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THE STRUCTURE OF THE MODEL

THIS chapter specifies the model to be estimated. Our approach is
organized as follows. Part A is a review of the theory of demand for
factors of production, modified to include optimum choice of utilization
rates in addition to choice of input stocks. The appropriate specification
of input prices is emphasized. The data are time-series observations, and
the received theory of input demand deals with static or long-run
equilibria. Therefore, it is necessary to ‘““dynamize” the model to make it
refer to actual time-series observations, where the assumptions of static
theory are not met. Dynamic considerations are discussed in sections
B, C, and D. In section E the model is compared with others in the
literature, and is seen to be a generalization of them.

A. INPUT DEMAND FUNCTIONS

Assume a continuous production function
Q. <F(¥Y, Y,..., ¥,1), @n

where Q is output and the ¥;’s are inputs and ¢ is time, capturing technical
progress. Assume F, < 0, F;; < 0 and [F,,] negative definite. It is also
assumed that, for each i,

lim F; = 0 and lim F, = 0,

Y0 P>
so that interior solutions are assured and all inputs are actually employed.

Proper specification of inputs in 2.1 must be in terms of service flows per

unit of time, since output measurement is in terms of flows. Clearly, the
correct flow dimension of each input is its rate of utilization per unit of
stock. Hence, one possibility would be to assume that rates of utilization
are constant and simply specify stocks in (2.1). Though such an assumption
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14 The Structure of the Model

might be warranted in cross-sectional studies, it is evidently untenable
in time series. Another possibility, and the one most commonly used, is
to specify inputs in terms of the product of stock and rate of utilization,
that is, in terms of total service flows. This amounts to using total ‘“man-
hours” in the case of labor inputs and total “machine hours” for capital
inputs. Such an assumption would be correct only if marginal contribu-
tions to output of stock and rates of utilization were independent of each
other. We see no reason to impose such severe restrictions at the outset
and, therefore, allow both utilization rates and input stocks to be treated as
separate objects of choice by the firm. Indeed, later evidence will show
output elasticities to be considerably different for utilization and stock
dimensions of inputs.
The inputs in (2.1) are defined as follows:

Y, stock of production labor
Y, utilization rate of production labor
Y, capital stock

Y, rate of capital services per unit of stock
Y intermediate product

Y stock of nonproduction labor

Y, utilization rate of nonproduction labor

Assigning a utilization rate to capital in the form of intermediate goods
(Y;) would be meaningless.

The distinction between input stocks and rates of utilization per unit of
stock is made in order to capture intensity of use of inputs as well as their
over-all quantity. In one sense, this is similar to a point, recognized by
many nineteenth century economists in discussing agricultural production,
to the effect that there exists both an “extensive” and an “intensive”
margin for certain inputs. Extending that concept to manufacturing
suggests that utilization rates are, in part, inversely related to the fraction
of the production period during which inputs are “idle.” In the case of
capital stock, this concept has been studied by Marris [1964] and more
formally by Lucas [1970] and is related to the amount of shift work
employed over the course of a normal production day. Thus, if a normal
shift is eight hours, “full” utilization of capital would consist of three
shifts per day. If only two shifts were employed, capital would be idle one-
third of the time, and so on. The concept of “labor hoarding,” so often
used in explaining short-run employment variation, can be interpreted
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as an attempt to apply to labor concepts similar to those used for capital
stock. Alchian [1970] has extended this concept to a very general class of
phenomena associated with “nonfull” employment of resources.

In the case of capital, hours per machine is an appropriate measure to
use, whereas in the case of labor, hours of work per day and the amount of
“overtime” are relevant. At least one other dimension to the concept of
utilization should be noted, however, and that concerns intensity of use
within the period of employment, or the pace of work activity within each
working hour. If production is thought of as a general sequence of *““pro-
cessing” intermediate goods arising at some other points in the process,
the flow of such goods may be accelerated or slowed down. Thus, machines
may be “‘run faster” and employees induced to “work harder.” That such
variations are possible is indicated by the existence of piece-rate systems of
labor payment, in which income incentives affect output per worker.
Finally, all this is very much related to Stigler’s important point that, in
the face of output fluctuations, firms may opt for more “flexible” pro-
duction arrangements as an alternative to perfect production smoothing
when inventory holding costs are nonzero. Thus, inventories of inputs are
substitutes for inventories of output. Indeed, they may be the only
alternative when output consists of services and output storage is not
possible.

In any event, variations in utilization rates serve important buffer
functions when inventories of input stocks are held. The importance of
this point cannot be overemphasized. We believe we have convincing
empirical evidence of the crucial role of the utilization rate variations
underlying time-series analysis of production and factor demand. Of course,
in the empirical estimates presented below, utilization rates are approx-
imated, since the appropriate data are unavailable. Discussion of com-
promises dictated by data limitations are reserved for Chapter 3. For now,
we treat the problem in a more general framework and as if the ideal data
were available. To make the discussion more concrete, utilization rates
are treated as if they are adequately represented by some concept of
hours per unit of stock. However, it should be borne in mind that these
concepts are really multidimensional.

Consider the problem of minimizing costs, given some level of output
constrained by (2.1). At this stage, we do not distinguish between cases
where the given output constraint is in fact optimal and those where it is
not. Of course, desired output depends on costs of production, or the
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parameters that influence choice of inputs. For the present, we choose to
ignore the simultaneity and concentrate on least cost factor combinations
whatever the level of output. This focuses discussion on factor substitution.
Other considerations will be discussed later.

i. Specification of Input Prices

What are the costs of inputs? The first and most important costs of labor
are direct rental charges or wage payments. The form of wage payment
differs for different classes of labor. There are fixed price contracts, such as
annual salary, which, in the first instance at least, are independent of
intensity of work. There also are incentive contracts (piece rates) that are
geared to some measure of productivity. Finally, there are straight- and
overtime wage rates per hour of work.

First consider production labor. In this case the method of payment
by annual salary can be ignored. Assume that intensity of work can be very
well represented by hours of work per man and that every incentive
type of contract can be converted to an equivalent hourly rate contract
by measuring labor hours in equivalent “efficiency’ units.! Let all hourly
wage costs per production worker be denoted by w,. Then if Y, is taken
to be hours of work per production worker and ¥; the number of produc-
tion workers, total rental costs of labor services are given by (Y,Y,)w,,
where Y, ¥, is total man-hours. Notice that w, conceptually includes all
costs by the firm that are geared to man-hours, including all supplements
and the dollar equivalents of fringe benefits that are awarded on that basis
(Soligo [1966]). Also, most labor market contracts have provisions for
differential rates of pay depending on the intensity of work or incidence of
hours. Overtime and holiday work, for example, are paid at different
rates from ‘‘straight time.” Therefore, w, is a function of Y,. To facilitate
discussion, the function w,(Y,) is assumed smooth and differentiable,
although typically that is not the case.

