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FOUR

Expectations in the
Term Structure of

Interest Rates
STANLEY DILLER

I. INTRODUCTION

Since J. R. Hicks' Value and Capital [6] appeared, and even before, a
controversy has persisted over what determines the yield differentials
among securities identical except for the term left to maturity. Formerly
a technical subject on the fringe of monetary affairs, the term structure
of interest rates has recently become a policy issue, involving as it
does the relationship between long- and short-term interest rates.
"Operation Twist," for example, a widely publicized policy in the
early 1960's, involved the government's attempt to keep the long-term
rate low in order to encourage domestic investment and the short-term
rate high to discourage capital outflow through adjusting the supply of
different maturities.

The effectiveness of this policy depends, of course, on the deter-
minants of the term structure. In this respect, there are essentially two
points of view: One holds that the market for securities consists of a
group of separate nonoverlapping markets defined for different maturi-
ties, with no tendency for the rates in the different markets to assume
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any particular relation to each other. This point of view, stated here in
its extreme, says in effect: that there is no theory of the term structure.
On the other side are those who regard the securities market as a col-
lection of interrelated markets and the term structure of rates as subject
to some unifying principle. Ordinarily, the principle involves some
form of forecasting. The term structure, according to the second view,
is determined, at least in part, by the market's forecasts of future rates.
David Meiselman, who sparked the latest round of discussion, argues
vigorously for the so-called pure expectations hypothesis [1 1]. More
recently, Reuben Kessel [8] revitalized Hicks' idea that the term struc-
ture depends on some combination of market anticipations and liquidity
preference.

For our own work we tentatively accept the expectations hypothesis
that the yield differentials are explainable in terms of market fore-
casting (with or without the liquidity component) and consider how
the forecasts are actually formed. We find that a substantial part of
the variation of the forecasts inferred from the term structure is related
to an extrapolation of past spot rates. In other words, a moving average
of past spot rates can predict a substantial part of the implicit forecasts
themselves. We find, however, that the forecasts are no more (and even
a little less) effective in forecasting future spot rates than are linear
extrapolations of past spot rates; that is, extrapolations based on
moving averages whose weights are specifically selected to yield the
best predictions of future spot rates.

Most of this chapter is devoted to an interpretation of these findings.
In particular, one can interpret the linear extrapolative model as a
summary of many explicit behavioral models in the same way that a
resultant force can be said to summarize the effects of component
forces. Since it is the resultant that we observe, the issue becomes:
What can we infer about the behavioral models contributing to the final
effect?

In Section 111 we investigate the relationship between the error-
learning mechanism that Meiselman used to test the expectations
hypothesis and the extrapolative model. From the statistical results
of the error-learning model reported by Meiselman we are able to
infer a particular method of extrapolation and show that this method
fits the actual data better than some plausible alternative methods.
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The significance of this experiment lies in our ability to generalize the
work of Meiselman and others into a form from which one can draw
additional implications about the way market forecasts are made.

One characteristic of the term structure that has received wide atten-
tion and evoked general agreement,from Keynes to Kessel, is the
inverse relation that exists between the slope of the yield curve and
the level of short rates. This observation is ordinarily explained by
the so-called expected return to normalcy hypothesis: When current
rates deviate from their normal level, future rates are expected to move
in the direction of the normal level. Part of Section III demonstrates
that this hypothesis is implied by the particular extrapolative model
that fits Meiselman's data. As before, the significance of this experi-
ment is the connection it provides between the apparently mechanical
procedure of extrapolation and an actual behavioral model.

Finally, we consider the relationship between economic indicators
and extrapolative forecasting. Most of the observed connection be-
tween.the indicators and the forecasts is picked up in the extrapolative
procedure. This result is due to the common variation between the
indicators and spot rates over the course of the business cycle. The
extrapolative procedure implicitly takes account of this common rela-
tion. There is a net relation between the indicators and the forecasts
that is independent of their common cyclical variation. This relation,
it appears, grows as the span of forecast increases.

