Chapter Title: The Effects of Scientists and Engineers on Productivity and Earnings at the Establishment Where They Work

Chapter Author(s): Erling Barth, James C. Davis, Richard B. Freeman, Andrew J. Wang

Chapter URL: http://www.nber.org/chapters/c12689

Chapter pages in book: (p. 167 – 191)
Studies of how scientific and engineering knowledge affects the economy focus on the impact of research and development (R&D) spending, and/or new ideas embodied in patents, on the productivity of firms. The majority of scientists and engineers in industry, however, do not perform research in corporate laboratories nor obtain patents that lead to commercially successful products or processes. Most scientists and engineers work in establishments that produce goods and services, on activities that are not classified as formal R&D. Although the pathway that links scientific and technological knowledge to lowering production costs or introducing new or improved products is critical to economic growth, we know little about the contribution of production-establishment-based scientists and engineers to productivity. Helper and Kuan’s (2016) interviews and surveys of firms in the automobile supply chain show that engineers outside of formal R&D find ways to lower costs and develop new products/processes, often working with customers and/or production workers.

To see whether the employment of scientists and engineers at produc-
tion establishments contributes to productivity broadly, we create a new establishment-firm-employee data set for manufacturing. We combine data from the quinquennial Census of Manufactures (CM) and the Annual Survey of Manufactures (ASM) on establishments' gross output and labor, capital, and intermediate inputs; the Decennial Census and Current Population Survey (CPS) on individual workers' occupation and education;\(^1\) the National Science Foundation's Survey of Industrial Research and Development (SIRD) on firms' R&D employment; and the Longitudinal Employer Household Dynamics (LEHD) database that links every worker to their employing establishment. Appendix A provides details on how we link workers and establishments across data sets to construct a measure of the scientists and engineers proportion (SEP) of employment at the establishment level, and how we construct a firm-level measure of R&D employment.

We focus on manufacturing for three reasons. First, manufacturing is a lead sector in productivity growth. Between 1990 and 2016 the average annual rate of labor productivity increased at 3.5 percent per year in manufacturing compared to 2.0 percent in the entire economy.\(^2\) Second, industrial R&D and employment of scientists and engineers is disproportionately concentrated in manufacturing. While manufacturing establishments employ 10 percent of the workforce in industry, they employ 20 percent of scientists and engineers in industry,\(^3\) and manufacturing firms employ over 60 percent of R&D scientists and engineers in industry.\(^4\) Third, data from the Census of Manufactures and Annual Survey of Manufactures allow us to analyze production and total factor productivity in manufacturing establishments.

A key statistical issue for our analysis is that we are able to link 17 percent of workers in our manufacturing establishments to Decennial Census or CPS data in order to identify their occupation. We estimate the SEP of employment from the sample of Decennial/CPS matched workers at each establishment. The absence of data on occupation for most of the workforce at each establishment creates measurement error in estimating SEP at the establishment. Measurement error is particularly severe for smaller establishments, and can substantially bias downward estimates of the effect of SEP on establishment outcomes in production-function analysis that take each establishment as an observation.

We address this issue in three ways: (a) restricting our analytical sample to

\(^1\) The Census of Manufactures and the Annual Survey of Manufactures distinguish between production (blue-collar) and nonproduction (white-collar) workers but have no information on the actual occupation of workers.

\(^4\) National Science Foundation (2016), Detailed Statistical Tables, NSF 16-313. Table 57 reports 631,000 R&D scientists and engineers in manufacturing and 1,014,000 in all industries in 2013.
establishments that have at least ten workers that match to Decennial/CPS, and at least fifty in total employment, thus removing establishment observations with the largest likely measurement error; (b) estimating regressions that weight establishment observations by the number of Decennial/CPS matched workers; and (c) adjusting estimated establishment SEPs toward the overall mean SEP via a James-Stein type of adjustment that depends on the variance of the establishment SEP estimate (James and Stein 1961).

Our main finding is that there is a substantial positive relation between the SEP of workers at an establishment, and establishment productivity and employee earnings. And the estimated effect is substantially larger and better identified with corrections for measurement error.

The chapter is divided into four parts. Section 5.1 documents the phenomenon that motivates our analysis—the fact that most scientists and engineers work in goods- and services-producing establishments and engage in non-R&D work activities. Section 5.2 provides cross section and fixed effects estimates of the production-function relationship between establishment output and the SEP of employment at the establishment. Section 5.3 uses person-job-level data to provide cross section and fixed effect estimates of the relationship between the earnings of individual workers and the SEP of employment at their establishment. Section 5.4 concludes.

5.1 Scientists and Engineers at Goods- and Services-Producing Establishments

The impetus for this study is the fact that most industrial scientists and engineers work at goods- and services-producing establishments and work in activities other than formal R&D. We document this fact with data on the number of scientists and engineers, from the person-level Current Population Survey (CPS) and American Community Survey (ACS) and from the establishment-level Occupational Employment Survey (OES), combined with data on the number of R&D scientists and engineers from the firm-level Business Research Development and Innovation Survey (BRDIS). We also use data on work activities of scientists and engineers from the person-level Scientists and Engineers Statistical Data System (SESTAT) produced by the National Science Foundation.

Table 5.1 provides our estimates of the number and proportion of scientists and engineers in total, and working in R&D and non-R&D activities in 2013. Line 1 shows the total number of scientists and engineers employed in industry, based on data from the person-level CPS and ACS and from the establishment-level OES. The numbers are fairly similar. The CPS shows

5. The National Science Foundation sponsored Business Research Development and Innovation Survey (BRDIS) is the successor to the Survey of Industrial Research and Development (SIRD), which provides data on R&D employment for the 1992–2007 period covered in our production-function regression analysis.
Table 5.1 Number of scientists and engineers (in thousands) in R&D and non-R&D activities, all industry 2013

<table>
<thead>
<tr>
<th>(1) Total scientists & engineers</th>
<th>CPS 2013 (person level)</th>
<th>ACS 2013 (person level)</th>
<th>OES 2013 (establishment level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) R&D scientists & engineers, BRDIS 2013</td>
<td>1,013</td>
<td>1,013</td>
<td>1,013</td>
</tr>
<tr>
<td>(3) Non-R&D scientists & engineers, (1)-(2)</td>
<td>4,306</td>
<td>3,873</td>
<td>3,738</td>
</tr>
<tr>
<td>(4) Non-R&D proportion of total scientists & engineers, (3)/(1) (%)</td>
<td>81.0</td>
<td>79.3</td>
<td>78.7</td>
</tr>
</tbody>
</table>