The second types of labor payment to be distinguished are those that
depend on stocks or numbers of employees and are independent of total
man-hour effort. Thus, market searching and firm-specific training of
employees are not costless to firms, but involve considerable expense in

1. Of course, the form of contracts is not arbitrary and should be considered endo-
genous from a broader perspective. In particular, piece-rate systems serve as risk-sharing
devices when information is imperfect. Qur purpose in making this assumption is frankly
empirical, since requisite data on various payment schemes are unavailable.
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the form of personnel departments, employment of personnel to train new
workers, and forgone output incurred during the search and training
periods. In addition, some types of fringe benefits and indirect labor
costs are not wholly geared to total man-hours, but depend on whether or
not a worker appears on the payroll of the firm. Some types of unemploy-
ment compensation expenses are reckoned in this way, as are employer
contributions to certain medical and other insurance schemes. Let all
such costs on a per production employee basis be denoted by V. Then
V, must be converted from its stock concept to an annual flow. This is
accomplished by defining the amortized or flow cost per employee as
s, = V,(r + g,), where r is the rate of interest and g, is 2 measure of
turnover of production workers (Rosen [1968], [1963]). Thus 7V, is the
annual forgone income stream derived from investing resources in workers
at the time of their hire, rather than investing them in other assets (with
marginal rates of return equal to 7). The annual cost of replacing em-
ployees who retire or quit atrate g, per yearis ¢,V in order that the number
of employees be kept constant. The rate ¢, could be affected by payments
that would be made rationally by the firm to reduce turnover, though such
considerations are neglected here. Annual indirect payments associated
with labor stocks are given by s5,Y;. Therefore, total production labor pay-
ments are (Y, Y,)w, + 5,¥;.

Conceptually similar issues apply to nonproduction labor. We expect
user cost, s, for this group to exceed that of production workers because
training and hiring costs are greater. Therefore, total payments to
nonproduction workers are (Y Y, )w, + 5,Y,, where w, is the wage rate
and s, is user cost for this type of labor.

Now consider the costs of physical capital services. The firm has a
choice between renting its capital or purchasing it outright. However,
for determining annual costs chargeable to current account or current
operating expenses (the profit and loss statement), proper accounting
should guarantee that expenses for renting are identical to those for
owning, on the principle that true economic costs represent a claim on
current-year resources. These are direct payments if capital is rented, but
are opportunity costs if capital is purchased and owned by the firm. As
with the case of employment costs, capital costs associated with stocks and
due to ownership must be amortized over the lifetime of the capital
goods (Jorgenson [1963]), that is, these costs must be converted into
equivalent annual rentals. Let p, represent the stock cost of capital goods
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and r the cost of capital (as a percentage). Then one portion of the annual
rental is given by 7p,. Ignoring differences between borrowing and lending
rates, this term may be interpreted in either of two equivalent ways.
The firm may have borrowed funds at rate r to finance its purchase of
equipment. Then rp, is the annual interest charge paid on the loans used
to finance the purchase.

On the other hand, it may not have been financed by debt, but by
retained earnings instead. Then 7p, is the opportunity cost of tying up
funds in capital goods rather than in other investments (such as bonds or
other types of capital) with marginal rates of return equal to r (with the
appropriate adjustment for risk). In either case, 7p, represents opportunity
costs. In addition, capital deteriorates. Assume that depreciation occurs in
proportion to the existing stock at geometric rate 8. Then 8p, is the per-
period replacement charge, accountable to current expenses, necessary to
maintain capital intact. In other words, § (X 100) per cent of a machine
dies off per period due to depreciation, and must be counted as a current
operating expense. Finally, for complete consistency in following the con-
cept of opportunity cost, some adjustment must be made in the annual
rental charge for changes in valuation of capital, and is accomplished by
including a term representing percentage capital gains over the period
under consideration. For example, if capital goods prices rise over the
period, the true cost of capital is no longer p, (r + 8), but a number that
is smaller than that by the amount of price increase per unit of capital
(see Jorgenson [1963]). Thus, the net opportunity cost of capital is repre-
sented by 7+3 net of capital gains. In summary, define ¢ as the annual
rental price or user cost of capital. Then

¢ =P}:[("+ 8) "%{I

k

Hence, the stock cost of capital is the unit price times the amount
employed®—¢Y,.

Finally, there are charges associated with variations in the rate of
utilization of capital services. Many of the charges that one would
ordinarily include here are already captured in the labor cost accounting.
For example, insofar as capital is utilized more intensely by operating

2. In the measure actually used in estimation, taxes have been taken into account
(see Chapter 3, section A, below).
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multiple shifts during the period, employment of labor increases and its
costs rise. It is clear that the major costs of changes (other than labor costs)
in the utilization of capital are not direct expenses in the same sense as
hourly payments to workers, but, rather, are already included in ¢,
once it is recognized that the level of utilization affects the rate of de-
preciation of capital. When the pace of production is ‘‘speeded up”
and the degree of ‘““idleness’ falls, many of the capital goods components
have a shorter lifetime (measured in years) and require greater
maintenance expenditures to keep them in operation. Depreciation
depends on the rate of use of an asset as well as time. Therefore, we write
8 = §(Y,) with d8/dY = §' positive and increasing in Y,. For example if
8(Y,) =8y + 8,74, 8, is the component of depreciation due to time and
8, is the component due to use.

Finally, the implicit rental price of inventories can be derived in a
fashion similar to that of physical capital. A proper measure would take
account of the composition of inventories between intermediate products
and raw materials. The rental price of each component includes purchase
price or opportunity (stock) cost, interest and depreciation charges, and a
capital gains adjustment. Let ¢; denote the user cost of total inventories.
Then ¢; is a weighted average of rental prices of each component, where
weights are equal to value shares of each component as a fraction of total
inventory valuation.

ii. The Long-Run Demand Functions

The general problem considered is to minimize costs,
C=w(l\V2) + 511 + wy(YeYy) + 5, Y1 + ¥y + ¢/Y,

subject to the production function Q = F(Yy,...,Y;) and the definitions
of the s and ¢ terms. The solution to this problem yields “long-run”
demand functions for all inputs.