When we compare the accuracy of the implied forecasts with an
autoregressive model designed to exhaust the full extrapolative poten-
tial of the data, we find the implied forecasts are inferior. This result
follows largely from our analysis of the apparent method of market
forecasting. Since the forecasts are based primarily on extrapolations,
they are no more effective than the autoregressive model, which is
itself an extrapolation. The margin of inferiority of the forward rate
forecasts may also be due to the presence of a liquidity premium or
some other nonforecasting component of the forward rates that ob-
scures the variation of the forecast component.

The accuracy analysis also uncovers a bias in the forecasts: They
are shown to be consistently too high. Kessel. having obtained a
similar result, attributed it to the presence of a liquidity premium.

In summary, a substantial part of the variation of the yield dif-
ferentials can be explained by relating them to market forecasts; the
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variation of the forecasts, in turn, is in large measure determined by
an extrapolative procedure; and the extrapolative procedure is con-
sistent with and related to several behavioral models that have been
separately proposed as determinants of the term structure.

II. THE TERM STRUCTURE OF INTEREST RATES

FUTURE PRICES

There are various sets of time series data on individual and group
anticipations that would be amenable to the analysis on which this
study is based; surveys of business and consumer expectations, fore-
casts of national income components, sales forecasts, and so forth.
There are far less data available on forecasts attributable to a market
consensus. Perhaps the best example of this type of forecast is to be
found in price data of future transactions. After allowing for various
business costs, such as storage and default risk, the current price at
which a commodity to be delivered in the future is transacted should,
in principle, be equal to the price that is currently expected to prevail
at that point in the future. In the special case where expectations are
unanimously held and the market responds only to expected values,
ignoring the risk of capital loss that fluctuating prices entails (leaving
aside transactions and other business costs), the market is at the margin
indifferent as to whether it transacts a future commodity at the forward
price or waits until the delivery date and transacts at the then spot
price. Unanimity is assumed because otherwise we would have to
explain why a market deviant does not continue to transact until his
funds are exhausted, borrowing to transact further until the discrepancy
between his and the market's views are obliterated. It would con-
tribute, perhaps, to verisimilitude if we explained the absence of
indefinite transactions by assuming that expectations are not held with
certainty and that the uncertainty increased with the number of trans-
actions; or alternatively, that the existing capital market precludes the
availability of an unlimited amount of funds to the market deviant. In
this and other respects we have abstracted from descriptive complexity.
The assumption that dispersion of prices is not relevant will be dis-
cussed later.
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A particular kind of future price that has recently evoked wide dis-
cussion is the price of forward loans. Unlike the prices of commodity
futures, the prices of forward loans are not explicitly quoted but are
rather implied in the term structure of interest rates. Since these
prices are free of the business costs that are part of commodity futures,
their expectations content is more immediate; although a possible
market response to the gamble is still present. The price of forward
loans, like other forward prices, may include a risk premium. In the
following pages we review briefly the determinants of the term struc-
ture, how the forward rates of return are inferred from the rates of
return of securities differing only in the term left to their maturity,
and the evidence for equating the forward rates with the expected
rates. The recent literature has discussed this part of the subject quite
thoroughly; therefore, this study will give it minimum coverage.

A yield curve for a given year and a given type of security is a locus
of points relating the rate of return of a security, on the vertical axis,
to the term remaining until its maturity, or the number of years re-
maining before the security is paid off, on the horizontal axis. A typical
point on a yield curve for high-grade bonds reveals, as of a given time,
the year for which the curve is drawn, the yield to maturity of a
bond with a given term to maturity. On the same curve, another point
shows the yield on a bond with a different term, and so on, each point
for a different term to maturity. For a security of a given term, the
• yield on the curve associated with that term is the discount factor
that is used to equate a stream of fixed payments—that is, the annual
coupon payments plus the par value when the bond matures — with the
present value of the security. The well-known formula for this com-
putation is:

Pv— Ci C2.

where: PV = present value of current market price of security; C, =
coupon payments; P = principle; and R = market yield of bond. Since
in any one year there may be several bonds on the market with the same
term to maturity but with somewhat different characteristics, it is
necessary to fit a line to the points to reduce the array to a unique yield
for each term to maturity.'