Notes: Total scientists and engineers are tabulated from CPS and ACS microdata (Ruggles et al. 2015; Flood et al. 2015) and from OES industry-occupation data (Bureau of Labor Statistics, Occupational Employment Statistics). To make the CPS, ACS, and OES figures comparable to the BRDIS figure, we include science and engineering managers in our tabulation of total scientists and engineers. Managers are 12 percent of the tabulated total in the CPS and ACS, and 11 percent of the tabulated total in the OES. Scientists and engineers are defined using Bureau of Labor Statistics, Standard Occupational Classification, Options for defining STEM occupations under the 2010 SOC, August 2012. For table 5.1, we define scientists and engineers as research, development, and design occupations and managerial occupations in life and physical science, engineering, mathematics, and information technology. R&D scientists and engineers are from National Science Foundation (2016), Business Research and Development and Innovation: 2013, Detailed Statistical Tables, NSF 16-313, tables 53 and 57. As shown in table 57, this figure is for R&D scientists and engineers and their managers. See National Science Board (2016, chapter 3), for discussion of different definitions of the science and engineering workforce and comparisons of the number of scientists and engineers. Our tabulated numbers in table 5.1 are comparable, but smaller, because we exclude social scientists and postsecondary teachers, and we cover only industry (NAICS 21-81) and exclude agriculture (NAICS 11) and government (NAICS 92).

the highest number of scientists and engineers, the ACS shows 8 percent fewer scientists and engineers, and the OES shows 3 percent fewer than the ACS.\(^6\) Line 2 shows the number of R&D scientists and engineers from the firm-level BRDIS. Line 3 computes the number of scientists and engineers working in non-R&D activities by subtracting the Line 2 number from the Line 1 numbers. Line 4 computes the ratio of the number of scientists and engineers in non-R&D activities to the total number of scientists and engineers—about 80 percent of industrial scientists and engineers work outside of formal R&D activities.

We complement these estimates with tabulated data from the Scientists and Engineers Statistical Data System (SESTAT) on the work activity of industrial scientists and engineers. The SESTAT reports 3.808 million scientists and engineers (excluding social scientists) in industry in 2013\(^7\)—a figure short of the figures in table 5.1. The primary reason for the lower figure is that SESTAT data exclude persons with less than a bachelor’s degree. The

6. The CPS sample includes about 60,000 households per month. The ACS sample includes about 3.5 million households in each year since 2012. The OES sample for each year includes about 1.2 million establishments from a three-year period.

7. National Science Foundation (2015), Characteristics of Scientists and Engineers in the United States: 2013. Table 9-1 reports 4,009,000 scientists and engineers in business/industry, of which 201,000 are social scientists.
SESTAT provides information on the primary and secondary work activity of scientists and engineers, differentiating among five activities: research and development, teaching, management and administration, computer applications, and other. In 2013, 29 percent of scientists and engineers indicate that their primary work activity is R&D, and 61 percent indicate that their primary work activity is non-R&D. Tabulating both primary and secondary work activities, we find 15.3 percent of scientists and engineers indicate that both their primary and secondary work activities are R&D, 15.7 percent indicate R&D as primary activity and something else as secondary, 24.5 percent indicate R&D as secondary activity and something else as primary, and 44.5 percent indicate that both their primary and secondary activities are non-R&D.

To compute a single statistic for scientist and engineer full-time equivalent (FTE) work time engaged in R&D activities, we assume that three-quarters of a worker’s FTE time is engaged in the primary work activity, and one-quarter of FTE time is engaged in the secondary work activity. With this assumption on worker FTE time allocation to primary and secondary work activity, we find that the average of scientist and engineer FTE time engaged in R&D activities is 33.2 percent, so two-thirds of industrial scientists and engineers FTE time is engaged in non-R&D activities. Since SESTAT data exclude persons with less than a bachelor’s degree working as scientists and engineers, who are more likely to work in non-R&D activities compared to bachelor’s degree holders, the proportion of FTE time for all scientists and engineers in non-R&D activities certainly exceeds the estimate of two-thirds.

Because the industry classification of workers is not comparable across the person-level CPS and ACS, establishment-level OES, and firm-level BRDIS surveys, we cannot combine data from the different surveys to estimate the proportion of scientists and engineers engaged in R&D versus non-R&D activities in disaggregated manufacturing or nonmanufacturing industries. The person-level CPS and ACS ask the respondent to classify the industry of their employer at the location where they work, but a worker in a large manufacturing firm may likely classify their employer as manufacturing even if they work at a nonmanufacturing establishment, such as sales or R&D or other services. The establishment-level OES classifies the industry of the establishment, and classifies workers as nonmanufacturing if they work at a nonmanufacturing establishment. The firm-level BRDIS classifies the industry of the firm based on the business segment where the firm conducts the most R&D, or the industry sector where the firm has the most payroll. So the BRDIS classifies scientists and engineers in R&D establishments of manufacturing firms as manufacturing workers, whereas the establishment-level OES classifies such scientists and engineers as non-manufacturing workers in the Scientific Research and Development Services industry (NAICS 5417).
To compare estimates across surveys, we tabulate the number of scientists and engineers in manufacturing from the CPS, ACS, and OES. The two person-level surveys give comparable estimates: in 2013, from the CPS we find 1.48 million scientists and engineers in manufacturing, and from the ACS we find 1.39 million. From the establishment-level OES, by contrast, we find only 0.95 million scientists and engineers in manufacturing establishments—just 64 percent of the CPS figure and 69 percent of the ACS figure.8

5.1.1 Scientists and Engineers Proportion of Employment at Establishments

To study the relationship between scientists and engineers, and output and productivity, at establishments, we need to estimate the SEP of employment at the establishment level.9 To estimate SEP at establishments, we link workers in the LEHD to the 1990 or 2000 Decennial Census, or the CPS in 1986–1997, to identify the occupation of workers for the matched sample of workers. Our matched sample of manufacturing workers constitutes 17 percent of all workers in establishments observed in the Census of Manufactures or Annual Survey of Manufactures over the years 1992–2007. We use the matched sample of workers to estimate the SEP of employment at each establishment. See appendix A for further description of the data-construction procedure.

Our estimate of SEP at the establishment is subject to two forms of measurement error. The first form of measurement error relates to our measure of the occupation of workers. We identify a worker’s occupation as the occupation indicated in the year that we observe the worker in the Decennial Census or CPS. If we observe a worker in more than one year of the Decennial Census or CPS, we use the observation from the most recent year, and in fact, most of our matches are from the 2000 Decennial Census. Our establishment production-function analysis covers the years 1992–2007. To the extent that workers change occupations from a scientist/engineer occupation to some other occupation, or from some other occupation to a scientist/engineer occupation, during the time period of our data, we may mismeasure the occupation of workers in our sample.

The second form of measurement error in our estimate of SEP is sampling error associated with the number of matched workers that we have at an establishment. The fewer the matches, the greater is the sampling error. The sampling error will be large in establishments with few employees, but can also be substantial in establishments with a greater number of employees.

8. Our tabulations for all workers in 2013 shows 14.2 million manufacturing workers in the CPS, 14.7 million manufacturing workers in the ACS, and 12.0 million manufacturing workers in the OES (84 percent of the CPS estimate and 82 percent of the ACS estimate).