For expository purposes, consider the following specific example.
Assume that F(Y) is Cobb-Douglas, whick is a first-order logarithmic
approximation to any production function.

7
Q=dAJ[(¥)" o> 05
i=1

where the «; are constants and 4 is a function of time, capturing exo-
genous technical change.
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The Lagrangian expression for minimizing cost, subject to the pro-
duction function is

C =w,(V\Y,) + 5,1} + w,(YeY,) + sp Y + Y,
+ ¥, + A(Q = AYHFS ... Y5TS),

Necessary conditions for minimization are

ac Q
E,:=w,,Y2+s,—)\alﬁ=0.
oCc Q , ,  dw
5?; =wa1 —'Aazz + Ylw,,Yz =0; wp=zii.
aC Q
Ei,-a ~—C-—/\a3-Y—3 =0.

. etc.

Eliminating A from these expressions yields the usual optimality conditions:
MFC]/MPl = MFClepz = .0 = MFC,/MP!,,

along with the production function. The marginal factor cost (MFC) of
each input divided by its marginal product (MP) must be equal in all
directions. For labor inputs, this means that marginal production cost
at the extensive margin must equal marginal production cost at the
intensive margin. At the extensive margin for production worker employ-
ment:

MFC, = w,Y, + 5,
and for nonproduction worker employment:

MFCG = w,,Y-, + Sn.

The cost of hiring additional employees (to work at optimum hours) is
the sum of wage payments (w,Y, and w,Y;) plus amortized hiring and
training costs (s, and s5,). At the intensive margin for producuon worker
“hours’’:

e
MFC, = ¥, 2+ Y2<d‘}",)
2

and for nonproduction worker “hours :

_ fo\
MFC, = ¥, | + Y, ( : Y7)_
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The costs of increasing “hours per man” are the wages that must be
paid existing employees to work the additional hour (Y,w, and Yaw,)
at the original wage per hour plus a correction for the fact that wage rates
rise when hours are increased [Y,Y,(dw,/dY,) and Yg¥,(dw,/dY,)].
Marginal factor cost of capital stock (¥;) and intermediate product (¥;)
are simply ¢ and ¢, respectively, while marginal factor cost ¢’ at the
capital-intensive margin is p,Y;(d8/dY,), reflecting the increase in de-
preciation charges on capital stock when utilization is increased. The solu-
tion to the necessary conditions defines input demand functions, which are
log-linear under the Cobb-Douglas assumption and given by the equation
on the next page, where £y, k5, ..., &, are constants, parametric on
(Yy/w,)wp, (Yqfw,)wny @y, @3y...,2;.and A (and therefore effects of
trend via technical change are incorporated in the constants and not
written explicitly in this formula). Also y = «; + 23+ a5+« The factor
demand functions may be written in more compact matrix notation as

Y* =k + £Q + BR, (2.2)

where Y* is a column vector of In Y} terms, £ is a vector of scale effects,
B is a matrix of factor price effects, and R is a vector of factor prices. It is
apparent from the explicit form of (2.2) that the sum of elements in each
row of B is zero. Hence, B is singular, expressing the fact that factor
demand functions are homogeneous of degree zero in prices and that de-
mand functions could be expressed equally as well in terms of price ratios.

There are several interesting properties of these solutions:

a. All long-run scale effects are embedded in stock demand functions
and not in service flows per unit of stock, since output enters only the
demand for stocks (Y, Y3, Y5, and ¥), not the demand for utilization rates
(Yy, Y, and Y,). For example, if output doubles and there are constant
returns to scale then y = a;+a3+a5+ag = 1, and all stock variables
double, but hours per man and utilization of capital remain unchanged.
This is clearly a desirable property of the solutions in view of casual
observations we have made of the data. For example, hours per man and
the amount of shift working have remained reasonably constant on the
average during the post-World War II period of our data (see Chapter 3)
in spite of massive secular changes in real output. Utilization rates display
considerable variation over the sample period, but these are mainly
short-run phenomena, independent of the long-run considerations under
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discussion here. There are increasing, constant, or decreasing returns to
scale in the conventional sense when y = «; + a3+ a4+ 24 is greater than,
equal to, or less than unity.

Scale does not affect utilization rates in this formulation due to the
nature of the assumed production function. Consider the marginal
conditions for ¥, and Y,, MFC,/MFC, = MP,/MP,. On Cobb-Douglas
assumptions we have

w,Yy + s,

= / o) Yn Y 3
e = (e (1Y)

and Y, enters the denominator of both sides and cancels out, leaving an
expression determining Y, independently of all other variables. If the
elasticity of substitution between Y, and Y, were not unity, then it would
not necessarily be true that utilization rate demand functions would be
scale-free. Finally, if F(Y,,..., ¥,) were not homogeneous, scale effects
would not be the same in all stock equations, as they are in the Cobb-
Douglas formulation.

b. Factor prices affect long-run input demand functions in various
ways, which differ from the familiar solutions. Most surprisingly, a relative
increase in hourly wage rates increases demand for labor stocks Y, or
Y. However, it decreases demand for labor utilization, Y, or ¥,. The
reason is that an increase in w relative to s (given output) induces sub-
stitution of stock for utilization, since hours per man become relatively
more expensive than numbers, pushing out the extensive margin relative
to the intensive margin. However, the former effect is not as great as the
latter, since an increase in w reduces total man-hours and increases
capital services, as usual. For example,

3ln(Y1Y2)/alnw=(is——- 1) < 0.
Y

On the other hand, an increase in user costs (s, or s,) reduces demand for
labor stocks, since they become relatively more expensive, and induces
substitution of hours per man and capital stock to maintain output.
Changes in w and s only affect capital (positively), but do not influence
the rate of utilization of capital. Similarly, a relative increase in some
component of ¢ induces substitution of capital utilization for capital stock
and increases employment without affecting hours per man. An increase
in the cost of inventories, ¢z, has a negative own effect, but a positive
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effect on all other stock variables, which does not affect any utilization rate.
Again, these conclusions might be altered slightly in a more general
formulation. _

c. In setting up the problem as one of cost minimization, we con-
centrate on factor substitution and ignore price-induced scale effects.
All relative factor price changes increase marginal cost of output and
eventually lead to decreases in desired output, working toward reductions
in all inputs. Thus, if the latter effect were to be included, an increase in
w, would increase ¥, (labor stock) due to substitution, but decrease it due
to scale. The net change depends on the magnitudes of both effects.

d. Long-run utilization rates are independent of cross-price effects.
Thus, ¢ and ¢; do not enter demand functions for ¥, and Y, (labor utiliza-
tion) nor do w,, w,, $,, and s, affect the demand for ¥, (capital utiliza-
tion). Such independence evidently is due to the assumption of
Cobb-Douglas production functions and is not a general consequence of
the theory for any production function. However, it is not obvious a
priori how the theory predicts signs of cross effects on the usual general
assumptions of production functions.

