelihood estimates by 

minimizing (2.5) with respect to 8 cannot be treated as an unconstrained optimiza- 

tion problem. For when the elements of @ are unrestricted, there may be 2‘ points 

at which the function takes its minimum ‘value: that is, there is a problem of 

identification. Aliso, rounding errors become important when some roots of the 

moving average process lie inside the unit circle and some outside it. The origin of 

79 



these rounding error problems can be seen by considering a second-order moving 

average. Then 

(3.1) 0, =—(a, +a) 

and 

(3.2) 65 = @,Q>2 

where a, and a, are defined by (1.4). The matrix X may be expressed in terms of 

(real) a, and a> as: 

1 0 : 

1 0 

—@,Q>2 a, +a 

2 
—a,a,(a,+a>)- a, +a,a,+a3 

-1 —2 —{ 
—a,aap tat art... a@jta; aot... 

-2 a 1 +a,a5 “+a; ') +a,az +a} 
L 

If, say, |a,|=1 and |a|< 1, then |a{]>00 and |a3|> 0 as n >00, For any sample 

size contemplated in empirical work, the elements of X involve powers, products, 

and sums of numbers of very different orders of magnitude, so that the estimates 

obtained under these circumstances will be doubtful. In particular, (X’X) wil! be 

dominated by high order powers of a,, and the inversion may break down. It is 

clear that both the identification and rounding error problems are avoided if the 

roots of the moving average process are restricted so that the estimated process 

lies within the invertibility region. 

It may appear unlikely that these problems will arise if all moving average 

coefficients are given initial values of zero in the estimation procedure. However, 

this has been found not to be the case: the estimation often ‘“‘missed” the function 

minimum contained within the invertibility region when one or more roots lay 

even moderately close to the boundary. Box and Jenkins suggest estimating the 

initial values of the moving average coefficients from the sample autocorrelations 

of the process, but this generally involves iterative techniques (Wilson, 1969), and 

in any case does not guarantee that the roots will remain within the invertibility 

region. 

To overcome these problems it may be feasible to test the roots at the end of 

each iteration, and to re-set any root which has moved outside the invertibility 

region to a value inside it. This is the type of procedure adopted by Nicholls 

(1972). An alternative is to set up the estimation as a problem in constrained 

optimization, as in the next section. 

4. ENSURING INVERTIBILITY 

Consider the a; of (1.4): these may be divided into pairs, which are either 

complex conjugates or both are real, and each pair can be regarded as the roots of 
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a quadratic 

(4.1) A*>+aA+b,=0 

Now, both these roots lie within the unit circle if and only if 

(4.2) lb|<1 and ja|<1+5,; 

and these conditions will be fulfilled if we define a; and b; by 

6; 
(4.3) b, = i+ 

y;(1 + b;) 

1 +hyl 

where the parameters 5; and y; are unrestricted.* That is, with b; and a; defined by 

(4.3) and (4.4), the quadratic may be solved to obtain a pair of roots satisfying the 

invertibility condition. If the order of the moving average is an odd number, then 

the remaining root after taking pairs is necessarily real and can be specified in 

terms of one parameter. In this case it is convenient to define the root directly as 

(4.4) a; 

7 
5 4-5 

4.5) 1+|z| 

The negative of zr is used because if 5; = 0, then the non-zero root of the quadratic 

(4.1) is 

Yi 
(4.6) a; i+/y] 

so that d may be regarded as the non-zero root of (4.1) when b,; = 0. 

The q parameters used to define the roots of the MA(q) process uniquely give 

the moving average coefficients. By adopting this parameterization, we estimate 

the roots a; (constrained to lie within the unit circle), and obtain the moving 

average coefficients from these via (1.4). Of course, once the correspondiiig 

coefficients have been computed, the function (2.5) can be evaluated as in 

Section 2. 
If a moving average of order greater than | is to be estimated, the procedure 

may be commenced at the order required with zero initial values for all parame- 

ters. Alternatively, a step-wise procedure may be adopted, beginning with MA(1), 

and increasing the order by 1 at each step. Ordering the unrestricted parameters 

within each pair as (y;, 5;), with a as the last parameter if q is odd, then the 

estimates at the previous step are used as initial values for the first q parameters 

when the order is increased from q to (q + 1). With zero as the initial value for the 

additional parameter, the first q elements of 6 are the coefficient estimates of the 

last step, and the (q + 1)-th coefficient is initially zero. Note that if q is odd, then 

the estimated value of a2 becomes the initial value of the last y,; for the (q+ 1) 

process. In terms of computer time, there appears to be little additional cost in 

carrying Out this stepwise estimation. 