'See Durand [4J. The complete set of Durand data is listed in the National Industrial
Conference Board's Economic Almanac, /967—1968, p. 416.
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A long-term yield is essentially an average of shorter-term yields
covering the same period, although the particular form of this average
depends on the assumption made with respect to the method of pay-
ment.2 From the yields of two securities, identical except for the terms
left to their maturities, one may infer a forward rate of return r that
would apply to loans beginning at the time the shorter of the two
securities matured and ending when the longer one matured. The
formula for this computation of an i period loan is as follows:

(1 + R5)'
r,,

= (1 + — 1.

With this formula one can compute a table of forward rates from the
term structure of long-term rates that would reveal the rates of interest
on forward loans up to n periods in the future.

THE EXPECTATIONS HYPOTHESIS

The purchase of a security with, say, ten years to maturity is con-
ceptually identical with and can be regarded as the purchase of ten
one-year securities that materialize consecutively from the time they
were all purchased until the end of the tenth year.4 Leaving aside atti-
tudes toward the risk of capital loss or of fluctuations of income, since
each investor has the option of waiting until a particular security is
available and purchasing it at the then spot price, any tendency for the
forward yield to deviate from the spot yield expected to prevail should
be countered by a change in the demand for the source. For example,
if the forward yield of a one-period Security available five periods
hence exceeds the yield that the market currently expects will prevail
on the spot market five years hence, there should be enough investors
around who, instead of waiting to deal on the spot market five years
later, will move to buy the apparently cheap security now. The in-
creased demand for the security would raise its current price until its
yield approaches the expected spot yield. This mechanism is, of course,
symmetrical.

This simple idea underlies the hypothesis that the forward rates are
equal to the spot rates expected in the future. Since this equation re-

2 See Macaulay [9, p. 29].
'This idea is explained in Hicks [6, pp. I and 5] and, in greater generality. in Wallace

[16, Chapter I].
See Wallace [16].
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quires the willingness of a sufficient number of investors to implicitly
transact in the forward market by rearranging the maturity mixture of
their portfolios, a priori evaluations of the hypothesis hinge on whether
a sufficient number of investors are, in fact, willing to alter their port-
folios in response to anticipations.5 The hedging theory holds that the
markets for short- and long-term securities are independent and,
therefore, that the equilibrating mechanism between forward and ex-
pected rates is nonexistent.6 The liquidity preference theory acknowl-
edges a relationship among the markets for different maturities (or,
what amounts to the same thing, the substitutability of the different
securities) but stops short of recognizing a single market for all
maturities. In this theory the variance of the prices of securities is a
direct function of maturity (not because prices of longer-term securities
change more often, but because they fluctuate over a wider range);
and, other things the same, the greater the variance the less valuable
the security. Given two securities, identical except for maturity, the
longer-term security would have to yield more to make the average
investor indifferent between them. Therefore, between the pure ex-
pectations and the pure hedging theories there is a continuum of
degrees of substitutability assumed to exist among the different maturi-
ties. At the one extreme, the substitutability is infinite, and the term
structure of rates depends solely on expectations; at the other, the
substitutability is zero, and the term structure of rates is determined
by the supply and demand for each maturity. In between these ex-
tremes, the assumed substitutability depends on the relative degrees
of price fluctuations that investors are assumed to anticipate, as well
as the assumed extent of investors' abhorrence of risk or, obversely,
their preference for insurance. In this case, the yield differential neces-
sary for investors' indifference is the insurance or liquidity premium.7

In this intermediate position, there are two separate factors affecting
the degree of substitutability among the various maturities: (1) in-

'The hypothesis does not imply one market for all securities regardless of maturity;
nor, in the case of several markets, does it imply that all investors be indifferent about
the maturity structure of their portfolios. It is necessary only that the several markets
overlap and contain in their overlapping sections a sufficient number of lenders and bor-
rowers whose respective cross elasticity of demand for or supply of securities of dif-
ferent terms to maturity is infinite. See Meiselman [II, Chapter 1].