9. The best source of occupational data for establishments is the OES, but OES establishment-level microdata are not available to us to link to census establishment-level production data. Fairman et al. (2008) show that such a link is possible.
For example, an establishment with twenty-five employees and a worker match rate of 17 percent would have information on occupation for four matched workers. If the establishment has one scientist/engineer, the true SEP is 4 percent. But with a matched sample of four workers, the estimated SEP would be 0 percent or 25 percent. For our establishment production-function regression analysis, we take three different approaches to address sampling error in our estimate of SEP at the establishment. First, we focus our regression analysis on a restricted sample of establishments with at least ten matched workers\(^{10}\) and with total employment of at least fifty employees, thereby purging the sample of observations with potentially huge measurement error. Second, we estimate weighted regressions with observations weighted by the square root of the number of matched workers at the establishment. Third, we apply a James-Stein-type adjustment to the estimated SEP that shrinks the estimated SEP for an establishment toward the mean value of SEP over all establishments, with the shrinkage factor depending on the variance of the estimated SEP at the establishment.

While we focus on SEP as our key independent variable, we also use the matched-worker sample to estimate the average years of education of workers at the establishment level. This allows us to differentiate between the SEP of workers at the establishment, and average years of education of workers at the establishment, in our production-function regression analysis. The measurement-error issues relating to estimating the SEP also apply to the estimation of the average years of education of workers at the establishment. Our approaches to address sampling error in estimating SEP apply similarly to our estimate of the average years of education of workers at the establishment.

5.1.2 Manufacturing Establishments Data Set

Table 5.2 shows the mean value of selected variables for the full sample of all manufacturing establishments in our CM/ASM data, for the “matched” sample of establishments with one or more workers matched to the Decennial/CPS, and for the “restricted” sample of establishments with ten or more workers matched to the Decennial/CPS and with total employment of fifty or more. Appendix A describes the construction of our analytical data set for manufacturing establishments.

The full sample includes over 1.3 million establishment-year observations over the period 1992–2007. The matched sample includes 506,800 establishment-year observations, and the restricted sample has 215,800 establishment-year observations. The mean values of log gross output and log employment in the matched sample are somewhat larger than in the full sample, while these mean values in the restricted sample are substantially

\(^{10}\) The count of matched workers from the LEHD is for a pseudoestablishment defined by EIN-state-county-industry, so it may not be exactly comparable to total employment of the establishment from the Census of Manufactures or Annual Survey of Manufactures.
Table 5.2 Mean value of selected variables, manufacturing establishments (1992–2007)

<table>
<thead>
<tr>
<th></th>
<th>Establishment sample</th>
<th>Restricted sample of establishments, by R&D status of firm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
<td>Matched</td>
</tr>
<tr>
<td>Number of establishment-year observations</td>
<td>1,305,600</td>
<td>506,800</td>
</tr>
<tr>
<td>Ln(gross output)</td>
<td>8.70</td>
<td>8.90</td>
</tr>
<tr>
<td>Ln(employment)</td>
<td>3.74</td>
<td>3.93</td>
</tr>
<tr>
<td>Production worker share of employment</td>
<td>0.724</td>
<td>0.723</td>
</tr>
<tr>
<td>Establishment in R&D firm</td>
<td>0.343</td>
<td>0.341</td>
</tr>
<tr>
<td>R&D scientists and engineers proportion of employment at the firm</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>Scientists and engineers proportion of employment</td>
<td>0.029</td>
<td>0.038</td>
</tr>
<tr>
<td>Scientists and engineers and science/engineering technicians proportion of employment</td>
<td>0.048</td>
<td>0.061</td>
</tr>
<tr>
<td>Average years of education of workers</td>
<td>11.8</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Notes: The “full” establishment sample is all manufacturing establishments observed in the Census of Manufactures or Annual Survey of Manufacturers during 1992 to 2007, with total employment of five or more. The “matched” establishment sample is all manufacturing establishments with one or more workers from the LEHD that match to the Decennial Census (1990, 2000) or Current Population Survey (1986–1997), and with total employment of five or more. The “restricted” establishment sample is manufacturing establishments with ten or more workers from the LEHD that match to the Decennial Census or Current Population Survey, and with total employment of fifty or more. See appendix A for additional description. Establishment output, employment, and production worker share of employment are from the Census of Manufactures and Annual Survey of Manufacturers. R&D status of the firm, and R&D scientists and engineers proportion of employment at the firm are from the NSF Survey of Industrial Research & Development. Worker occupation and education are from the Decennial Census or Current Population Survey. Scientists and engineers, and science/engineering technicians, are defined using Bureau of Labor Statistics, Standard Occupational Classification, Options for defining STEM occupations under the 2010 SOC, August 2012. We define scientists and engineers as research, development, and design occupations in life and physical science, engineering, mathematics, and information technology. We define science/engineering technicians as technologist and technician occupations in life and physical science, engineering, mathematics, and information technology.
larger. The proportion of establishments that belong to R&D-performing firms, and the mean value of R&D worker share of firm employment, are similar for the matched sample and full sample and larger in the restricted sample. The average production-worker share of employment at the establishment level is similar in all three samples.

Using the matched-worker sample, we produce our measure of the SEP of employment at the establishment. The mean value of SEP is 0.038 in the restricted sample, which is our main regression sample. For comparison, we also produce a broader measure of the scientists and engineers and science/engineering technicians proportion of employment at the establishment. The mean value of this measure in the restricted sample is 0.061. In our regression analysis, we find that estimates using the broader measure of scientists and engineers and science/engineering technicians are similar to our main estimates using the SEP variable. Table 5.2 also presents the mean of average years of education of workers at establishments.

The last two columns of table 5.2 compare establishments in R&D and non-R&D performing firms. Previous studies find that R&D (usually measured as a stock of knowledge by accumulating R&D spending over time) is associated with higher productivity (Griliches 1998; Hall 2005; Hall, Mairesse, and Mohnen 2009). In our data, establishments in R&D-performing firms have higher gross output, higher employment, lower production worker share of employment, higher average years of education of workers, and higher SEP of employment.

5.2 Scientists and Engineers in the Establishment Production Function

If scientists and engineers at production establishments help implement technical advances that increase productivity through improved production processes or improved products, then in our manufacturing establishments data set we expect to find that the SEP of employment at the establishment is positively associated with establishment productivity. We estimate the following establishment production-function regression model:

\[
\ln \text{OUTPUT} = a + b \text{SEP} + c \text{FRD} + d \text{FRDP} + \text{SFI}_γ + \text{EMPL}_δ + \text{EMPL}_Y + \text{EMPL}_R + \text{EMPL}_D + \text{EMPL}_G + u,
\]

where

- OUTPUT is annual gross output of the establishment;
- SEP is the scientists and engineers proportion of employment at the establishment;
- FRD is an indicator for whether the firm is an R&D performing firm;
- FRDP is the R&D scientists and engineers proportion of employment at the firm;
- SFI is a vector of “standard factor inputs,” including employment, capital.
stock in equipment, capital stock in structures, materials, and energy (all measured in log units);

EMPL is a vector of other employer attributes, including an indicator for whether the firm is a multiestablishment firm, establishment age, establishment age squared, production worker share of employment at the establishment, and average years of education of workers at the establishment;

YR is a vector of year fixed effects;

IND is a vector of industry fixed effects

GEO is a vector of geographic region fixed effects; and

u is the error term.

