Reforming the Tax Preference for Employer Health Insurance

Joseph Bankman, Stanford University
John Cogan, Stanford University
R. Glenn Hubbard, Columbia University and NBER
Daniel P. Kessler, Stanford University and NBER

Executive Summary

The tax preference for employer-sponsored health insurance contributes to the very high level of health spending in the United States. In this paper, we consider the consequences for spending of one approach to reducing this preference: giving people with health insurance an additional deduction for their expected out-of-pocket spending, that is, an additional deduction that declines as the actuarial value of their insurance rises. We show that this approach would reduce health spending more and have a smaller budget cost than the deduction for actual out-of-pocket spending analyzed by Cogan, Hubbard, and Kessler by encouraging a shift to higher-copayment health insurance. We estimate that a deduction for expected out-of-pocket expenses would reduce private health spending by $86 billion in 2010 at a budget cost of approximately $5 billion. We conclude that, under reasonable assumptions about consumers’ valuation of this incremental spending and the cost of public funds, such a deduction would be welfare improving.

I. Introduction

Under federal law, employers are allowed to deduct amounts paid for employer-provided health insurance (EHI) and employees are not taxed on the value of EHI (see Internal Revenue Code [IRC], secs. 105, 106, and 162). In addition, because amounts used to purchase EHI are not considered part of “wages,” they are exempt from payroll taxes at both the employer and employee levels (IRC sec. 3121). This exemption from income and payroll taxes results in an effective subsidy to EHI for the average insured employee of approximately 32% (Cogan, Hubbard, and Kessler 2007). The favorable treatment of EHI also has major implications for the federal budget. The Joint Committee on Taxation (2008) estimates the revenue cost of the EHI exclusion to have been $246 billion a year in 2007, and that figure will continue to increase...
with the rise in medical spending. Indeed, the favorable treatment of EHI is the largest single federal tax preference, considerably greater than the tax preferences for owner-occupied housing or employer-provided pensions. The value of EHI is also excluded from income for most states’ income tax purposes, further expanding the scope of the preference.

The preferential treatment of EHI is widely (and correctly) seen as affecting the trade-off between the purchase of medical care and the purchase of other goods or services (Joint Committee on Taxation 2008). The favorable treatment of EHI has another effect as well. It changes the effective price of medical services provided through insurance as opposed to medical services paid out-of-pocket (OOPS). As noted above, the value of EHI is entirely excluded from income. In contrast, OOPS are deductible only for those who itemize, and then only to the extent that they exceed 7.5% of adjusted gross income (IRC sec. 213). This effect gives employers and employees the joint incentive to choose low-deductible, low-coinsurance health plans over plans that involve more cost sharing.

Although several other features of federal tax law partially undo the preference for EHI over OOPS, each has limitations that constrain its impact on health spending. First, the preference for EHI over OOPS is reduced for individuals who are covered under qualifying high-deductible health plans and who set up Health Savings Accounts (HSAs). Amounts contributed to HSAs are deductible above the line from taxable income, and distributions from HSAs (including interest) are nontaxable as long as they are used for health services. However, except for employees whose employer makes HSA contributions directly, wages used to fund the contributions are still subject to payroll tax. Relatively few taxpayers use HSAs, perhaps because of the information barriers and perceived transactions costs required to set up an account.

Second, the preference for EHI over OOPS is also reduced for employees whose employer has established a flexible health spending account (FSA) as part of a so-called cafeteria plan. Employees can elect to have a portion of what otherwise would be taxable wages put into an FSA. Employees can use funds in the account to pay for, or get reimbursed for, OOPS. Amounts placed in the account and used to pay for OOPS are exempt from income and payroll taxes. However, FSAs are subject to numerous restrictions, the most important of which is a mandatory “use it or lose it” provision that requires employees to spend their account’s funds during the tax year or return them to their
employer. As a result, although approximately half of all workers are offered an FSA, only 35% of those offered take it up (Employee Benefits Research Institute 2007; Kaiser Family Foundation 2010).

The tax preference for EHI over OOPS is important because the two are not perfect substitutes. Significantly, EHI, like all insurance, reduces risk but increases moral hazard. At the margin, employees pay only a portion (the copayment and/or deductible) of the cost of services and so may desire services whose value is less than their cost. Insurers attempt to reduce moral hazard through plan limits, preapproval reviews, and deductibles and copayments, but these measures are themselves costly and only partly effective. In the absence of taxes, individuals would balance off the gains from risk sharing with the inefficiencies of moral hazard and decide on the proper ratio of insurance to OOPS. The tax preference for EHI over OOPS changes that trade-off to favor insured expenditures over OOPS.