6See Culbertson [3, pp. 485—517].
In this context the word "liquidity" refers strictly to the expected variance of

security prices; the smaller the variance the greater the liquidity.
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vestors' expectations of the variance of prices of different maturities;
and (2) given the expected variances, investors' attitude with respect
to the degree of risk of capital loss. Phillip Cagan, in his discussion of
the first point, proposes that the differences in the expected variances
are inversely related to the deviation of the actual level of rates from
the normal level.8 As for the second point, Reuben Kessel [8] finds
that the required premium is greater the higher the level of rates. In
both cases, since the liquidity premia will vary over time, there is no
simple way to correct the forward rates for this factor in order to isolate
the expectations component. The attempt to ascertain the basis for the
forecast or the accuracy of the forecast is therefore marred by the
presence of the varying liquidity premia.

The evidence that is typically offered for the existence of liquidity
premia is the well-known tendency for yields on long-term securities
to exceed those on short-term securities.9 Any attempts, therefore, to
measure the accuracy of forecasts by computing the mean square of
the differences between the forward rates and the target spot rates will
reveal a large error because of this bias. If, instead, the target rates are
regressed on the forward rates,1° the bias in the forward rates will fall
out in the constant term. But the varying liquidity premia will lower
the correlation and bias the regression coefficient toward zero, except
for the special case when they are linearly related to the level of rates.
In any case, the presence of a nonforecasting component, whether
liquidity premia or some other random variable, hinders the evaluation
of forecasts of interest rates.

III. LINEAR AUTOREGRESSIVE FORECASTING MODELS

LONG-TERM DATA

Error-learning model. The question of whether forward rates make
accurate forecasts is, of course, independent of the question of whether

8 See his "A Study of Liquidity Premiums on Federal and Municipal Securities" in
A Study of Interest Rates [1].

9This phenomenon is often reversed in periods of high interest rates—a fact that is
considered later in the study. For reasons not entirely clear, the reverse is also true in
the mortgage market, where longer-term mortgages tend to yield less than shorter-term
mortgages. On this point see Jack Guttentag's study of mortgage yields [I].

'°The justification for this procedure is discussed more fully in Section IV.
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forward rates are forecasts. Forecasting economic time series is
notoriously difficult, even series that are far more stable than interest
rates. Therefore, evidence of poor accuracy in no way impugns the
expectations hypothesis or its liquidity preference variant. In his im-
portant study on the term structure, David Meiselman [11, Chapter II]
devised an ingenious test to determine whether forward rates are, in
fact, forecasts. His idea was to find some characteristics of known
forecasts whose presence in a set of numbers would constitute evi-
dence that this set behaved as though it consisted of forecasts. He
formulated the characteristic he chose to isolate in terms of the error-
learning model. Other studies in other areas have indicated a feedback
mechanism in forecasting, whereby the error observed currently of
previous forecasts inspires revisions of forecasts referring to a later
period. Since the expectations hypothesis asserts that forward rates
are, or contain, estimates of expected spot rates, a demonstration that
forward rates follow a pattern similar to that of many known sets of
forecast data is prima facie evidence that forward rates are or contain
forecasts. The model that Meiselman tested is as follows:

— = a + — + u,

where +,1r1 = the forecast made in period t of the rate expected in
period t + n; = the forecast made in t — 1 of the rate expected
in t + n; R1 = the spot rate in period t; and irt_i = the forecast made
in t — I of the spot rate in t. All rates are one-year rates. The left
side of the equation denotes the revision in period t of the fore-
cast made originally in t — 1, the forecast referring in both cases
to the spot rate in period r + n. The right-hand side denotes a constant
term a and the proportion ty of the current error Rr — that is
projected into the revision of subsequent forecasts, and a random
term, ii. Meiselman tested this model with the Durand data for eight
sets of revisions representing eightspans of forecast (where the span n
is the number of years between the time the forecast is made and the
time to which it refers). He found that as the span increases, y falls
together with the ability of the model to explain the variation of the
revisions.