B. SHORT-RUN ADJUSTMENTS

As noted previously, there is no reason to expect firms to be in long-run
equilibrium at every point in time. Therefore, time-series data reflect
temporary and short-run influences that are not fully captured by any long-
run model. Our brief review of the literature suggests that the most satis-
factory empirical time-series specification postulates lagged adjustment to
some “‘desired” targets, and we adopt a modified version of that hypothesis.

Specify a log-linear adjustment hypothesis (with all variables measured
in natural logarithms):

Yo=Yy = Z] ﬁi;(Yj*t - Yn—1) +epi=1..., 7; (2-3)
j=

where Y} is the desired or target level of input (In ¥;) in period ¢, defined
by (2.2), g, is a random variable, and the B, are fixed adjustment coef-
ficients. On specification (2.3), Y% —Y,,_, is the proportional divergence
between actual and desired input levels at the start of the period under
consideration, or relative “‘excess demand” (or “excess supply” if negative)
for factor Y,. The systematic portion of (2.3)—that is, excluding &,—
asserts that the relative change in each input is proportional to the
divergence between desired and actual levels of all other inputs as well as
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to its own level of excess demand. This specification introduces feedbacks
and interrelated adjustments among all factors of production. For example,
suppose that there exists excess demand for production workers (¥,). If
product demand has increased due to a business cycle expansion, dis-
equilibrium in the stock of production workers is likely to call forth
extraordinary adjustments in factors such as utilization rates that are
more casily altered in the short run. Firms may well find it desirable to
increase both hours of work (overtime) and capital utilization, both of
which can be altered at less cost in the short run, in order to take up the
slack of less than optimal labor stock. The equation system (2.3) is
designed to capture all such effects on a symmetrical and internally
consistent basis. To elaborate on these complex issues we need to consider
~ the conceptual basis of adjustment processes, some qualifications to these
arguments, and the nature of disturbances in the system. These issues
are considered in what follows.

i. Costs of Adjustment: Theoretical Considerations

Note that system (2.3) can be derived for a firm from principles of
wealth maximization across an infinite horizon, when changes in factors
generate ‘“‘costs of adjustment’ (see Lucas [1967]) as mentioned in Chapter
1. Indeed, (2.3) is simply a generalization of the well-known flexible
accelerator, or partial adjustment model, and it is appropriate at this
point to review the principles underlying its derivation.

Consider a competitive firm selling a single good x, producing with a
vector of n inputs y. Let u be a vector of fixed “depreciation” rates, some
of which may be zero; p is product price, and v is a vector of fixed input
prices. Let g(y+p'y) be a function denoting costs of gross changes in
inputs, or costs of adjustment, with dy/d¢ = y. The function g( ) represents
market search and training costs for such inputs as labor, and installation
and “gestation” costs for inputs such as capital. Assume that g(0) = 0, and
8 & > 0 for |74y # 0, and that the derivatives do not change sign
at the origin. Further, assume

limg(z) =0 and Ilimg(z) = cc.

z21—0 2(—®

Then the present value of the firm is

W= lps = vy = 85 + W)™ ah @4)
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where r is the rate of interest. Maximization of W, subject to the initial
conditions, y,, and the production function (2.1), x = F(y), requires
choosing a set of functions y,(¢), describing optimum input levels at each
point in time. Note that its solution requires knowledge of p(¢) and v(t),

the future course of prices over the horizon. Conditions for maximization
of (2.4) are

PR —vi=glr+p, — (&/8)); i=1,2,...,m;
lim ge™" = 0; (2.5)

=

where F; and g; are derivatives of F and g with respect to their ith argu-
ments. The first equation of (2.5) must hold at every point in the planning
horizon and characterizes the optimum functions y;(f). In this formu-
lation, marginal value products are not set equal to factor prices for
maximization. Instead, marginal value products exceed factor prices by an
amount that reflects costs of changing inputs along the optimal path.
The term on the right-hand side of (2.5) is simply the marginal stock cost
of adjusting inputs, amortized to a periodic flow. Note that this term is
not constant along the optimum path, but varies, depending on the
actual changes in y. The second equation in (2.5) is a condition guaran-
teeing that (2.4) has a finite maximum. Given the course of p(¢) and »(¢)
over the horizon and the initial conditions, (2.5) is a simultaneous set of
nonlinear differential equations in y. These may be solved for optimal
paths of each input, y,(t), over time. The complete solution to (2.5) is
in general very difficult to obtain, and most analyses proceed by linear-
izing the nonlinear terms F; and g;, which amounts to taking second-
order or quadratic approximations to the production and cost functions
(Eisner and Strotz [1963], Lucas [1967], and Schramm [1970]). Under
certain conditions, the solution to the linearized form of (2.5) can be
expressed in the form of the systematic portion of (2.3). A crucial condition
for derivation of generalized flexible accelerators (2.3) is the constancy
of p and w over the horizon (Gould [1968]), an assumption known as
“static expectations.” In such a case, th= process (2.5) converges to the
equilibrium

PR =v, + 5(r+u);i=12,...,n; (2.6)

where g, is g, evaluated at u'j, and j is the equilibrium value of y.3

3. A more general formulation of total costs is g(3, § + p’'y). In (24.), g,, = 0 since
termsinyand y + u’y are independent. If g;; 5 0, and adjustment costs are nonseparable,
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Conditions (2.6) are in fact the usual ones for maximum profit under
static conditions, namely, that marginal value product equals marginal
factor cost. Indeed, the simultaneous solution of (2.6) yields y, as functions
of p and v,, and these functions define the desired fixed targets y¥ in (2.3)
and, in fact, are similar to our equation (2.2). At that point, the firm
must be minimizing costs, and an equivalent set of targets can be found
by specifying the ordinary factor demand functions [such as (2.2) in
section A above] at the stationary value of output that is consistent with
the solution to (2.6). Finally, the adjustment coefficients 8, are clearly
related to the properties of g{j+uy). In cases where p and v are not
constant, the particular solutions to (2.5) depend on the explicit evolution
of prices, and flexible accelerator formulations do not necessarily apply.
The reason is apparent from the specification of fixed targets in (2.3).
Evidently, the fixed targets arise because p and w are fixed. If p and w
are not constant, the targets at which the firm aims undergo change,
and (2.3) cannot hold.