The tax preference for EHI thus increases consumption of medical care for two reasons. It lowers the cost of health services relative to all other goods, and it leads people into low-deductible, low-copayment health plans, which increases the amount of moral hazard.

II. The Tax Preference for EHI: Prior Research

A large body of work has sought to quantify the effect of the tax preference. One set of studies (e.g., Jack and Sheiner 1997; Gruber 2002; Cogan, Hubbard, and Kessler 2011a) uses theoretical models to simulate the effect of tax policy based on existing empirical estimates of structural parameters such as the price elasticity of demand for health services. Other work (e.g., Gruber and Lettau 2004; Smart and Stabile 2005; Cogan, Hubbard, and Kessler 2011b) estimates the effect of the tax preference empirically. All of these studies conclude that repeal of the tax preference would cause health spending to drop significantly.9

None of this, however, proves that the tax preference is inefficient. Because markets for health services suffer from numerous imperfections and market failures (e.g., Arrow 1963), the additional consumption induced by the tax preference may or may not improve social welfare.

In theory, there are three possible efficiency rationales for the tax preference: the superiority of the employer group as an aggregation mechanism for the purchasing of insurance, the existence of negative externalities to being uninsured or underinsured, and cognitive errors on the part of individuals that leads them to consume too little care. In
practice, however, there is little evidence that a tax subsidy is an efficient or necessary response to any of these factors.

First, as Pauly and Herring (1999) observe, employers would likely remain a source of pooling, even in the absence of the tax preference. Most important, independent of tax law, employer groups are likely to enjoy a strong administrative cost advantage. In addition, the difference in pooling between employer groups and the individual market is smaller than a simple model would predict. Even lightly regulated individual-insurance markets rate risk imperfectly, and employers implicitly adjust wages to accomplish some degree of risk rating within the firm. Taken together, these factors limit the extent to which the institution of EHI depends on differential taxation.

Second, there is no evidence that being uninsured or underinsured exerts a negative externality on the privately insured. As a study by researchers at the Urban Institute shows, the cost of the subsidy to EHI overwhelms any increase in burden attributable to “cost shifting” from the uninsured or underinsured (Hadley et al. 2008).

Third, the tax preference for EHI could be efficient if informational barriers or cognitive errors led individuals to spend too little on health care, and reducing the cost of that care corrected for those barriers or errors. A necessary but not sufficient condition for that to be true would be that reduced prices at point of service lead to better health outcomes. The condition would not be sufficient because we would expect those who benefit from subsidies to have higher welfare (here, better health outcomes); the inefficiency would stem from the fact that that improvement was valued at less than cost. However, as the RAND Health Insurance Experiment showed (Newhouse and the Insurance Experiment Group 1993), reducing the cost of medical care increased demand but produced virtually no improvement in health outcomes. Gruber (2006) analyzes the research (and subsequent studies) spawned by that study and reaches a similar conclusion.

The fact that it is difficult to find a generalized benefit to subsidizing health insurance is strong evidence that the subsidy is inefficient, and that is in fact the conclusion reached by essentially all health policy analysts (see, e.g., Feldstein and Friedman 1977; Jack and Sheiner 1997; Furman 2008; Pauly 2009).

One way to conceptualize the policy analysis surrounding the EHI tax preference is to imagine its abolition and then to ask how we might use the roughly $250 billion we spend on the preference to subsidize medical care. It is difficult to think of a social welfare function that would be maximized by using these funds to recreate the tax preference.
III. Politics versus Policy: Alternatives to Repeal of the Tax Preference

Despite the evidence that the tax preference is an economically inefficient approach to health policy, politics have prevented significant reform. Table 1, reproduced from Joint Committee on Taxation (2008), shows why: the benefits of the exclusion are widely distributed, with the vast majority of taxpayers enjoying a significant tax reduction from it. Although the recently passed Patient Protection and Affordable Care Act of 2010 effectively ends the unlimited tax exclusion—starting in 2018, the new law proposes to establish an excise tax of 40% on high-cost health plans—the ultimate impact of the law is still uncertain. As currently written, the law provides numerous exceptions to the excise tax, and actuaries in the industry are already predicting that it may be modified before it takes effect.14

An alternative approach to removing the tax bias that favors health insurance over out-of-pocket payments is to exclude out-of-pocket payments from either income or payroll taxation or both. This strategy is discussed by Cogan et al. (2011b), who examine the consequences of allowing taxpayers to deduct their OOPS. Their analysis examines the effect of eliminating the income but not payroll tax preference of EHI over OOPS.