* a, and b; could have been defined in terms of other functions of 5, and y,, such as trigonometric 
functions, but (4.3) and (4.4) require fewer operations for their evaluation. 

81 



While a root of the moving average process on the unit circle causes no 

identification problem, it is not permitted by the invertibility condition and cannot 

be obtained with this estimation procedure. However, roots can come arbitrarily 

close to the unit circle if parameters ;, 5, and 7 are unrestricted. It is usual to test 

the convergence of the Powell routine in terms of the parameters of the function, 

in this case the y;, 5;, and zr. But as a root approaches the unit circle, large changes 

in the corresponding parameter have little effect on the moving average coeffi- 

cients, and hence on the vaiue of the likelihood function, and the estimation may 

fail to converge. Therefore, it is advisable either to specify some arbitrary 

maximum absolute value that the parameters may take, or to test convergence in 

terms of the roots of the process. 

5. INFERENCE 

The asymptotic properties of the least squares estimates of the parameters for 

an invertible moving average process with finite fourth moment have been derived 

by Whittle (1954, 1961) and Walker (1964). These properties are shared by our 

exact maximum likelihood estimates for this case. In particular, Whittle and 

Walker show that the limiting distribution of n'/?(6—8@) is, as n >00, N(O, U~') 

where 

aL (0) 
5.1 U=1 | Bh ko 
6-1) oe 3030 

Further, n'’?(é? — a”) has, as n > 00, a limiting normal distribution independent of 

that for n'/7(6—-@). 

As a consequence of (5.1), a sample estimate of the variance-covariance 

matrix of 6 is given by 

2 —1 

3) ae 

which can be computed numerically, the elements of 0 being used directly in the 

evaluation of L*. 

Neither Whittle nor Walker is concerned with the influence of the starting 

residuals. However, Pierce (1971) considers the effect of a change in the set of 

starting residuals by Ae*. For given coefficients, 6,, 65, oe 84, he shows that 

(5.4) Ae=Scai t>0 

where the c; depend on Ae* and, for 6(L), the a; are defined by (1.4). Pierce uses 

(5.4) to show that the asympiotic properties of the least squares estimates are 

independent of the starting residuals if the process is invertible. However, it is 

clear that the effect of a change in e* on the residual series is not asymptotically 

negligible for a process outside the invertibility region: in these circumstances, 
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therefore, we would not expect the starting residuals and coefficient estimates 

(obtained by maximum likelihood) to be asymptotically independent. 

Since the likelihood function L(®) has been concentrated with respect to e*, 

its use in (5.2) or (5.3) is valid only when the starting values and coefficient 

estimates are asymptotically independent. Therefore, if these formulae are to be 

used for inference, the estimated process should be restricted to the invertibility 

region. 

A significance test not affected by the imposition of the invertibility condition 

is the likelihood ratio test, which may be used to test the significance of an increase 

(decrease) in the likelihood when the order of the moving average is increased 

(decreased). If L¥ is the minimum value of (2.5) for q-th order process, and L?_,is 

the minimum for a process of order (q—r), then (L3_,—L*) is asymptotically 

distributed as a x’ variable with r degrees of freedom under the null hypothesis 

that the lower order model is the correct one (Kendall and Stuart, 1967, pp. 

230-231). Incidentally, the use of the step-wise procedure for estimating an 

MA(Qq) process, as outlined above, makes the application of this test particularly 

simple. 

6. EXAMPLES 

Box and Jenkins specify and estimate autoregressive-moving average models 

for six series, with between 70 and 369 observations. The two shortest series for 

which they “identify” pure moving average models are A and C; these provide 

convenient “test” cases and in Table 1 we compare the estimates given by Box and 

Jenkins: with those obtained by maximum likelihood. The estimated standard 

errors, obtained from (5.3) for the maximum likelihood values, are given in 

brackets; G7 is the maximum likelihood estimate of a”. The operator V is the first 

difference operator. 