Because the regression coefficient was significantly different from
zero in all eight regressions, as well as because of other characteristics
of the results, Meiselman concluded that the model adequately repre-
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sented the data and therefore that the data behaved as though they
were forecasts.

Now, if the data on forward rates can be said to contain forecasts,
the questions we raise are: How are the forecasts generated, and what
are their behavioral properties? In the following, Meiselman's and
other data on the term structure are probed to extend our insights into
expectational behavior in the capital market.

The extrapolative model. In Chapter 3 of this volume, Jacob
Mincer establishes a relationship between the Meiselman-type error-
learning models and linear extrapolative forecasting models. In this
extrapolation, the forecast value for any period in the future, t + n, is
computed from a weighted average of past values of the same series
taken sequentially back from the target date t + n through the current
period t and back into the past. Since the values of the series between
periods t and t + n are not known, the values forecast for each of these
periods are substituted for the actual values.11 In other words, a fore-
cast of the period t + n implies forecasts of the preceding periods,
t + n — 1, t + n —2, . . . , t + 1. In symbols: 12

(1) = C + + + . . +

+ + . +

where = forecast made in period t referring to i periods prior to
t + n; A1..1 = actual value of series i periods into the past; B = weights
in linear combination; C = constant term, by hypothesis equal to zero;
and E = autonomous component of forecast, i.e., the part not based on
past values of the series. If the forecast were made in period I — 1 in-
stead of in t, the fourth term on the right side of (1) would be B?,(,F,_])
instead of B,,A1, since could not be known in period t — 1. Let us
write out the equations for the forecasts referring to t + 1 made in
both t and t — 1:

(2) = C + B1A, + B2Ar_i + . + + ,+1E,,

(3) C + B1 + + + +

II This procedure is optimal, in the sense of minimizing mean square error of forecast.
for a particular class of time series. See p. 87. above.

2 The symbols F and A represent forecasts and target (or actual) values of any series.
When the F refers to forward rates, the nonextrapolative component E includes not only
the autonomous component but any nonforecasting component, such as errors of meas-
urement and liquidity premia.
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Subtracting (3) from (2):

(4) — = B,(A, — ,F,_,) + —

Let us apply the above procedure to the forecasts made in periods
t and t — 1 referring to period t + 2:

(5) = C + + B2A, + B3A,_, + + +2E.
(6) = C + + + B3A,_1 + • • + ,÷2E,_,.

Subtracting (6) from (5):

(7) (,+2F, — = BI(I+SFE — + B2(A, —

+ (,+2E, —

and the difference equation for t + 3:

(8) — = — + —

+ B3(A( — ,FE_,) + (t+3Ec —

By recursive substitution of the lower span revisions, each revision
becomes a linear function of the current forecasting error alone, gen-
erating Meiselman's equations for each span. Thus, we find that linear
extrapolations of type (1) and (2) are consistent with Meiselman's
error-learning model.

We note that Meiselman's revision coefficients y, and the decline
steadily with increasing span 1. Mincer has derived an expression that
relates the decline in the coefficients of determination to the decline
in the coefficients of regression, when multispan forecasting is assumed
to be recursive as in (1). According to Mincer the coefficient of deter-
mination of the ith regression is given by the following expression: "

(9)
(11+ P22

'YE

where = coefficient of determination of ith regression; and y, =
coefficient of regression of ith regression. This expression implies that
the coefficients of determination will decline with increasing span of
forecast whenever yt that is, when the coefficients of regression
do not increase. Table 4-1 compares the coefficients of determination

° See Jacob Mincer, equation (36), p. 103 of this volume, for the derivation.
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TABLE 4-1. Comparison Between the Estimated and Predicted
of Determinations for Regressions of the Error-Learning Model (Durand
Data, 1901—55)

Span
(1)

Estimated
R2 (adj)

(2)

Predicted
R2 (adj)

(3)
Span

(1)

Estimated
R2 (adj)

(2)