### Table 1

<table>
<thead>
<tr>
<th>Adjusted Gross Income</th>
<th>Total Tax Expenditure ($ Millions)</th>
<th>Income Tax Expenditure ($ Millions)</th>
<th>FICA Tax Expenditure ($ Millions)</th>
<th>Total Tax Returns (Thousands)</th>
<th>Average Expenditure per Return (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 10,000</td>
<td>4,185</td>
<td>-481</td>
<td>4,666</td>
<td>6,692</td>
<td>625</td>
</tr>
<tr>
<td>10,000–29,999</td>
<td>38,860</td>
<td>20,095</td>
<td>18,765</td>
<td>19,355</td>
<td>2,008</td>
</tr>
<tr>
<td>30,000–49,999</td>
<td>45,696</td>
<td>24,451</td>
<td>21,245</td>
<td>18,261</td>
<td>2,502</td>
</tr>
<tr>
<td>50,000–74,999</td>
<td>49,075</td>
<td>26,471</td>
<td>22,604</td>
<td>15,798</td>
<td>3,106</td>
</tr>
<tr>
<td>75,000–99,999</td>
<td>39,713</td>
<td>24,343</td>
<td>15,370</td>
<td>9,998</td>
<td>3,972</td>
</tr>
<tr>
<td>100,000–199,999</td>
<td>51,984</td>
<td>36,999</td>
<td>14,985</td>
<td>11,543</td>
<td>4,504</td>
</tr>
<tr>
<td>200,000–499,999</td>
<td>13,104</td>
<td>10,685</td>
<td>2,419</td>
<td>2,828</td>
<td>4,634</td>
</tr>
<tr>
<td>&gt; 500,000</td>
<td>3,455</td>
<td>2,785</td>
<td>670</td>
<td>788</td>
<td>4,385</td>
</tr>
<tr>
<td>Total</td>
<td>246,072</td>
<td>145,348</td>
<td>100,724</td>
<td>85,263</td>
<td>2,886</td>
</tr>
</tbody>
</table>

Source: Joint Committee on Taxation (2008), table 2; US Department of the Treasury (2010b).

Note: Negative amounts reflect the fact that the exclusion reduces earned income for purposes of the earned income credit, resulting in a decrease in refundable credits for some recipients.
As Cogan et al. (2011b) show, the deduction for OOPS would have two opposing effects on the demand for medical services. It would reduce demand by removing the tax incentive that keeps employees in insurance plans subject to moral hazard. However, expanding deductibility also would increase demand by reducing the cost of health services overall (through the additional subsidy for OOPS) as opposed to other goods and services.

Their key result is that the first effect would dominate the second. Using a midpoint of elasticity estimates, they estimate that their proposal would reduce private health care expenditures by 6.2%, or $63 billion in 2010 (see Cogan et al. 2011b, chap. 3). This reduction occurs because the bulk of health spending is now inside health insurance plans, so that the gain from reducing moral hazard within those plans by encouraging employees to increase OOPS outweighs the increase in OOPS from individuals who would in any event pay for medical expenses with OOPS.

Even under very conservative assumptions, the deduction for OOPS would improve welfare. According to Cogan et al., the budget cost of the deduction would be $7 billion in 2010.\(^\text{15}\) Of course, this is just a transfer; to translate the budget cost into welfare terms requires information about the cost of public funds. Even if it cost $2 to raise $1 in taxes—an efficiency cost of 100%—full deductibility would be welfare enhancing as long as consumers valued the incremental $63 billion in avoided health spending at less than $56 billion.