it. Some Qualifications

It is important to point out that the data to be analyzed are generated
by markets and are aggregate in character. Therefore, micromodels of the
firm are not testable in the absence of consideration of market reper-
cussions on firm behavior. In particular, the assumption of static expecta-
tions is not tenable when one considers market feedbacks. Consider a
unit once-and-for-all shock in the market demand function for output in
a competitive industry. Market price, p, imrediately rises, since short-run
supply is inelastic. If we now attempt to reason along the lines of the model
above for a “representative” firm, it will turn out that static price expecta-
tions are unrealized at every point in time. Actual price will always turn
out to be lower than expected price as industry output rises and price
falls along the new demand schedule. Ex post, firm output decisions during
the adjustment period will have been too high, and in that sense non-
optimal. In the face of such losses, it is probable that learning will occur,
and firms will begin to anticipate market reactions more or less correctly.
If so, such anticipations by all firms will, in themselves, have repercussions
on market prices as all firms react and short-run supply is affected.

some of the conclusions in the text are slightly altered. For a discussion of this issue see
Treadway [1966] and Nerlove [1971].
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Perhaps a concept such as ‘“rational expectations” (Muth [1960]) is
appropriate here. But in any event, p cannot be considered as constant
over the adjustment period. In addition, it may even be true that attempts
by all firms to expand will have repercussions on the price of inputs. Even
if wages remain fixed, capital goods prices must certainly change. Firms
have access to capital goods either by purchasing other firms or by order-
ing new equipment from capital goods producers and these supplies are
not perfectly elastic. Therefore, the fixed targets hypothesis of cost-adjust-
ment models is untenable in a market setting.

In view of these limitations of cost-adjustment models of the firm for
market behavior, some modifications are necessary. Our modifications
take the form of retaining the highly suggestive lag specification of (2.3).
However, the target and disturbance terms are altered in a manner that
captures some of the industry variation in factor demand. In particular, we
relax the specification of fixed targets toward which the system moves.

Our basic view is that there exists skort-run monopoly power in product
and factor markets; that is, during the adjustment process, firms do not
regard product and factor prices as fixed parameters, at which they can
sell or buy all conceivable quantities of output and inputs, but in fact,
exercise some control over their prices. It is only in the long run, under
conditions of reasonable stability, that the forces of potential and actual
entry and exit of firms force the stringent conditions of competition on
markets (Arrow [1959]). The empirical evidence for this view is well
known and can be briefly stated. Prices vary, but simply do not fall by
as much as might be expected during recessions and do not rise by as much
as might be expected during recovery periods (Stigler and Kindahl [1970]).
Indeed, money wage rates have hardly fallen at all during the entire
postwar period (see Chart 3.8). Since resources cannot move {reely in and
out of industries in the face of “adjustment costs”” and uncertainty about
the future, firms must take account of the future reactions of the market
and, thereby, of other firms in making their current decisions. This in
itself is sufficient to produce a kind of short-run imperfection in the
market.? _

The upshot of this hypothesis is that desired or target factor demands are
not wholly a function of current product and factor prices. Instead, the
representative firm exercises some of its short-run control, depending

4. Formal models along these lines are given in Phelps [1970].
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on the type and extent of disturbances in the market, by stabilizing
prices and thereby fixing output, input, and inventory targets.

tii. Characterization of Disturbances

More specifically, (2.3) represents dynamic responses of inputs whose
precise movements depend on “‘shocks” to the system. As noted above,
these shocks can best be analyzed in terms of final demand or sales. So
far, it has been assumed that additions to finished goods inventories are
part of current output. Sales, output, and additions to inventories of
finished goods are related by the identity §,+AZ, = Q,, where § is
the level of sales and AZ, is output inventory investment. If it is true that
disturbances arise from fluctuations in the demand for final goods and
that marginal production cost is increasing, firms will meet part of their
final demand from stocks of finished inventory. This suggests a sales
“production function,” S, = f(Q,, 1,), that allows for the holding of
buffer stocks and production smoothing (Lovell [1969]; Holt et al.
[1960]). Therefore we may write as an approximation:

S, =HE);i=1...,7;

where all Y’s are defined as in section A, above, except for ¥;, which
now refers to total inventories of both finished and unfinished goods.
Thus, total inventory is a decision variable in the model.®

It is useful to make a distinction between what are regarded as “per-
manent” changes and those that are regarded &s ‘“‘temporary” shocks.
Such analysis has proven useful in a wide variety of time-series models
and may have some payoff for the problem at hand (Eisner [1967] and
Friedman [1957]). Accordingly, let Y} = Y§ + Y7%, where Y} is the
permanent component, and Y] is the transitory component of the
target level of input j. Y%, is meant to capture all secular long-run forces
that drive the system and that are clearly foreseen by firms. These forces
result from growth in the economy in general; secularly increasing
demand for industry output, such as population growth; technical change

5. Strictly speaking, inventory decision models are most meaningful in the presence
of uncertainty, where prices and sales are random variables (Arrow, Karlin, and Scarf
[1958); Zabel [1967]). We have adopted the present method in order to introduce
finished goods inventory into an essentially deterministic system. However, stochastic
elements are introduced in the manner discussed below. Marketing and advertising costs
might be included, too, but we have not done so.
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in the economy; and general capital accumulation. For the most part,
Y} is to be identified with trend. However, it may also include nontrend
extrapolations based on some kind of long-term smoothed average of past
experience. This hypothesis suggests that Q, in expression (2.2) above
should be regarded as S7, an unobserved target level of sales that would be
maintained under competitive market conditions in a long period of
relative stability (Nerlove [1967a]). That is, we envision a relatively fixed
long-run supply function in the industry (possibly increasing with respect
to price, possibly not) and a demand function that is rising at a rather
steady rate, with superimposed disturbances. The long-run rate of
growth of demand depends largely on economic growth in gencral and
on the income elasticity of demand for the product in particular.