With our panel data set, we also estimate an establishment fixed effects version of equation (1), which uses time variation in SEP and other variables within establishments to estimate their effect on establishment output.

Table 5.3 presents the estimated coefficients for the establishment production-function regression model. Column (1) shows the estimate using the matched sample of all establishments, with no treatment for measurement error in the variables for SEP of employment and average years of education of workers at the establishment. The positive and significant 0.079 estimate for the effect of SEP on log gross output indicates that even in the likely presence of large measurement error in SEP, establishments with higher SEP of employment have higher total factor productivity. The estimated coefficients on the standard factor inputs—employment, capital equipment and structures, materials, and energy—are all reasonable in magnitude and consistent with constant returns to scale in the production function. The estimated effect of average years of education of workers is positive, consistent with evidence that human capital is related to productivity.

The next three columns in the table show estimates using the restricted sample of establishments, that is, establishments with ten or more workers matched to the Decennial/CPS and with total employment of fifty or more. This addresses the issue of measurement error in the SEP of employment, and the average years of education of workers, by dropping observations where measurement error is likely to be exceptionally severe. This reduces the sample size of establishments by almost 60 percent, but the dropped establishments account for only 10 percent of the workers because the distribution of establishments by employment follows a power law with many establishments employing just a few workers and a smaller number of establishments employing many workers.\(^{11}\) Column (2) shows that using the restricted sample more than doubles the estimated coefficient on SEP, and more than triples the estimated coefficient on average years of education of workers, compared to column (1), which indicates that measurement error is indeed a substantive issue for analysis.

\(^{11}\) See table 5.6, and the number of observations in columns (1) and (2).
<table>
<thead>
<tr>
<th>Establishment sample</th>
<th>Matched</th>
<th>Restricted</th>
<th>Restricted</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression model</td>
<td>OLS (1)</td>
<td>OLS (2)</td>
<td>OLS (3)</td>
<td>Fixed effects (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientists and engineers proportion of employment</td>
<td>0.079*** (0.007)</td>
<td>0.180*** (0.019)</td>
<td>0.132*** (0.019)</td>
<td>0.055** (0.026)</td>
</tr>
<tr>
<td>R&D firm</td>
<td>0.063*** (0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D scientists and engineers proportion of employment at the firm</td>
<td>0.156*** (0.011)</td>
<td>0.048*** (0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard factor inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(employment)</td>
<td>0.358*** (0.001)</td>
<td>0.354*** (0.002)</td>
<td>0.352*** (0.002)</td>
<td>0.393*** (0.003)</td>
</tr>
<tr>
<td>Ln(capital equipment)</td>
<td>0.061*** (0.001)</td>
<td>0.059*** (0.001)</td>
<td>0.059*** (0.001)</td>
<td>0.042*** (0.002)</td>
</tr>
<tr>
<td>Ln(capital structures)</td>
<td>0.017*** (0.000)</td>
<td>0.020*** (0.001)</td>
<td>0.019*** (0.001)</td>
<td>0.009*** (0.001)</td>
</tr>
<tr>
<td>Ln(materials)</td>
<td>0.449*** (0.001)</td>
<td>0.471*** (0.001)</td>
<td>0.470*** (0.001)</td>
<td>0.340*** (0.001)</td>
</tr>
<tr>
<td>Ln(energy)</td>
<td>0.114*** (0.001)</td>
<td>0.107*** (0.001)</td>
<td>0.105*** (0.001)</td>
<td>0.119*** (0.002)</td>
</tr>
<tr>
<td>Employer attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiestablishment firm</td>
<td>0.094*** (0.001)</td>
<td>0.058*** (0.002)</td>
<td>0.033*** (0.002)</td>
<td></td>
</tr>
<tr>
<td>Establishment age</td>
<td>0.005*** (0.000)</td>
<td>0.005*** (0.000)</td>
<td>0.005*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>Establishment age squared</td>
<td>−0.000*** (0.000)</td>
<td>−0.000*** (0.000)</td>
<td>−0.000*** (0.000)</td>
<td>−0.000*** (0.000)</td>
</tr>
<tr>
<td>Production-worker share of employment</td>
<td>−0.067*** (0.003)</td>
<td>−0.014*** (0.006)</td>
<td>−0.014*** (0.006)</td>
<td>0.096*** (0.007)</td>
</tr>
<tr>
<td>Average years of education of workers</td>
<td>0.013*** (0.000)</td>
<td>0.042*** (0.001)</td>
<td>0.038*** (0.001)</td>
<td>0.040*** (0.001)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>506,800</td>
<td>215,800</td>
<td>215,800</td>
<td>215,800</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.955</td>
<td>0.914</td>
<td>0.915</td>
<td>0.958</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is Ln(gross output). See Table 5.2 for the definition of the “matched” and “restricted” establishment samples. The OLS models include fixed effects for year (1992–2007), industry (six-digit NAICS), and geographic region (metropolitan or micropolitan core-based statistical area [CBSA] as defined in 2009 by the U.S. Office of Management and Budget, or economic area as defined in 2004 by the U.S. Bureau of Economic Analysis). The fixed effects model includes fixed effects for establishment and year. Standard errors are shown in parentheses.

*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
Column (3) adds variables for whether the firm is an R&D-performing firm, and the R&D SEP of employment at the firm. The estimated coefficients for both of the firm-level R&D variables are positive. The estimated coefficient for SEP is smaller compared to column (2), but is still substantial at 0.132.

Finally, column (4) presents the estimates for the production-function regression model with establishment fixed effects. This model removes any unmeasured cross-sectional establishment factors related to SEP and output productivity that would bias the estimate of the effect of SEP on output. Using only within-establishment variation in the regression variables, the fixed effects model provides our strongest test of the relation between SEP of employment and output productivity at the establishment level. In column (4) the estimated coefficient on SEP is 0.055, considerably smaller than in column (3), and the estimated coefficient on average years of education of workers is diminished by even more in proportional terms. Given that measurement error produces smaller estimated coefficients in longitudinal regressions than in cross-sectional regressions (Freeman 1984), the smaller estimates in the fixed effects regression are not surprising, and provides additional indication of the presence of measurement error.

5.2.1 Methods for Addressing Measurement Error

The first method we use to address measurement error in SEP and average years of education of workers is to use a weighted regression, where we weight observations in our production-function regression by the square root of the number of matched workers at the establishment. Since the sampling error of both variables depend inversely on the square root of the number of matched workers, this weighting procedure gives more weight to establishments with more precise estimates of these variables and less weight to establishments with less precise estimates, and should thus provide a better estimate of the effect of SEP on output.