IV. Exploring Deductibility of Expected Rather Than Actual OOPS

On the margin, however, full deductibility as analyzed by Cogan et al. (2011b) still gives a tax preference to OOPS over all other goods and services. Although the policy, on net, reduces health spending and improves welfare, a policy that avoided this distortion would be welfare superior, all else equal. A second drawback of the full-deductibility idea is the increased administration costs that the policy imposes on taxpayers. Taxpayers would have to track and report their OOPS. This change would require (at a minimum) retaining year-end receipts from health care providers and pharmacies. It might also require taxpayers and others (such as pharmacies and the Internal Revenue Service [IRS]) to devote resources to determining what constitutes a deductible medical expense. With conventional estimates of the value of taxpayer time, every additional hour devoted to this task by the average taxpayer would impose an annual welfare cost of approximately $300 million.\(^\text{16}\)
A simple modification to the full-deductibility idea would address these downsides. Instead of allowing individuals to deduct their actual OOPS, individuals could be given a deduction equal to their expected OOPS. This change would render the deduction independent of the individual’s actual choice of health spending, thereby eliminating the distortive effects of deductibility on the extensive margin. The change would also obviate the need for record keeping of OOPS and the associated filing costs.

A deduction for expected OOPS would also be simple to implement in practice. Insurance plans are typically characterized by three parameters: their premium $P$, their actuarial value $AV$, and their load $L$. The $AV$ is the share of an individual’s total health spending that a plan covers assuming a standardized population (e.g., the country’s average age, gender, and health status). Dorn (2009) shows that plans’ actuarial values can be easily calculated by the IRS. The load $L$ is the proportion of the health plan’s spending on health services that is devoted to administrative costs; it is inversely related to the medical loss ratio (which all plans must begin to report as a result of the Patient Protection and Affordable Care Act of 2010).

The expected OOPS deduction, in turn, can be easily calculated from these three parameters. If the expected health spending of an individual with a given policy is equal to $S$, then the policy’s expected OOPS are $(1 - AV) \times S$. Thus, because premiums $P$ are identically

$$P = (1 + L) \times S \times AV,$$

expected OOPS are

$$E(OOPS) = P \times (1 - AV)/(1 + L) \times AV.$$ 

As individuals reduce the actuarial value of their EHI, expected OOPS increase and individuals get a deduction equal to those expected OOPS.

Even with a deduction for expected OOPS, most individuals will continue to find it in their interest to use health insurance plans to administer their health spending rather than attempt to do it on their own. In doing so, individuals will continue to take advantage of the insurer’s better bargaining ability and greater quality control. For this reason, we would expect the increase in OOPS to come in the form of greater cost sharing for services purchased by the plan rather than of the shifting of purchasing to outside the plan. Higher copayments would reduce moral hazard, but because the services would still be provided
through the health plan, the prices paid to service providers could still be set by the insurer’s bargaining. Because the intent of the change is to encourage employees to switch out of inefficient EHI, one would expect the change to be limited to employees with EHI, or at least with health insurance. The budget cost of the policy would be lower, and incentives for insurance protection for catastrophic illness would be greater. However, an argument could be made to expand the proposal to all individuals.17

The value of the expected deduction could be included on Form W-2. Employees or their preparers would have to transcribe this number onto their annual returns. Employees using e-filing programs with participating employers might be able to have this figure automatically populate the appropriate line on their return.

This modification shares with the policy analyzed in Cogan et al. (2011b) a reduced distortion at the margin between EHI and OOPS. In Cogan et al.’s idea, OOPS are deductible, eliminating the income (but not payroll) tax advantages of OOPS and allowing taxpayers to substitute OOPS for insurance made costly because of moral hazard. With the modification here, the same effect is achieved by giving taxpayers a deduction equal to expected OOPS. But because the taxpayer’s decision to switch out of inefficient insurance is made on an ex ante basis, the fact that the payoff is based on expected rather than actual OOPS should not matter very much. (We discuss below cases in which ex ante and ex post setups pose different incentives.)

In contrast to the policy analyzed in Cogan et al. (2011b), this modification does not reduce the cost of OOPS relative to other items of current and future consumption. An employee who chooses a (presumably more efficient) level of EHI receives a deduction based on expected rather than actual OOPS. After the level of EHI is chosen, the OOPS deduction is fixed. There is no incentive to substitute OOPS for any other expenditure.