To see what this entails, suppose there were no random shocks in the
economy. Assuming system (2.3) to be stable, it will eventually “damp”
down to a long-run equilibrium trend. If the initial conditions are not
along the trend line, all inputs converge to their long-run rates of growth
(possibly zero, as with Y,), which in general equals the rate of growth
of sales, corrected for returns to scale and technological changes in
production of the given industry. Long-run factor proportions will
depend on prices, as usual. In such a case, S7 will eventually become the
observed Sy, rather than an unobserved component, if the data are avail-
able for a sufficiently long period of time.

Evidently, long-run trends are not the only forces moving the system.
There are transitory shocks as well. In this regard, it is useful to dis-
tinguish two types of disturbances. The first are purely random shocks
that are strictly uncorrelated with each other over time. Since this is the
usual econometric specification, no further elaboration is necessary.

The second, and for present purposes more interesting, type of dis-
turbances that shock the system is identified with certain types of business
cycle activity around the long-run trend. It is here that our distinction
between short-run monopoly power and long-run competitiveness comes
into play. It is clear that since business cycle activity displays substantial
serial correlation, some of its components are regular enough to be in
part predictable on the basis of past observations. Firms attempt to main-
tain short-run sales targets on the basis of such predictions. Thus, we
specify short-run deviations from the long-run targets based on short-run
monopoly power in the product market, as part of the desired target,
Y¥*. As an empirical proposition, and in the face of sticky product prices,
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these are taken to be related to predicted sales during transitional periods.
As will be discussed in detail below, short-run sales targets are specified
functions of past observations, new orders, back orders, and so on. Thus,
in the relevant “long run” (never observed), the expected values of the
short-run deviations from long-run trend targets are zero.

In sum, our specification is: (a) equation (2.3), allowing interactions
and feedbacks between factor demand functions; (b) specification(2.2)
for the moving long-run target variables in Y¥, with S? replacing output
and representing an unobserved “permanent” component of sales closely
associated with trend; and (c) an additional specification for short-term
deviations in these targets, depending on predicted sales in the immediate
future. The model is (in matrix notation):

Y, =gY} + I =B Yoy + &y (a)
Y? =YP + ¥T; b
t t ¢ ( ) (2.7)
YP =k + pST + BR, + & (©
YT = @(Z, = S7) + €. (d)

All variables are in logarithms: g is the matrix of adjustment coefficients,
{B,}, and [ is the identity matrix. The vector of inputs at time ¢is Y,, and
Y} is the vector of desired target levels of inputs at time #. The second
relation partitions targets into permanent and transitory components,
as above. In the third relation, Y? is specified to be a vector of log-linear
functions, as in equation (2.2), that depend on the permanent component
of sales, S, and a vector of factor prices R,. In the empirical work, the
singularity restriction on the price response matrix B is imposed by using
price ratios in R,, rather than their absolute level. p is a vector of long-run
sales elasticities of each input. The fourth relationship specifies the cyclical
and temporary but systematic shocks that drive the system, Y7, as linear
functions of the difference between predicted sales during transitional
periods, Z,, and the permanent components. ¢ is a vector of constants. The
precise content of Z, is a matter of empirical judgment, and discussion
of it is deferred to a later chapter. Finally, the & terms are vectors of
unsystematic, serially uncorrelated random disturbances, with zero means
and finite variances. The hypothesis of time independence is maintained
for these variables. Of course, contemporaneous disturbances may, in
fact, be correlated across equations, that is, &, and &, do not necessarily
exhibit zero covariance.
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C. RESTRICTIONS ON ADJUSTMENT COEFFICIENTS

On our interpretation of short-run adjustment mechanisms, firms main-
tain their position along the production surface at every point in time;
that is, firms are not ‘“‘off”” their production functions during the adjust-
ment process. Note that this does not mean that such phenomena as labor
“hoarding” or temporary excess capacity are not possible, for utilization
rates can vary in an opposite way. Moreover, the essence of the adjust-
ment mechanism in (2.7) is that excess demands or supplies of factors
“held” by firms exist during the adjustment period. Imposition of
production function constraints means that if some excess demands exist,
some excess supplies must exist as well, in order to maintain output.

Some examples will clarify the point. Suppose a recession occurs. If
changes are so rapid that they are not perfectly foreseen by all firms, it is
reasonable to suppose that holdings of capital stock at current rates of
output and sales will be greater than would be desirable under stationary
conditions at recession rates of output. In this sense there would be
excess holdings of capital stock. But the productive capacity of capital
depends not only on stock magnitudes, but also on rates of stock utilization.
Thus, in the present case, capital utilization declines, producing the reces-
sion-induced lower rates of output (this discussion ignores production for
inventory). In a similar vein, suppose the firm finds itself in the position of
carrying ‘“‘excess” workers on its payroll, or of hoarding employees. Then,
if it were possible properly to measure utilization or intensity of work
of these employees, use of a measure of real input would result in a measure
of actual current output.

On the basis of these examples, certain relationships between the
adjustment coefficients §, in (2.3) or (2.7) are implied by the constraint.
This was also illustrated in the example of Chapter 1, and can be analyzed
by considering equation (2.7a) in detail. Repeating it for convenience,

Vo =pY* + (I =B Yy + & (2.7a)

In addition, assume the sales production function can be approximated
byé S, = a'Y,, where «' is a vector of constants (“‘sales elasticities” for
each component of ¥). Substituting the adjustment hypothesis (2.7a) into

6. The need for approximation here arises because sales, output, and inventory
changes are linearly related, whereas, on Cobb-Douglas assumptions, output and inputs
are related in a log-linear fashion.
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the sales production function yield s
S, =a'BY*+ o[ -B) Y, ;.
Now, consider the condition
(I —p) =0, (2.8)

or, equivalently, «'/ = «'8, implying certain restrictions on possible
values of 8,,. Equation (2.8) is in fact a set of » equations relating «, and
B, By the equality in the sentence above, it is seen to amount to the
condition

Za,ﬁu =a3t=1,...,m;

J

that is, a weighted column sum (over j) of 8,;, with weights equal to the
sales elasticities, must sum to the appropriate sales elasticity itsclf. Evid-
ently, since the terms in o, are all nonzero (otherwise, input j would not be
a proper input), equation (2.8) implies that matrix (I — 8) is singular,
or that |I — B| = 0. Italso implies that all elements in any row of (I — B)
cannot be of the same sign. That is, inputs must react positively to excess
demands for some Y;’s and negatively to excess demands for others. In
principle, |/ — 8| = 0, where 8 is a matrix of estimated values, provides
a test of the production function restriction. We emphasize ““in principle”
because sampling distributions of the roots of |/ — é] are not readily
available. However, these roots are computed as a matter of course in
what follows, and the smallest root should give some indication of the
restriction. Alternatively, the restrictions on 8 could be imposed on the
estimation procedure at the outset. This alternative is considered in a
later section. Notice that restriction (2.8) has an additional implication
regarding S, and Y?}. In particular, if (2.8) holds,