Table 5.4, column (1), presents the weighted regression estimates for the OLS model in the restricted sample. The estimated coefficient on SEP increases by a factor of 1.71 (= 0.226/0.132) compared to the unweighted regression in table 5.3, column (3). The estimated coefficient on average years of education of workers increases by a factor of 1.13 (= 0.043/0.038). Table 5.4, column (2), presents weighted regression estimates for the establishment fixed effects model. Compared to table 5.3, column (4), the estimated coefficient on SEP more than doubles from 0.055 to 0.121. The estimated coefficient on years of education of workers also doubles from 0.004 to 0.008.12

12. A potential issue with the weighted regression method is that if the effect of SEP is heterogeneous and larger in establishments with more employment and more matched workers, then the weighted regression estimate of SEP will reflect both heterogeneity in SEP related to establishment size, and reduced measurement error due to sampling.
<table>
<thead>
<tr>
<th>Method for addressing sampling error in variables</th>
<th>Weighted regression</th>
<th>James-Stein shrinkage adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment sample</td>
<td>Restricted</td>
<td>Restricted</td>
</tr>
<tr>
<td>Regression model</td>
<td>OLS (1)</td>
<td>OLS (3)</td>
</tr>
<tr>
<td></td>
<td>Fixed effects (2)</td>
<td>Fixed effects (4)</td>
</tr>
<tr>
<td>Scientists and engineers proportion of employment</td>
<td>0.226*** (0.021)</td>
<td>0.437*** (0.034)</td>
</tr>
<tr>
<td>R&D firm</td>
<td>0.057*** (0.002)</td>
<td>0.065*** (0.002)</td>
</tr>
<tr>
<td>R&D scientists and engineers proportion of employment at the firm</td>
<td>0.244*** (0.011)</td>
<td>0.144*** (0.011)</td>
</tr>
<tr>
<td>Standard factor inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(employment)</td>
<td>0.345*** (0.002)</td>
<td>0.350*** (0.002)</td>
</tr>
<tr>
<td>Ln(capital equipment)</td>
<td>0.066*** (0.001)</td>
<td>0.058*** (0.001)</td>
</tr>
<tr>
<td>Ln(capital structures)</td>
<td>0.021*** (0.001)</td>
<td>0.019*** (0.001)</td>
</tr>
<tr>
<td>Ln(materials)</td>
<td>0.481*** (0.001)</td>
<td>0.470*** (0.001)</td>
</tr>
<tr>
<td>Ln(energy)</td>
<td>0.098*** (0.001)</td>
<td>0.105*** (0.001)</td>
</tr>
<tr>
<td>Employer attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiestablishment firm</td>
<td>0.033*** (0.003)</td>
<td>0.035*** (0.002)</td>
</tr>
<tr>
<td>Establishment age</td>
<td>0.005*** (0.000)</td>
<td>0.005*** (0.000)</td>
</tr>
<tr>
<td>Establishment age squared</td>
<td>−0.000*** (0.000)</td>
<td>−0.000*** (0.000)</td>
</tr>
<tr>
<td>Production worker share of employment</td>
<td>0.020*** (0.006)</td>
<td>0.096*** (0.005)</td>
</tr>
<tr>
<td>Average years of education of workers</td>
<td>0.043*** (0.001)</td>
<td>0.054*** (0.001)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>215,800</td>
<td>215,800</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.931</td>
<td>0.965</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is Ln(gross output). See table 5.2 for the definition of the “matched” and “restricted” establishment samples. The weighted regression method weights observations by the square root of the number of matched workers at the establishment. The James-Stein shrinkage-adjustment method is applied to the two independent variables that are constructed from the matched worker sample, that is, the scientists and engineers proportion of employment, and the average years of education of workers. For description of the method, see the text and appendix B. The OLS models include fixed effects for year (1992–2007), industry (six-digit NAICS), and geographic region (metropolitan or micropolitan core-based statistical area [CBSA] as defined in 2009 by the U.S. Office of Management and Budget, or economic area as defined in 2004 by the U.S. Bureau of Economic Analysis). The fixed effects model includes fixed effects for establishment and year. Standard errors are shown in parentheses.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
The second method we use to address measurement error is to apply a James-Stein-type “shrinkage” adjustment to the estimated SEP for an establishment, which pulls the estimate toward the mean SEP in the entire sample, depending on the variance of the estimated SEP. Building on Mairesse and Greenan (1999), in our method, described in appendix B and in Barth et al. (2017), we calculate the ratio of the variance of estimated SEP at an establishment to the observed variance of SEP across all establishments. A large ratio indicates that sampling error in estimated SEP is large relative to the variation in SEP across establishments. We use this variance ratio to adjust the estimated SEP at an establishment toward the mean SEP over all establishments. We replace each establishment’s estimated SEP with a weighted average of its estimated SEP and the mean SEP over all establishments in the data. The weight given to estimated SEP is smaller if sampling error of estimated SEP is larger, and the weight given to mean SEP is commensurately larger. The same procedure is applied to adjust the estimated average years of education of workers at the establishment.

Columns (3) and (4) of table 5.4 present the regression estimates for the OLS model and establishment fixed effects model using the restricted sample, and applying the James-Stein shrinkage adjustment to SEP and average years of education of workers. In table 5.4, column (3), for the OLS model, the estimated coefficient on SEP is 0.437, which is 3.31 (= 0.437/0.132) times larger than the comparable estimate in table 5.3, column (3). The estimated coefficient on average years of education of workers is 0.054, which is 1.42 (= 0.054/0.038) times larger than the comparable estimate in table 5.3, column (3). For the establishment fixed effects model, in table 5.4, column (4), the estimated coefficient on SEP is 0.373, which is dramatically larger than the comparable estimate of 0.055 in table 5.3, column (4). The estimated coefficient on years of education of workers is 0.005, which is only marginally larger than the comparable estimate of 0.004 in table 5.3, column (4).

The last two columns in table 5.4 present regression estimates using the matched sample of all establishments, and applying the James-Stein shrinkage adjustment to SEP and average years of education of workers. The estimated coefficient on SEP in the OLS model is 0.154, which is almost double the comparable estimate of 0.079 in table 5.3, column (1). The estimated coefficient on SEP in the establishment fixed effects model is 0.147, which is very close to the OLS estimate of 0.154.

In sum, the regression estimates presented in tables 5.3 and 5.4 show that the different methods for addressing measurement error in the SEP variable all lead to larger estimates for the effect of SEP on output in the establishment production function. We conclude that the SEP of employment has a substantial positive impact on output productivity at the establishment in our data for manufacturing establishments in 1992–2007.
5.3 Establishment Scientists and Engineers and Earnings of Workers

If the SEP of employment is positively related to productivity at the establishment, then we may expect that it is also positively related to the earnings of workers at the establishment. A positive relation between SEP and worker earnings would result if new technologies implemented by scientists and engineers at the establishment complement worker skills in production, or if employers share economic rents from implementing those technologies or products with workers through higher pay.