In addition, because the deduction is based on expected rather than actual expenses, taxpayers need not keep track of and document OOPS, avoiding additional record keeping and simplifying present law. As we noted, taxpayers are now able to deduct actual OOPS to the extent the OOPS exceed 7.5% (to become 10%) of adjusted gross income. Taxpayers who expected to be over that figure must track and document OOPS. With ex ante deductibility, that record keeping would no longer be necessary. In 2008, approximately 10,155,000 taxpayers itemized medical expenses (U.S. Treasury 2010a, table 2.1-2008). Still other taxpayers presumably began keeping track of medical expenses, only to
abandon the effort when it became apparent that they would not reach the 7.5% or 10% threshold. The elimination of the burden of record keeping and itemization for this population could offset any net filing burden imposed by this proposal.

A. Effect on Welfare of Holders of EHI

The main impact of allowing deductibility for expected OOPS is to make EHI holders better off relative to the policy analyzed by Cogan et al. (2011b). There are two opposing effects. On the one hand, moving from an ex post to an ex ante deduction makes EHI holders better off. Both ex ante and ex post deductions of OOPS give EHI holders the incentive to substitute away from inefficient EHI in return for an amount equal to the value of their increased OOPS deduction. With ex post treatment, employees must actually spend money on OOPS in order to get that value. With ex ante treatment, employees may spend that money on OOPS. They can also choose to spend the tax savings on other goods or services—in effect, monetizing some portion of the value of the EHI income tax exclusion.

On the other hand, giving employees the value of expected rather than actual OOPS leaves EHI holders exposed to more risk. Under ex post deductibility, an individual who had unusually poor health would spend more on OOPS and receive a larger deduction. Under ex ante deductibility, the value of the deduction is fixed.

However, the extra risk sharing is unlikely to be significant because the primary means by which an employee would reduce EHI is to stay within an employer plan but have a higher copayment. In the event of significant health expenses, copayments are generally reduced. As a result, as health worsens, OOPS will likely increase more slowly than total health costs. So in trading a deduction for actual OOPS for the expected value of that deduction, the employee loses risk sharing only modestly.

Nonetheless, particular individuals may be worse off under ex ante deductibility. Someone with poor health or a large family will have higher OOPS than his or her policy’s \( AV \) would predict. As a result, the deduction for expected OOPS will be less attractive. The significance of this difference again will be limited by the fact, noted above, that copayments are generally reduced to zero for significant illness. This effect limits the difference between OOPS predicted (and offset with a deduction) by the standardized population in this proposal and the expected or actual OOPS experienced by this subset of the population.
The effect of deductibility of expected OOPS on employees with lower than expected health costs is analytically similar. For such employees, the deduction will overcompensate employees for reducing EHI by increasing copayments. This effect, however, will be moderated by the fact that copayments are reduced for serious medical conditions. As a result, the variance in health costs due to the presence or absence of these conditions may have only a modest effect on OOPS.

B. Effect on Health Care Spending

Because ex ante deductibility of OOPS reduces both the amount of EHI and the amount of OOPS relative to ex post deductibility, it reduces the amount spent on medical services by comparison. This additional reduction is equal to the amount of spending avoided by eliminating the distortive effects of deductibility on the extensive margin. If the (OOPS-weighted) average marginal income tax rate is equal to \( t \) and the actuarial value of insurance policies with ex post deductibility of OOPS is equal to \( AV^* \), then the increase in the overall price of health care in our proposal relative to that of Cogan et al. (2011b) is approximately equal to \( (1 - AV^*) \times t \). If the price elasticity of demand for health services is equal to \( e \), then the additional reduction in spending is approximately equal to \( (1 - AV^*) \times e \times t \).

On the basis of the parameters underlying Cogan et al.’s (2011b) calculations of consequences of tax policy changes with ex post deductibility of OOPS, this shift implies an additional reduction in health spending of 1%–3.5% (with a midpoint of 2.3%). Added to the reduction of health care expenditures of 6.2% estimated by Cogan et al., this change results in a total expected reduction of 8.5% or about $86 billion a year in 2010 dollars. Put another way, eliminating the subsidy to actual OOPS in Cogan et al. makes full deductibility around one-third more effective at reducing health spending (%/63 = 0.37).

C. Effect on Government Revenues

As Cogan et al. (2011b) explain, deductibility has two effects on government revenues: a revenue loss from making previous taxable spending deductible and a revenue gain from the shift away from previously deductible spending. Because ex ante deductibility would create the same revenue loss as ex post deductibility but a larger revenue gain, it would have a lower budget cost.