Predicted
R2 (adj)

(3)

1 .9053 .9053 5 .4004 .4206
2 .7470 .7812 6 .3709 .3345
3 .5819 .6395 7 .4055 .3324
4 .4537 .5154 8 .3289 .2743

Note: Column 2 lists coefficients of determination computed by Meiselman: column 3 lists the
ones predicted by equation (9).

that Meiselman found (column 2) with the ones predicted by equation
(9). While the expressions for the standard errors of the two sets of
statistics are not easily derived to permit an evaluation of the statistical
significance of their differences, the figures in the two columns appear
to be quite close.'4

The inference sometimes drawn from Meiselman's declining cor-
relations that the relevance of the expectations hypothesis diminishes
with increasing term to maturity, therefore, does not follow.'5

The consistency of Meiselman's whole set of error-learning equa-
tions with a hypothesis of linear extrapolative forecasting strength-
ens the interpretation of forward rates as expectational magnitudes.
Now, we can go further and ask: What is the particular form of the

Formula (9) based on Mincer's equation (33) assumes that the variances of the
nonextrapolative components do not change with span. If they decrease with span.
predicted R2 will decline more rapidly thanobserved R1. Alternatively, nonforecasting
components might create the offsetting effect, according to Mincer's equation (33a),
if the revision coefficients are declining. In Table 4-I, predicted R2 do indeed decline
somewhat more rapidly than the observed ones.

For example, the following is quoted from Wood [18, p. 165].
It is reasonable to suppose that investors will have fairly firm expectations regarding
the level of rates one year from the present and will formulate their decisions on the
basis of expectations; whereas expectations of what rates will be several years into the
future are likely to be at best hazy and, as a consequence, investors are likely to deter-
mine their holdings of one-year relative to, say, eight-year securities to a large extent
on the basis of considerations other than expectations of future short rates.
While the point may be correct, it cannot properly be concluded from Meiselman's
findings.
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extrapolative model that generates Meiselman's revision equations?
This question is important because the form of the extrapolation
contained in forward rates provides further insights into the expecta-
tional behavior in financial markets.

The relationship between the revision variables on the right side of
equations (7) and (8) and the current error reveals the relationship
between the extrapolative weights, B., of equation (1) and Meisel-
man's regression coefficients, y..

For example, substituting (4) into (7) yields

(10) — t+2 = — + B2(A, —

+ (t+2Et —

= + — 1F1_1) + —

and substituting (4) and (7) into (8):

(11) (t+aFe — + —

+ B:3(A, — fFt_l) + —

= + B1B2 + —

+ (t+3Er —

Similar expressions for forecasts that span more than three years are
analogous to (1) and (11). These expressions produce a system of
equations with only one exogenous variable, the current error of fore-
cast. The dependent variable of each of the equations in the system is
related to the one exogenous variable directly, as well as through its
relationship with the dependent variables of the equations above its
own. The expressions for the regression coefficient relating a given
revision to the current error includes all the extrapolative weights
B, that are included in the expression for the coefficient of the equa-
tion above it plus one additional weight. One can therefore deduce
the B, recursively, in the following manner, denoting Meiselman's
coefficients, = 1, 8:

(12) y1=B1

= + B9

= + 2B1B2 +
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and generally 16

wherey0=1.

Using Meiselman's reported values of the y, we derived the set of
B1 according to (12). For example, B2 = Y2 — B3 = — — 2B1B2;

and so on for the other values of y and B not shown here. Table
4-2, column 2, shows the y coefficients, which were recomputed
and changed slightly from those Meiselman reported; the B1 coeffi-
cients are in column 3. From the derivation of the B it is clear that if
one of the weights, say B2, is out of line, the succeeding weight, B3,
will be out of line in the other direction. For example, if B2 were too
high, we would subtract from a larger number than we should in
order to get B3; therefore, a high B2 would lead to a low B3. If sam-
pling fluctuation knocked one weight out of line, it would set in motion
a wiggle that would reverberate down the column of weights. The
minus sign attached to B8 makes little sense in the present context,
but it is preceded by a B7 that is too large and by a B6 that is too small.