The standard earnings equation regression model in labor economics relates individual workers’ log earnings to their human capital and demographic attributes. To assess the effect of SEP on worker earnings, we augment the standard earnings equation with SEP at the establishment and R&D SEP of employment at the firm. We estimate the following workers’ earnings regression model:

\[
\ln \text{EARN} = a + b \text{SEP} + c \text{FRD} + d \text{FRDP} + \text{WKR} \gamma + \text{EMPL} \delta + \text{YR} + \text{IND} + \text{GEO} + u,
\]

where

- EARN is annualized earnings of the worker;
- SEP is the scientists and engineers proportion of employment at the establishment;
- FRD is an indicator for whether the firm is an R&D performing firm;
- FRDP is the R&D scientists and engineers proportion of employment at the firm;
- WKR is a vector of individual worker attributes, including years of education, years of work experience, years of work experience squared, indicator for female, indicator for nonwhite race, indicator for scientist or engineer occupation, and interactions of indicator for female with work experience, work experience squared, and indicator for nonwhite race;
- EMPL is a vector of other employer attributes, including log employment at the establishment, production worker share of employment at the establishment, and average years of education of workers at the establishment;
- YR is a vector of year fixed effects;
- IND is a vector of industry fixed effects;
- GEO is a vector of geographic region fixed effects; and
- \(u\) is the error term.

Table 5.5 describes our sample of workers in manufacturing establishments in 1992–2007. This sample of 11,666,200 person-year observations

13. Some technologies substitute for labor skills and reduce earnings, so complementarity of technology and labor skills depends on the specific case.
corresponds to the 215,800 establishment-year observations in the “restricted” establishment sample presented in table 5.2. The mean value of SEP in the worker sample, 0.063, is greater than the mean value of SEP in the establishment sample, 0.038, because larger establishments with more workers have higher SEP.

The last three columns in table 5.5 compare workers who in our panel have work history in R&D firms only, in both R&D and non-R&D firms, and in non-R&D firms only. Workers with work history in R&D firms only have higher earnings, more years of education, and work in establishments with more employees and higher SEP compared to workers with work history in both R&D and non-R&D firms, or non-R&D firms only.

Table 5.6 presents the regression estimates for the log earnings equation augmented by SEP and other establishment-level and firm-level variables. In column (1), using the matched sample of workers, the estimated coefficients on the human capital and demographic variables—years of education, years

<table>
<thead>
<tr>
<th>Table 5.5</th>
<th>Mean value of selected variables, workers in manufacturing establishments (1992–2007) (restricted sample of workers)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Workers with work history in</td>
</tr>
<tr>
<td></td>
<td>All workers</td>
</tr>
<tr>
<td>Number of person-year observations</td>
<td>11,666,200</td>
</tr>
<tr>
<td>Worker attributes</td>
<td></td>
</tr>
<tr>
<td>Ln(earnings)</td>
<td>10.42</td>
</tr>
<tr>
<td>Years of education</td>
<td>12.4</td>
</tr>
<tr>
<td>Years of work experience</td>
<td>23.9</td>
</tr>
<tr>
<td>Female</td>
<td>0.311</td>
</tr>
<tr>
<td>Nonwhite race</td>
<td>0.256</td>
</tr>
<tr>
<td>Scientist or engineer occupation</td>
<td>0.063</td>
</tr>
<tr>
<td>Employer attributes</td>
<td></td>
</tr>
<tr>
<td>Ln(employment) at the establishment</td>
<td>6.21</td>
</tr>
<tr>
<td>Production worker share of employment at the establishment</td>
<td>0.714</td>
</tr>
<tr>
<td>Establishment in R&D firm</td>
<td>0.780</td>
</tr>
<tr>
<td>R&D scientists and engineers proportion of employment at the firm</td>
<td>0.045</td>
</tr>
<tr>
<td>Scientists and engineers proportion of employment at the establishment</td>
<td>0.063</td>
</tr>
<tr>
<td>Average years of education of workers at the establishment</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Notes: The “restricted” sample of workers are all workers in the LEHD that match to the Decennial Census (1990, 2000) or Current Population Survey (1986–1997), and also match to the “restricted” sample of manufacturing establishments presented in table 5.2. Worker earnings, gender, race, and age are from the LEHD. Years of work experience is constructed from worker age and education. Worker occupation and education are from the Decennial Census or Current Population Survey. See table 5.2 for definition of scientist or engineer, and description of establishment-level and firm-level variables.
<table>
<thead>
<tr>
<th>Worker sample</th>
<th>Matched</th>
<th>Restricted</th>
<th>Restricted</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression model</td>
<td>OLS</td>
<td>OLS</td>
<td>Job stayers</td>
<td>Job changers</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Scientists and engineers proportion of employment at the establishment</td>
<td>0.582***</td>
<td>0.638***</td>
<td>0.010**</td>
<td>0.184***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>R&D firm</td>
<td>0.067***</td>
<td>0.057***</td>
<td>0.047***</td>
<td>0.018***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>R&D scientists and engineers proportion of employment at the firm</td>
<td>0.119***</td>
<td>0.100***</td>
<td>−0.007***</td>
<td>0.018***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Worker attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientist or engineer occupation</td>
<td>0.150***</td>
<td>0.150***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of education</td>
<td>0.060***</td>
<td>0.061***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of work experience</td>
<td>0.045***</td>
<td>0.044***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>−0.137***</td>
<td>−0.141***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite race</td>
<td>−0.156***</td>
<td>−0.148***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employer attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (employment) at the establishment</td>
<td>0.040***</td>
<td>0.036***</td>
<td>0.057***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Production worker share of employment at the establishment</td>
<td>−0.042***</td>
<td>−0.019***</td>
<td>0.043***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Years of education of workers at the establishment</td>
<td>0.043***</td>
<td>0.057***</td>
<td>−0.003***</td>
<td>0.032***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>12,966,900</td>
<td>11,666,200</td>
<td>10,263,700</td>
<td>1,656,200</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.553</td>
<td>0.563</td>
<td>0.902</td>
<td>0.818</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is Ln(earnings). The “matched” sample of workers are all workers in the LEHD that match to the Decennial Census (1990, 2000) or Current Population Survey (1986–1997), and also match to the “matched” sample of manufacturing establishments presented in table 5.2. The “restricted” sample of workers are all workers in the LEHD that match to the Decennial Census (1990, 2000) or Current Population Survey (1986–1997), and also match to the “restricted” sample of manufacturing establishments presented in table 5.2. The OLS models include fixed effects for year (1992–2007), industry (six-digit NAICS), and geographic region (metropolitan or micropolitan core-based statistical area [CBSA] as defined in 2009 by the U.S. Office of Management and Budget, or economic area as defined in 2004 by the U.S. Bureau of Economic Analysis). Job stayers observations are person-year observations for a worker at an establishment in two or more continuous years. The job stayers model includes fixed effects for person and year. Job changers observations are person-year observations for a worker before and after a change in the establishment. The job changers model includes fixed effects for person, year, industry, and geographic region. All models also include years of work experience squared and interactions of female with years of work experience, years of work experience squared, and nonwhite race. Standard errors are shown in parentheses.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
of work experience, gender, and race—are similar to typical estimates in standard earnings equations. The estimated coefficient on scientist or engineer occupation is 0.150, so scientists or engineers earn 15 percent more than other workers. The estimated coefficient on SEP is a substantial 0.582. In column (2), using the restricted sample of workers, the estimated coefficient on SEP increases to 0.638, presumably due to reduced measurement error in SEP in the restricted sample. In the OLS model, the 0.638 estimated effect of SEP on earnings in table 5.6 is larger than the estimated effect of SEP on establishment productivity in tables 5.3 and 5.4, which ranges between 0.132 and 0.437, in the restricted sample.14