The additional revenue gain from ex ante deductibility consists of the sum of two components: one from a reduction in overall health
spending and one from a shift in how medical care is purchased. The first component consists of the extra income and payroll taxes that the government would collect on the EHI spending now paid as wages. Because ex ante deductibility results in an additional reduction in spending of 2.3% (or $23 billion in 2010 dollars), this change amounts to an additional $8 billion in revenue.20

The second component consists of the extra payroll taxes that the government would collect on the spending on EHI that is redirected to out-of-pocket spending. Because ex ante deductibility results in a smaller increase in out-of-pocket spending than ex post deductibility, the second component is negative. (This observation is not surprising because the primary rationale for substituting ex ante for ex post deductibility is the former’s reduced impact on out-of-pocket spending.) We calculate that ex ante deductibility will result in $17 billion being redirected from EHI to out-of-pocket spending (2010 dollars), as compared to $62 billion for ex post deductibility. This shift therefore leads to a revenue loss of $6 billion, which implies that ex ante deductibility would have a budget cost of $2 billion (= $8 billion – $6 billion) less than ex post deductibility. In total, then, ex ante deductibility leads to a revenue loss of $5 billion, as compared to $7 billion for ex post deductibility.

V. Conclusion

The tax preference for EHI contributes to the very high level of health spending in the United States. Although it is impossible to determine definitively whether the additional spending due to the preference is “worth it” in terms of the benefits to health that it provides, virtually all health policy analysts are skeptical that it is. Yet, despite the overwhelming policy arguments for repeal of the preference, political prospects for such a change do not appear overwhelming.

In this paper, we consider the consequences for health spending of an alternative approach to ending the tax bias toward EHI: extending the tax subsidy to all ways of purchasing insurance and to expected OOPS. This consideration builds on the analysis of Cogan et al. (2011b), who examine effects on health care spending of a related idea extending tax deductibility to actual OOPS. These ideas would encourage holders of EHI to shift to higher-copayment health insurance by offering them the incentive of a tax benefit on their OOPS.

The change we analyze makes the size of the deduction independent of a taxpayer’s actual health spending, thereby eliminating distortive effects of making actual OOPS deductible. In addition, by basing the
deduction on easily verifiable features of insurance policies rather than on policyholders’ actual OOPS, it reduces filing costs and the potential for abuse.

Such ideas are second-best solutions for reducing health care expenditures. Nonetheless, such ideas would almost surely be welfare improving, even if the cost of public funds is high. We estimate that a tax reform including a deduction for OOPS would reduce private health spending by $86 billion in 2010 at a budget cost of approximately $5 billion. Even if the cost of raising $1 of tax revenues were $2, such a change would make consumers better off as long as they valued the incremental spending due to the tax preference for EHI at less than 94 cents on the dollar ($86 – 5/86).

Our analysis can be extended to ask how large of a tax preference for expected OOPS individuals with EHI would have to be offered in order to induce them to purchase the optimal insurance policy, despite the income and payroll tax preference for EHI. According to Cogan et al. (2007, 2011a, 2011b), repeal of the preference for EHI—that is, a shift to the optimal insurance policy—would result in a decline in private health spending of 13.4%–46.9% (with a midpoint of 30.2%), depending on the magnitude of the price elasticity of demand for health services. A 30.2% decline in private health spending could be achieved by giving expected OOPS an average tax preference of 43%. Achieving this effect in perspective would require a preference for expected OOPS approximately triple the (out-of-pocket expense-weighted) average income tax rate or 160% of the (out-of-pocket expense-weighted) average income plus payroll tax rate ($3 \approx 43/14; 1.6 \approx 43/[14 + 13])

These ideas may also be considered in the context of the Patient Protection and Affordable Care Act. Although the act contains numerous provisions designed to expand coverage, it does not fundamentally alter the incentives of most existing holders of employer-sponsored insurance to consume excessive amounts of medical care. Offering an additional deduction to individuals with employer-provided insurance effectively to “buy them out” of their tax-induced wasteful behavior would enhance cost control.

Endnotes

We are grateful to Jeff Brown and conference participants for helpful comments and suggestions. For acknowledgments, sources of research support, and disclosure of the authors’ material financial relationships, if any, please see http://www.nber.org/chapters/c12561.ack.

1. The estimate for 2007 is the most recent estimate that assesses the combined impact on payroll and income tax revenues of the preference. Other estimates of income tax costs alone project that those costs have risen and will continue to rise. For example, a recent
Joint Committee on Taxation estimate assumes that the income tax cost of the exclusion will rise by approximately 40% from 2009 to 2013 (Joint Committee on Taxation 2010, 41).