TABLE 1 
ESTIMATION OF MODELS FOR SERIES A AND C 

Series n Method Fitted Model & 

0.70 
A 197 BJ Vw, =e,- be,-1 0-101 

(0.05) 

0.70 
ML Vw, =e,- be. 0.101 

(0.06) 

Cc 226 BJ v aN a! 0.019 Ww, = @,— a toe €- . 
© ~ 9,07)" (0.07) *? 

0.13 0.12 
ML Vw, =e, Le,_,- Le,_> 0.019 

~ (0.07) (0.08) 

For each series, the two sets of estimates are virtually the same. This is not 

surprising, as series containing about 200 observations may be expected to follow 

large sample theory. Nevertheless, the Box—Jenkins series are useful as a refer- 

ence point because the data are “real”; in order to obtain shorter series for 

purposes of comparison, we sub-divided Series C. Of course, if the total series can 
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be represented by an ARIMA(0, 2, 2) model with constant parameters, each 

sub-series can be represented by this same model. We emphasize that the 

maximum likelihood estimation of this model for the complete series presented no 

problems and yielded coefficients well inside the invertibility region (with @, = 

0.41 and &,=-—0.29). We would expect the sub-series to be similarly well- 

behaved. 

The first 224 observations of Series C were used to provide eight consecutive 

sub-series of 28 observations; after second differences were taken within each 

sub-series, 26 observations were available for estimation. The models of Table 2 

were obtained by least squares (setting the starting residuals to zero) and 

maximum likelihood as indicated, with all estimations constrained to the inverti- 

bility region (see Section 4). The roots given in this table are the estimated a’s; for 

a complex pair of roots the absolute value |@| is also shown. For comparison of 

performance and computational cost, an unconstrained estimation was also 

carried out in each case. “ 

With the exception of the maximum likelihood estimations for sub-series 7, 

the Powell minimization procedure was commenced from initial parameter values 

of zero in all estimations. For sub-series 7, this initialization led to convergence of 

the constrained and unconstrained maximum likelihood procedures at (different) 

local minimum points; in fact, the first parameter of the constrained procedure did 

not move away from zero. This problem of loca! minima may possibly have been 

avoided had a tighter convergence criterion been used. However, our maximum 

likelihood estimates for this sub-series were obtained by commencing the con- 

strained estimation at the parameter va! ues given by the constrained least squares 

procedure. The unconstrained procedure was also re-commenced at the least 

squares estimates. There is no reason obvious to us why estimation using the full 

likelihood function should be more troublesome than that using the sum of 

squares only, and we attribute the difficulties in this case to the sub-series not 

being well-behaved. 

The unconstrained least squares procedure for sub-series 2 converged to a 

point outside the invertibility region, with a root equal to —1.03. Except for this 

case (and the initial maximum likelihood estimation of sub-series 7), the con- 

strained and unconstrained procedures for a given sub-series and given (ML or 

LS) estimation method both converged to the same point. However, the fact that 

unconstrained least squares yielded invalid estimates in one case out of eight 

should not be overlooked. 

There are two types of comparisons which may be made on the basis of Table 

2: one regarding the computational cost of constraining an estimation to the 

invertibility region, and the other regarding the relative performance and cost of 

the maximum likelihood and least squares procedures. With respect to the first of 

these, the number of function evaluations required for convergence does not fully 

reflect the relative cost of a constrained and unconstrained estimation, because 

the former involves more operations per function evaluation than the latter. 

Howevei, the number of additional operations required is relatively small and 

depends only on the order of the moving average. 

From Table 2 it may be seen that constraining an estimation to the invertibil- 

ity region (as outlined in Section 4) has resulted in many more function evalua- 
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TABLE 2 
EsTIMATED ARIMA (0,2,2) MODELS FOR SUB-SERIES OF C 

Function Evaluations Constrained Parameter Estimates 
Method - ~ 

Unconstd. Constd. 6; 65 G2 Roots \a| 

1 ML 42 47 —0.18 —0.16 0.016 0.50, —0.31 
(0.34) (0.32) 

LS 31 36 —0.12 —0.14 0.016 0.44, —0.32 
(0.27) (0.26) 

2 ML 39 44 0.22 —0.37 0.011 0.51, —0.73 
(0.20) (0.23) 

LS 73 165 0.28 —0.60 0.011 0.65, —0.92 
(0.06) (0.06) 