We consider the possibility that the relation between SEP and earnings may be affected by dual causality that produces a selectivity bias in the estimate. Establishments choose which workers to make job offers to, and workers choose which job offers to accept, so part of the positive association between SEP and earnings could be due to selectivity in employer and worker choices rather than the effect of science and engineering on the earnings of a given worker. The natural way to control for this selectivity is to estimate a fixed effects model that identifies the effect of changes in SEP on the same worker. In our data, there are two distinct ways that SEP can change for a given worker. An employer can change SEP over time, which affects workers who stay at the establishment, or a worker can move between establishments with different levels of SEP. Given the different impetus for change in these situations—an employer-initiated change versus a worker-initiated change—we estimate fixed effects models separately for job stayers and for job changers.

Table 5.6, column (3), presents estimated coefficients from a fixed effects analysis of job stayers, defined as person-year observations for a worker at an establishment in two or more continuous years, where changes in SEP are within the establishment over time. Table 5.6, column (4), presents estimated coefficients from a fixed effects analysis of job changers, defined as person-year observations for a worker before and after a change in establishment, where changes in SEP are due to the change in employer.

There is a large difference between the two fixed effects estimates for the coefficient on SEP. For job stayers the coefficient on SEP is a modest 0.010, while for job changers the estimated coefficient on SEP is 0.184. Workers benefit mainly by changing jobs and moving to establishments with higher SEP of employment, and not from their employer raising the SEP of employment at their current work establishment. Comparing the fixed effects estimate of the impact of SEP on earnings for job stayers at

14 Since labor share is around 0.35 to 0.40 in the gross output production function, an estimated effect of SEP on earnings that is greater than the estimated effect of SEP on gross output productivity is not inconsistent with rent-sharing of productivity gains.
an establishment with the fixed effects estimates of the impact of SEP on productivity at the establishment, we find that increasing the SEP at the establishment has a much greater impact on productivity than on earnings. From tables 5.3 and 5.4, the fixed effects estimate of the impact of SEP on productivity in the restricted sample ranges from 0.055 to 0.373, which are much larger than the 0.010 estimate of the impact of SEP on earnings of workers who are job stayers at an establishment.

5.4 Conclusion

Linking data on science and engineering occupations of workers, firm R&D activity, establishment production, worker earnings and job mobility, we find that goods-producing establishments with relatively many scientists and engineers have higher productivity and worker earnings than those with few scientists and engineers, and that the results hold up in fixed effects analyses that compare the productivity of the same establishment over time. A plausible interpretation of the results is that production-establishment-based scientists and engineers help implement the adoption of new technologies and products at workplaces. In addition, we find that earnings of workers are higher at establishments with higher proportions of scientists and engineers, but that the positive relation between earnings and SEP of employment is mainly due to workers moving to establishments with higher numbers of scientists and engineers rather than existing establishments increasing SEP. Our estimates of the effect of SEP of employment on productivity at the establishment are substantially strengthened when we apply methods to address measurement errors due to sampling variance in the estimate of the variable SEP.

Given that most industrial scientists and engineers work at goods- and services-producing establishments and that most of that work is not in formal R&D activities, our analysis suggests that there is much to be learned from extending studies of the economic effects of R&D on the economy to the effects of scientific and engineering work more broadly. Further study using qualitative as well as quantitative techniques could illuminate the link between R&D and non-R&D scientists and engineers and economic performance beyond our foray into this area: ethnographic studies of the work activities of production-establishment-based scientists and engineers compared to those of other high-level professionals in bringing new processes and products to the market, statistical analysis of nonmanufacturing industries where scientists and engineers increasingly play an important role in implementing information technology and other new technologies, and analysis of the endogenous decisions of firms to employ more or fewer scientists and engineers over time and to allocate them to R&D or non-R&D activities.
Appendix A

The Employer-Employee-Scientist-Engineer Data Set

This appendix describes how we link establishment-, person-, and firm-level data files to create the time series cross-section data set that we use in the chapter. We undertook this analysis at the Boston Federal Statistical Research Data Center (BRDC) where we followed all Census confidentiality requirements.

For our establishment data we use establishments from the Census of Manufactures (CM) and the Annual Survey of Manufactures (ASM) in 1992–2007. The CM provides quinquennial data for the universe of establishments. The ASM provides annual data for a sample of establishments in each year, including a certainty sample of establishments in large firms and a noncertainty sample of other establishments. We use data constructed by Foster, Grim, and Haltiwanger (2014) to measure the real value of output, capital stock for structures and equipment, and materials and energy use. We use the Fort and Klimek (2016) consistent six-digit NAICS industry coding of establishments to define the industry classification of establishments. We include only manufacturing establishments in our data set.

We link workers and employer reporting units observed in the Longitudinal Employer Household Dynamics (LEHD) database to establishments observed in the Longitudinal Business Database (LBD). This link utilizes matches at different levels of establishment, county, and industry detail developed in a crosswalk at the Census Bureau. We are thus able to link person-level data from the LEHD to establishment-level data from the LBD and CM/ASM. Our LEHD data are from thirty states with varying year coverage over 1992–2007.

We obtain data on workers within establishments from the LEHD Employment History Files (EHF) that provide quarterly data on the wages and jobs of individuals over time (Abowd et al. 2006). We use the EHF data to define a person’s “main job” in a year as the job with the most quarters worked and highest annualized earnings. We exclude jobs with real annualized earnings less than the level of a full-time job at half the minimum wage in 2002. We limit our analysis to workers between eighteen and sixty-five years of age. The person-level data in the LEHD contains age, gender, and race, but does not include information on individual education and occupation.

To identify occupation and education of individual workers, we link workers in the LEHD to the Decennial Census in 1990 and 2000 and to the Current Population Survey (CPS) in 1986–1997. We use a person-level crosswalk developed by the Census Bureau to link persons in the Decennial Census long-form sample in 1990 and 2000 and persons in the Current
Population Survey (CPS) over 1986–1997 to persons in the LEHD over 1992–2007. We first match persons between the LEHD and the 2000 census. For those who do not match, we match to the 1990 census, and for those who still do not match, we match to the CPS in 1986–1997. Using this procedure, we are able to create a matched sample of persons in our LEHD data for thirty states with varying year coverage over 1992–2007.