2. The Joint Committee on Taxation estimates the 2010 income tax cost of the EHI exemption as $106.6 billion, while the cost of the mortgage interest deduction is estimated at $103.7 billion. However, the EHI exclusion also reduces payroll tax liability. The cost of the exclusion for contributions to employer-provided pensions is approximately $80 billion (Joint Committee on Taxation 2010).

3. For purposes of the alternative minimum tax, the threshold is 10%. Starting in 2013, the threshold will be 10% for all itemizers (IRC sec. 56).

4. The EHI preference affects plan choice in two ways. First, 52% of covered workers in 2010 were offered a choice of plans by their employer (Kaiser Family Foundation 2010, exhibit 4.2). Second, even employers who do not offer a choice of plans respond to their workers’ preferences in determining the amount of their plan’s cost sharing (Bundorf 2002).

5. See IRC sec. 223. The required deductible is $1,200 for an individual and $2,400 for a family in 2011.

6. HSA contributions made by an employer are also excludable from payroll taxation. Withdrawals not used for health expenditures are included in gross income and are subject to a 20% penalty. However, this penalty does not apply to withdrawals after retirement. For that reason, HSAs can also serve as vehicles for retirement savings.

7. The government does not provide annual data on the number of taxpayers using HSAs. However, the estimate of a tax cost of $900 million for 2010 (Joint Committee on Taxation 2010) suggests that usage is relatively limited. One industry group estimates that in 2009, approximately 10 million taxpayers had plans that made them eligible for an HSA. However, not all of these taxpayers established accounts, and many accounts had little or no contributions or withdrawals. The average contribution in active plans was about $3,105, while the average withdrawal in those plans was $1,850 (AHIP Center for Policy and Research 2010). At a marginal income tax rate of 30%, these data suggest that around 1 million taxpayers make significant use of HSAs and that the plans are used to save as well as pay for OOPS.

8. In addition, for taxable years beginning after 2012, there is a $2,500 annual limit on this tax preference; see IRC sec. 125. Employers can also establish Health Reimbursement Accounts (HRAs) for their employees. Like FSAs, HRAs are owned by the employer. Unlike FSAs, HRAs must be funded solely by the employer and can be rolled over from year to year; see IRC sec. 105.

9. For example, Gruber (2002, table 5) reports that removing all tax subsidies for health insurance would result in a 35.4% decline in health spending among individuals who are offered insurance by their employer. Cogan et al. (2011b) estimate the effect on health spending of the tax preference for insurance using data from the Medical Expenditure Panel Surveys from 1996 through 2005. The authors exploit the fact that Social Security payroll taxes are levied only on earnings below a statutory threshold to identify the tax preference’s impact. Because EHI premiums are excluded from Social Security payroll taxes, workers who earn just below the Social Security tax threshold receive a larger tax preference for health insurance than workers who earn just above it. Cogan et al. find a significant effect of the tax preference. Depending on the specification of the model, the authors estimate that repealing the tax preference would reduce health spending by individuals with employer-sponsored insurance by between 26% and 33%.

10. More recent simulations of this policy by the Congressional Budget Office confirm this view; see Orszag (2008).

11. Reviewing the evidence, Cogan, Hubbard, and Kessler (2012) conclude that cost shifting from the uninsured was less than 1% of private insurance premiums in 2008.

12. Although certain low-income and vulnerable subpopulations in the RAND experiment did experience some health benefits from more generous insurance coverage, these populations are unlikely to benefit much from a subsidy to EHI. However, see Liebman and Zeckhauser (2008) for an opposing view.

13. A new study that compares the effects on health and well-being of a randomized expansion of Oregon’s Medicaid program may lead to a different conclusion. Finkelstein and the Oregon Health Study Group (2011) find that provision of health insurance leads to improvements in self-reported measures of health outcomes. However, as the study itself observes, because it has self-reported measures available only as of 2011, the results
may reflect improvements in objective, physical health, but that remains an open issue to be examined in future work.


15. The budget cost is surprisingly small because the government would actually save money when employees substitute OOPS for EHI. The reason for that is that OOPS are income tax favored while EHI benefits from both income and payroll exclusion. In addition, because OOPS are not subject to moral hazard, the substitution reduces total medical expenditures and therefore reduces the total income tax subsidy. However, their proposal would make all OOPS deductible, including OOPS that are not now deductible and any increase in that portion of OOPS. The second effect would dominate the first.