3 ML 42 44 0.67 0.56 0.033 —0.34+0.67i 0.75 
(0.21) (0.17) 

LS 32 35 0.64 0.55 0.039 —0.32+0.67i 0.74 
(0.20) (0.21) 

4 ML 33 31 —0.59 0.09 0.0069 0.29+0.04i 0.30 
(0.22) (0.22) 

LS 33 33 —0.61 0.10 0.0069 0.31+0.09i 0.32 
(0.23) (0.24) 

5 ML 32 38 —0.05 —0.27 0.0094 0.54, —0.50 
(0.21) (0.21) 

LS 36 38 —0.04 —0.27 0.0094 0.54, —0.50 
(0.20) (0.20) 

6 ML 28 40 —0.39 0.26 0.017 0.20+ 0.471 0.51 
(0.19) (0.24) 

LS 31 40 . —0.38 0.27 0.017 0.19+0.49i 0.52 
(0.19) (0.25) 

7 ML - 30 105 —0.98 0.99 0.0031 0.49+0.87i 0.99 
(0.16) (0.25) 

LS 43 137 —0.92 0.80 0.0039 0.46+0.77i 0.89 
(0.14) (0.12) 

8 ML 18 25 —0.04 —0.01 0.011 0.10, —0.06 
(0.21) (0.29) 

LS 23 21 —0.04 —0.01 0.011 .0.12, —0.08 
(0.22) (0.29) 

tions being required only when the estimated model is near the boundary of the 

invertibility region. But this is precisely the case where the constraint is likely to be 

of importance, as demonstrated by the least squares estimation for sub-series 2. 

Because the computational cost is relatively small in other cases, we conclude that 

constrained estimation may as well be used also for models well inside the 

invertibility region. 

In comparing the maximum likelihood and least squares coefficient esti- 

mates, we are again led to consider sub-series 2 and 7. For sub-series 2, both roots 

estimated by least squares are closer to the unit circle than those estimated by 

maximum likelihood. The position is reversed for sub-series 7. 

The two sets of estimated roots have led to rather different estimates of 6, in 

sub-series 2. But perhaps more important are the implications of the two sets of 

standard errors. If we had carried out only the constrained least squares estima- 

tion, we would have been very confident about the significance of the second 

moving average coefficient (t= 10). However, the standard errors have been 
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estimated numerically, and the small values in this case appear to have been 

caused by the sum of squares function not being well-behaved near the boundary 

of the invertibility region. 

Another maximum likelihood/least squares comparison of interest is the 

relative computational cost. For our sub-series, the two methods have generally 

required about the same number of function evaluations for convergence, 

although the estimations for sub-series 7 are not comparable in these terms 

because they were commenced from different initial parameter values. For 

sub-series 2, the maximum likelihood estimation is computationally more efficient 

because it is not ciose to the boundary of the invertibility region. However, it is of 

course true that evaluation of the full likelihood function is computationally more 

expensive than evaluation of the sum of squares only. The additional cost (which 

depends on the sample size) is largely incurred in the estimation of the starting 

residuals. 

Finally, we note that the estimated models of Table 2 suggest that the moving 

average coefficients may not be stable over time. It has not, however, been 

possible to test for stability: although the sub-samples are independent, we have 

“lost” observations by differencing after sub-dividing the series, and an F test 

cannot be carried out. 

7. CONCLUSION 

We believe that the maximum likelihood estimation of moving average 

processes is not computationally impractical for small to moderate size samples. 

For example, on the University of London’s CDC 6600 machine, the central 

processor time required to obtain the four sets of estimates (by constrained and 

unconstrained least squares and maximum likelihood) for each sub-series in Table 

2 was, on average, approximately 1} seconds. 

A thorough investigation of the rclative performance of the maximum 

likelihood and least squares procedures would require a large-scale simulation 

study, which we have not attempted to carry out here. However, we have found 

evidence of the superiority of the maximum likelihood procedure, especially in 

the numerical estimation of standard errors for the coefficients of a model near the 

boundary of the invertibility region. 

The method suggested for constraining the estimated process to the inverti- 

bility region may be used in either maximum likelihood or least squares estima- 

tion. It requires few additional operations in any evaluation of the function being 

minimized and, in most cases, few additional function evaluations for con- 

vergence. 

London School of Economics 

and Political Science 
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