This method identifies occupation and education for 17 percent of all workers in LEHD employer reporting units that link to CM/ASM establishments in 1992–2007. Since our match identifies education and occupation of persons in 1990 or 2000 from the Decennial Census, or in 1986–1997 from the CPS, while our LEHD persons data covers the years 1992–2007, our matched sample of persons will miss younger workers or new entrants to the labor market to some extent. Using the matched sample, we estimate the SEP of employment at the establishment and the average years of education of workers at the establishment.

Finally, to measure the extent to which the parent firm of establishments conducts R&D we use the Survey of Industrial Research and Development (SIRD). The SIRD is an annual survey of firms, including a certainty sample of large R&D firms and a noncertainty sample of other firms. We use the SIRD panel of firms in 1977–2007 to construct our measure of R&D scientists and engineers employment as a share of total employment at the firm level. For each firm in the SIRD panel, we fill in missing years of R&D scientists and engineers employment share with the nearest nonmissing year available for the firm. We link the firm-level SIRD data to the establishment-level CM/ASM data. For CM/ASM establishments in firms that do not appear in any year of the 1977–2007 SIRD panel, the firm-level R&D scientists and engineers employment share is set to zero. From analysis of SIRD sample firms over the period, we conclude that we have reasonable coverage of smaller R&D performing firms.

Our full sample of establishments observed in CM/ASM over 1992–2007 includes all establishments with total employment of five or more. Our regression sample of establishments includes all establishments with ten or more workers matched to Decennial/CPS, and with total employment of fifty or more. Our regression sample of workers comprises all persons working in their “main job” in LEHD employer reporting units that link to our regression sample of CM/ASM establishments.
Appendix B

Shrinkage Adjustment to Address Measurement Error in Establishment-Level Scientists and Engineers Proportion of Employment and Average Years of Education of Workers

Because we measure scientists and engineers proportion (SEP) of employment and average years of education (AYE) of workers at manufacturing establishments from person-level matched data that has an underlying match rate of 17 percent, these two variables are measured with considerable sampling error. The error is greater the fewer the workers we match at an establishment and increases for any given number of matches as the number of employees increases at an establishment. In our regression analysis, regardless of how we treat measurement error, or even if we ignore it, our estimates of the effect of SEP on productivity are positive. But the magnitudes of the estimates vary considerably with the way in which we address the measurement error. The most novel way that we deal with measurement error is through shrinkage adjustment of the match-based variables. Building on Mairesse and Greenan (1999), we calculate the ratio of the estimated variance of estimated SEP (or AYE) at each establishment, associated with the number of matches and total employment, to the observed variance in estimated SEP (or AYE) across establishments, and use this ratio to shrink estimates with relatively large sample error to their mean value in a James-Stein-type shrinkage estimator.

Let \(n_{jt} \) be the number of matches we obtain from Decennial Census or CPS data for an establishment \(j \) with \(N_{jt} \) employees at time \(t \). Let \(x_{ijt} \) be the matched variable under consideration (SEP or AYE) for person \(i \) at establishment \(j \) at time \(t \)—either a binary variable indicating whether a matched worker is a scientist or engineer, or a continuous variable for the years of education of a worker. We estimate SEP (or AYE) at the establishment with the sample mean

\[
X_{jt} = \frac{\sum x_{ijt}}{n_{jt}}.
\]

Following Mairesse and Greenan (1999), we estimate the variance of \(X_{jt} \) at the establishment with

\[
V_{jt} = \left(1 - \frac{n_{jt}}{N_{jt}}\right)\left(1/n_{jt}\right)V^*,
\]

where \(n_{jt}/N_{jt} \) is the sampling probability by establishment at time \(t \), and \((1 - n_{jt}/N_{jt}) \) is the correction factor for the finite sample,\(^15\) and \(V^* = \)

\(^{15}\) We consider \(X^*_{jt} \) the true value of SEP (or AYE) at the establishment, to be the value we want to use in our analysis, and we consider deviations of observed \(X_{jt} \) from true \(X^*_{jt} \) to be measurement error in \(X_{jt} \). As the number of matches \(n_{jt} \) approaches the number of employees \(N_{jt} \), the measurement error disappears. Mairesse and Greenan (1999) calculate variances of
\[\sum (x_{ijt} - X_{jt})^2 \] is the within-establishment sample variance of \(x_{ijt} \), pooling over all establishment-years.

We calculate the reliability of variable \(X_{jt} \) as
\[
\lambda(n_{jt}, N_{jt}) = 1 - (1 - n_{jt}/N_{jt})(1/n_{jt})(V^*/V),
\]
where \(V \) is the observed sample variance of \(X_{jt} \) over all establishment-years.\(^{16}\)

We note that \(\lambda \) varies with \(n_{jt} \) and \(N_{jt} \); reliability increases with the number of matches at the establishment, whereas, for a given number of matches, reliability decreases with the employment size of the establishment.

James-Stein estimators (James and Stein 1961) shrink estimates based on small samples toward some appropriate global value because the small samples have high sampling errors. Stein (1956) proved that while this yields a biased estimator of a value, it can reduce the variance of a model that uses the estimator. The intuition for the effect can be found in the problem of predicting the future productivity of a baseball player who has no hits in four at bats on the first day of the season while players on average have batting averages around 0.280 (i.e., they get hits 28 percent of the time). Given the small sample of four at bats it would be unrealistic to estimate the player’s future batting average as 0.000. A better prediction for the rest of the season would be to take a weighted average of the small sample and the overall batting average of ball players or some other global average, such as the player’s lifetime average or average over hundreds of at bats in the previous season. This approach is related to empirical Bayesian methods (see Efron 2010, chapter 1).

In our case, a James-Stein-type shrinkage estimator of \(X_{jt} \) is given by
\[
Z_{jt} = \lambda_{jt}X_{jt} + (1 - \lambda_{jt})X,
\]
where \(X \) is the global mean and \(1 - \lambda_{jt} \) is a shrinkage factor that diminishes the role of the observed value and pulls it toward the global mean. As the estimated variance of \(X_{jt} \) increases, the shrinkage factor approaches unity and the shrinkage estimator of \(X_{jt} \) approaches the global mean \(X \).

\(^{16}\) More generally, in our implementation, we compute \(V \) as the variance of residuals from an establishment regression model for \(X_{jt} \) that includes covariates. For our establishment fixed effects model, to account for covariance between person observations over time, our computation of \(V^* \) includes an additional term, that is, one minus the harmonic mean of \(k_j/K_j \) across establishments, where \(k_j \) is the average number of years that unique persons are observed at establishment \(j \) during the panel, and \(K_j \) is the number of years that establishment \(j \) is in the panel; and we compute \(V \) as the variance of residuals from an establishment regression model for \(X_{jt} \) that includes establishment fixed effects and no other covariates. See Barth et al. (2017) for details of the methodology.
References