16. There were approximately 144 million individual tax returns filed in 2009 (US Department of the Treasury 2010b). Guyton et al. (2005) use an imputed value of taxpayer time of $20 an hour to calculate the 2000 tax burden.

17. Extending the deduction for expected OOPS for individuals who do not have EHI or any form of health insurance could be advanced on equity grounds. It would also serve an efficiency goal to the extent that it eliminated the incentive for OOPS over other items of consumption for individuals who were over the 7.5% (to become 10%) threshold.

18. The decline is exactly equal to $(1 - \lambda \eta) \times \ell$, where $\ell$ is the percentage change in the after-tax price of OOPS due to the extension of the tax deduction, evaluated at the average of the after-tax price before and after the OOPS deduction. Given that $t = 0.14$, $\lambda = 0.14/[(1 + 0.86)/2] = 0.15$.

19. Cogan et al. use $\lambda = 0.67, \ell = 0.15$, and $e = [0.2, 0.7]$. Assuming a health spending weighted average marginal income tax rate of 0.19 and an average payroll tax rate of 0.13.

20. We know from Cogan et al. (2007, 2011b) that the effect on health spending of any arbitrary tax subsidy to out-of-pocket spending is $e \times (1 - \eta \ell) \times \ell$, where $e$ is the price elasticity of demand for health services, $\eta$ is the elasticity of the coinsurance rate with respect to the tax preference for insured spending, and $\ell$ is the percentage change in the after-tax price of out-of-pocket spending from the tax subsidy. Cogan et al. calculate the decline in spending assuming $\eta = 1.9$ for $\ell = -0.15$, which corresponds to granting out-of-pocket spending deductibility from the income tax but not the payroll tax. However, one can also calculate the out-of-pocket spending preference that would achieve an arbitrary health spending reduction, given $e$ and $\eta$. That is, without regard to an EHI holder’s marginal tax rate, how large of a tax subsidy would we have to grant to achieve an arbitrary reduction in health spending? In particular, one can determine the out-of-pocket spending tax subsidy that would be equivalent in spending terms to full repeal of the tax preference. For example, at $e(p) = -0.45$, a 30.2% decline in spending could be achieved by the OOPS subsidy $\lambda \eta \ell$ that is the solution to

$$-0.302 = -0.45 \times -0.9 \times \left[-2\lambda \eta \ell/(2 - \lambda \eta)\right],$$

or $\lambda \eta \ell = 0.543$, where $2\lambda \eta \ell/(2 - \lambda \eta)$ is the percentage change in the posttax price of out-of-pocket spending (evaluated at the average price), starting from a price of 1 and ending at a price of $1 - \lambda \eta$. Moreover, because the effect on spending of full repeal of the tax preference is proportional to $e$ (see Cogan et al. 2007, 2011b), the equation above implies that the $\lambda \eta \ell$ that would be equivalent to full repeal is invariant to $e$. Thus, for any $e$, fully undoing the tax preference for insurance requires the government to grant OOPS a subsidy approximately twice as great as the (27-percentage-point) income and payroll tax exclusion. This estimate is consistent with that of Jack and Sheiner (1997). How would this analysis change if instead of subsidizing individuals’ actual OOPS one subsidized their expected OOPS? As discussed above, the additional decline in health spending from subsidizing expected rather than actual OOPS, over and above the original effect estimated by Cogan et al., is $(1 - \lambda \eta) \times \ell \times e$. Thus, the expected out-of-pocket spending subsidy that would be equivalent to repeal of the tax subsidy at $e(p) = -0.45$ is the solution to

$$-0.302 = \{-0.45 \times -0.9 \times \left[-2\lambda \eta \ell/(2 - \lambda \eta)\right]\} + \{0.33 \times [2\lambda \eta \ell/(2 - \lambda \eta)] \times -0.45\}.$$
or $t^* = 0.431$. Because the additional decline in health spending from subsidizing expected rather than actual out-of-pocket spending is also proportional to $e(p)$, the expected out-of-pocket spending tax subsidy is invariant to $e(p)$ just as is the actual subsidy. That is, if the government subsidized expected (rather than actual) OOPS, it would have to subsidize taxpayers at 160% of their (27-percentage-point) income and payroll tax exclusion.

**References**