Because of this sampling problem, the weights as raw data do not
evince a coherent pattern; yet, when plotted, a pattern may be de-
tected. To glean at least one estimate of the pattern, we plotted on
Chart 4-1 the weights, B, (computed from Meiselman's coefficients
shown in Table 4-2, column 3), on semilog paper and drew a smooth
curve through the points. The weights read from the smooth curve
are in column 5 of Table 4-2. The scatter around the curve in Figure
4-1 is, of course, substantial, and the curve highly subjective. Some
may contest the treatment of the extreme point, and, of course, the
negative point is meaningless. A partial, though by no means conclu-
sive, test for the validity of this procedure is illustrated in the follow-
ing experiment.

Working with equations (4), (7), and (8), as well as the equations for
the revisions of forecasts of spans 4 through 8, we formed a single
independent variable for each equation by multiplying each variable
on the right side by the relevant weight and summing the products.
For example, inthe case of equation (8) we multiplied the first inde-
pendent variable by .7029, the second by .0318, and the third by .01 14,

16 See Mincer, p. 89.
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CHART 4-1. Patterns of Smoothed Weights, B, for Extrapolation Equation (1)

1 2 3 4
Spans of forecasts

6 7



TERM STRUCTURE OF INTEREST RATES 127

TABLE 4-2. Regression Statistics for Experiments With Estimated Extrapo-
lative Weights

B
B, (Expo-

Span of B, nential
Forecast y, (Sample) (Smooth) Decline)

(1) (2) (3) (4) (5) (6) (7) (8)

1 .7029 .7029 .90526 .7029 .90526 .7000 .90526
2 .5256 .0318 .93545 .0220 .93756 .2100 .90167
3 .4034 .0114 .93421 .0133 .93585 .0630 .89862
4 .3263 .0180 .86998 .0105 .87184 .0189 .86026
5 .2769 .0165 .86353 .0089 .86412 .0057 .87384
6 .2348 .0042 .92688 .0080 .92845 .0017 .92339
7 .2367 .0401 .92430 .0076 .92990 .0005 .91326
8 .2089 —.0016 .87279 .0072 .87801 .0001 .87044

Note: Each Set of B1 is used with the same variables in the following set of regressions:
— = A + BI(RI —

(,+lft — ,+lr,—I) = A —I— B,(,+1r, — —I— B2(R, —

In each case the products and variables are summed into one independent variable. There are
eight simple regressions for each set of B1. The R' are the coefficients of determination adjusted
for degrees of freedom. They are computed for each of the regressions run, with the weights listed
in the adjacent column to the left starting from row I and continuing down to the row in which the
R2 in question appears. For example, in column 4, .93421 is the R' computed from the simple re-
gression the independent variable of which was computed by summing the products of .7029

,÷2r1_), .0318 — ,÷1r1,), and .0114 (R, — 1r,_1). The Durand data were used in this
experiment.

the first three weights listed in Table 4-2, column 3. The independent
variable of this regression is equal to the linear combination of the
variables specified in (8), the constants in the linear combination be-
ing the weights. There are eight such regressions, each having one inde-
pendent variable (formed by the linear combination of the variables
listed in the equation) for the corresponding revision of forecast. In
one set of eight regressions, we used the weights listed in column 3
and in the other set, the weights listed in column 5. In column 4 we
list the adjusted R2 coefficients of each of the eight sets of regressions,
using the empirically estimated weights; column 6 shows the adjusted
R2 coefficients for the smoothed set of weights.

In all but one case, the R2 coefficients are higher for the smoothed
weights; although in no case could the differences appear statistically
significant under standard test procedures. Such lack of statistical
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significance, however, is not too surprising when one considers that
the first weight .7029 is almost ten times as large as the sum of all
the other weights and, therefore, dominates the linear combination.
It is nonetheless interesting to find that relatively small changes in
small weights lead to consistently better results, even though only
slightly so.