S, = a'BY}¥ + o'e, = «'YF¥ + e, (2.9)

The expected value of a weighted sum of the target values of ¥* must
equal sales. The meaning of this should be apparent from the discussion
of Y* itself. Recall that Y* consists of two components: a long-run trend
or permanent component ¥* and a short-run cyclical component, ¥7.
The latter term reflects transitory deviations from long-run sales; the
input targets resulting from cyclical fluctuations are due to short-run
monopoly power exercised by firms. Condition (2.9) simply means that
the target sales are in fact produced on the average, or that sales fore-
casts are realized on average. Thus, a component of Y7 changes in the short
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run to guarantee this to be so. If exogenous disturbances make it desirable
for the firm to produce something other than §°, then Y7 is nonzero to
reflect that decision.

D. DYNAMIC PROPERTIES OF THE SYSTEM

Equations (2.7) may be called the structural specification of the model.
It is useful to examine the implications of the reduced form to check on
the consistency of the structure. In particular, all dynamic models can
always be cast in the form of weighted sums of previous values and initial
conditions by iteration.

To this end, consider the systematic portion of (2.7a) and assume some
vector of initial inputs ¥;. Then by recursion, it follows that

Y, =prr+ (I -BBY +... .+ -p)' 1}
+ (I - B)Y, (210)

and Y, is a weighted sum of all past desired values, Y}, and of the initial
condition, Y. Analysis of (2.10) consists of a set of conceptual experiments
designed to determine dynamic responses to various shocks.

Consider equilibrium properties first. For this purpose assume all
values of Y} are constant and equal over time: Y} = Y% = Y§ =
. .. = Y*, Then equilibrium requires ¥, = Y*. If the system runs for a
sufficiently long period of time, there must come a point where actual
values of Y, settle arbitrarily near ¥* and remain there. Denote the
equilibrium value of ¥, by Y. Then, at equilibrium, ¥, = ¥,_, = Y.
Substituting into (2.7a), we have

Y=py*4+(I-p7Y
or
[I-(I~-P1Y =pY = pr*
as required.

Next, consider the question of stability. Given equilibrium values of ¥ *
in our conceptual experiment, will the actual values of ¥, eventually
~ converge to Y* from any initial condition Yy if left to run for a sufficiently
long period of time? The answer to this question can be obtained from
(2.10). Setting {¥Y*} = {Y*},

Y=+ =B +UT=-B2+...+(-prpr*
+(I- B, (211
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Clearly, the convergence of this series depends on the properties of
(I = B). As is well known, stability requires (I — B)¢ to converge to the
zero matrix as ¢ approaches infinity. If that is true, then the matrix sum
[+ ({I-=PB)+ (- PB)?+...] converges to B~%, from which it follows
[from (2.11)], that, in the limit, ¥, approaches its equilibrium value, Y*.

(I = B) is similar to a diagonal matrix, (I — ) = PAP~!, where A is a
diagonal matrix of characteristic roots of (I — 8) and P is a square matrix.?
Also,

(I — B)™ = (PAP-Y) (PAP-Y) ... (PAP-1) = PA"P-!

Since A is diagonal, A™ can be expressed as the diagonal elements all
raised to the power m. Therefore, as m increases (I — B)™ approaches
zero if each element of A approaches zero, requiring all characteristic
roots to lie within the unit circle.

We now know the properties guaranteeing convergence to ‘‘equili-
brium.” An equally important question concerns the speed of response, or
properties, of the approach to equilibrium. For this purpose, it is neces-
sary to investigate transient responses of the system, defined as the response
to a one-time unit impulse. Consider an initial equilibrium at which
Y, = Yand Y* = Y* and ¥ = Y*. Denote

17', =Y, -7,
Y*=Yr - ¥~

Then (2.7a) may be written

= BI* + (I = BT,y (212)
The transxent response of the system is obtained by ana lyzmg the con-
ditions Yo 0, Y* =1,7* =¥ = = ¥4 = ... = 0. Iterating
(2.12) with these assum ptions yields
=BY =8;

L,=BO)+(I-B T =(I-PBT*=(I-PB; (213

----------

= - .

7. The number of nonzero characteristic roots for A equals the rank of (I — B).
Thus, if the restrictions hold, we know that (/ — B) is singular and has rank n — 1. If they
do not hold, it has rank n.
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In this experiment, Y¥ has been increased by unity in the first period and
then reduced to its initial value thereafter. Conditions (2.13) show that
the effects of this unit impulse are not confined to the first-period response,
but are distributed over time. Thus, ¥, is the first-period or impact res-
ponse, ¥, is the second-period response, and so on. From the general
form of ¥, in (2.13) stability properties of (I — B) guarantee that the
effects of the impulse gradually converge to zero. The (normalized)
patterns of {¥,} in (2.13) are in fact equivalent to distributed lag patterns
found in all lag models, as will be shown in.a moment.

It is also interesting to investigate the response to a unit step-function
impulse, or once-and-for-all-time shock to the system, rather than to a
one-time unit shock. That is, let Y¥ = Y¥ = ... = 1. By the same
reasoning as above, responses in each period are simply the sum of the
distributed lag effects in (2.13):

Y, = B;
Y,=B+U-p)B;

Y, =B+ -BB+U=-PB+...+U=-p)y;

which converges either to the step value, 1, itself, or to the new equili-
brium level.

E. COMPARISON WITH OTHER MODELS: THEORETICAL
CONSIDERATIONS

It is useful to rewrite the system in another way, to facilitate comparison
with other models in the literature. “Partial” reduced form expressions
may be obtained in which each dependent variable is expressed in terms
of lagged desired targets, Y*, and lagged own values, Y, _;. To simplify
the algebra, let L be the lag operator: LY, = Y,_,, L?Y,_; = ¥,_,, etc.
In this notation, (2.7a) may be rewritten (ignoring stochastic terms) as
[I - (I —B)L)}Y, = BY}, and an equivalent reduced form is

Y, =[I - (I —p)L]7BYr. (2.14)

Each element of [/ — (I — B)L]™! is a rational polynomial function of L.
In fact, each element is the ratio of two polynomial functions of the lag
operator; the parameters depend on the particular values of B, The
denominator of each of these functions is the determinant |/ — (I — B)L]|,
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or a polynomial function of L, ©(L),
O(L) = by (1 — bL — bL% — ... = b,L"),

where the coefficients by, b4, . . . are functions of 8,,. In fact, m, the order
of @(L), is n — 1 if the production function restrictions apply [(J — B) is
singular]. Otherwise, it is of order a. Similarly, the numerator of each
term in the inverse matrix is another polynomial in L, @,(L), with

Oul) =ay+ayl + ... +a,_y, LY i=1,...,n~1;

where aq, ay, . . . are also functions of 8,,. The order of @,(L) isn — 1
irrespective of the production function restrictions. We have

- =BL]7 ={0,(L)}/0(L). (2.15)
Carrying out the multiplication in (2.14) after substituting (2.13) yields
Y, = [Zj@,,(L)ﬁ.,Y;';] JOL);i=1,...,n (2.16)

Finally, multiplying both sides of (2.16) by ©(L) yields an equivalent
distributed lag formulation,

1 .
Y, = be [;@‘,(L),suy,*] + 01 ¥y-1 + 620y
0

o b Y si=1,..,0 (217

Examination of (2.17) indicates that the structure (2.7), including feed-
backs and interactions in the time demand for factors of production, can
be reduced to » separate distributed lag functions, in which only own past
values of the demand for each factor appear as arguments, without
feedback effects apparently present. In addition, the arguments of (2.17)
other than Y, are current and lagged values of all variables included in
the specification of each Y3%. Thus, equation (2.17) should be familiar
as a general version of the commonly assumed distributed lag structure.
All equations in (2.17) could be further reduced to infinite distributed
lags of all current and past values of the variables included in Y*. This
amounts to what has been set forth above [see equation (2.10) and related
discussion], and there is no need to repeat it.

Evidently, distributed lag models of the form (2.17) characterize most
of the literature on time-series input demand. For example, the index of i
relating to capital stock in (2.17) yields a formulation that is identical in
form to neoclassical investment functions (Jorgenson [1963], Eisner and
Nadiri [1968], Bischoff [1971]). Existing short-run employment demand
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function studies (Brechling [1965], Dhrymes [1969]) can also be considered
as special cases of (2.17). Thus, the present model integrates these two
apparently unrelated branches of the literature, and alternative estimates
of such functions are possible. Note, however, that we have taken into
account the cross and own adjustments in each equation of (2.17). Thus, a
substantially different interpretation of the adjustment process is suggested
in our model, compared to what exists in the literature.

As one application of the model, we examine the many distributed lag
investment and employment functions that display lag distributions with
complex roots and implied oscillatory patterns (Griliches and Wallace
[1965], Griliches [1967], and Nadiri [1968]). Such results are questionable
on economic grounds, if one considers the source of adjustment lags
strictly in terms of own lags with no interrelations present. Under the usual
interpretation, it is difficult indeed to account for nonmonotonic con-
vergence to new equilibria on the basis of a single equation model.
However, (2.17) shows that the adjustment hypothesis embedded in
equations (2.7) has a definable interpretation: Each term of {B,,} is real;
and some inputs show a positive reaction to excess demands of factors by
the firm, while others show a negative reaction. However, if (I — ﬁ) has
complex roots, the distributed lag models of (2.17) must display values
of 4, in O(L) that also imply complex roots, generating distributed lag
patterns that have cyclical components.

One other implication of (2.17) is worth mentioning. Notice that the
own-lag terms in each equation all have the same set of coefficients ;.. This
is a well-known property of the reduced form of a system of difference
equations. Previous studies of investment behavior have indicated that
adjustment lags for demand for capital are of very long duration
(Mayer [1960], Jorgenson [1963]). Such findings have been rationalized
in terms of very long gestation periods and large costs of adjustment
necessary to change productive capital stock. On the other hand, indepen-
dent investigations of the demand for employment and hours have also
found long adjustment lags (Dhrymes [1969], Nadiri [1968]). A priori,
logic suggests that the lags in production worker employment should be
substantially shorter than for capital, since adjustment costs to the firm
are probably smaller. Thus, the long lags estimated for capital and
employment have been something of an empirical puzzle. However, if
one accepts the basis of the current model, the puzzle disappears. The
terms in (2.17) are identical across equations, so that anything producing



Comparison with Other Models: Theoretical Considerations 39

long lags in the system as a whole tends to produce a long lag for each
and every input. Thus, the adjustment process for employment and hours
might display long lags, simply because the adjustment for capital—
probably the ultimate source of lags—displays long lags. If the firm is not
in long-run equilibrium with respect to capital stock for very long periods, a com-
Dlementary disequilibrium must appear elsewhere in the system, if factor demand
functions are time-interrelated and firms operate near their production
possibility frontiers.

Another major difference between (2.17) and distributed lag formu-
lations of factor demand that exists in the literature relates to the distur-
bance terms. It is clear that the omitted disturbance terms in (2.17) are
complicated weighted averages of all contemporaneous and several lagged
values of the disturbances in the original structural equation (2.7). Hence,
if the original disturbances in (2.7) are serially independent, those in
(2.17) cannot be independent, and techniques of estimation must take that
into account. If, on the other hand, the disturbances in (2.17) are merely
“tacked on” and taken to be serially independent, the disturbances in
(2.7) must be serially correlated. Though the latter formulation is the one
implicit in the reduced form estimates of the literature, in this study we
adhere to the former view. We do so for two reasons: First, there has been
extensive experimentation with single-equation models such as (2.17),
and estimated parameters of such models have some undesirable features.
Therefore, perhaps some contribution can be made by estimating (2.7)
directly, rather than in reduced form. In this way, we hope to obtain
additional information and further insights into the adjustment process
than are available in reduced form estimates. Secondly, if (2.17) is
estimated under the hypotheses of our model, it is necessary to estimate all
equations simultaneously, and to impose the restriction that regression
estimates of lagged endogenous variables in each equation are identical.
This is a difficult and expensive procedure, and is not necessary if (2.7)
is estimated directly. Of course, the real question concerns the true
properties of disturbance terms in (2.7) and (2.17). Notice, however, that
in both forms, lagged values of endogenous variables appear as regressors.
It is well known that tests for serial correlation are biased under such
circumstances. In any event, estimation of (2.7) seems promising. How-
ever, it is true that ordinary least squares estimators are inconsistent in the
presence of serially correlated residuals. Hence the estimation procedure
must take that possibility into account.