We may tentatively accept the hypothesis that the weights in the
extrapolative equation (1) decline in accordance with a smooth curve
relating the value of the weight to the period of the lag. The hypoth-
esis allows us to infer the time perspective on.the interest rate market.
In Figure 4-1, while there is a sharp initial drop between B1 and B2,
the pattern of decline is much more gradual thereafter; the curve be-
comes almost horizontal. This pattern implies that interest rates pre-
vailing more than ten years before the time the forecast was made
are considered in the forecasts of the future, although the weight
attached to these rates is small. Column 7 of Table 4-2 lists the set
of geometrically declining weights which produced the best fit in re-
gressions described for the two other sets of weights. Column 8 lists
the R2 coefficients of each of these regressions, which serve as a stand-
ard for evaluating the smoothed weights. Here again, in all but one
case, the smoothed weights produced a better fit than the geometri-
cally declining weights, although, again, the differences would not ap-
pear significant under standard — but inapplicable — test procedures.
The relevance of this comparison of weights resides in the fact that
they both start from approximately the same place, while the geo-
metrically declining weights indicate a shorter horizon. Therefore, the
apparently better fit with smoothed weights provides some evidence
that the more distant past is indeed considered in forecasting future
rates. In Figure 4-1 the geometrically declining weights are represented
by a straight line, since the curves are drawn on semilog paper.

• In terms of equation (1), the weights B do not depend on the fore-
cast span. As the span changes, the independent variables change, but
the weights stay the same. The above analysis does not test whether
the weights vary with forecast span. We can evaluate the consequences
of this assumption. If the forecast span is not relevant there is no
reason for having eight separate regressions. Since the estimate of B1
is the same, it makes no difference in principle whether this weight is
attached to, say, — or — so long as the inde-
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pendent variable selected conforms to the appropriate dependent
variable.'7 Therefore, we can estimate the B, with one multiple regres-
sion whose first observation is the first observation of equation (4),
whose second observation is the first observation of equation (7),
whose third observation is the first observation of (8), and, finally,
whose ninth observation is the second observation of (4). We can in-
clude a dummy variable indicating the span of forecast represented by
the particular observation to test the hypothesis that the estimates of
the B, depend upon the independent variable to which they are at-
tached. In other words, we can test the hypothesis that the weights in
extrapolative equation (1) vary with the span of forecast by including
a dummy variable representing each of the eight equations from which
the observations are chosen.

In Table 4-3 we compare the B weights, estimated by multiple re-
gression, with those computed from the coefficients y• of the error-
learning model. The test for the significance of the difference between
the two estimates shown there is only illustrative, since it was not
possible to estimate the standard errors of both sets of weights. We
used our estimates of the standard errors of the B, from the multiple
regression as admittedly poor substitutes for the standard errors of the
difference. Unless the correlation between the two sets of estimates is
very high and positive, our procedure understates the standard
errors of the differences and therefore our (-values are too high. In
spite of this, the t-values in column 5 of Table 4-3 show the differences
to be statistically significant in only two out of eight cases.

Since there is an exact formula relating the B to the y,, we can infer
either set from estimated values of the other. Having compared the
set of B inferred from the estimated y. with the directly estimated B,,
we will now reverse the process by inferring a set of y, from the esti-
mated B,, reversing the procedure described in (12), and compare
this set of 'y, with the set directly estimated from the error-learning
model. The results of this comparison are shown in Table 4-4. Once

In principle, it is possible to run these regressions directly on the forward and past
spot rates, that is, on the eight forecasting equations of the form (I). Since adjacent
interest rates are highly correlated, the estimated coefficients would be very unstable.
The revisions were used to lessen the multicollinearity problem, on the assumption that
the revisions are less intercorrelated than the rates themselves. This assumption is
likely to be true since the revisions are less dependent on the over-all level of economic
activity.
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TABLE 4-3. Comparison Between the Weights Computed With a Multiple
Regression and Those Computed From the Coefficients of the Error-Learning
Model (Durand Data, 1900—54)

Number
of Logs

(1)

B, (Mult.
Reg.)
(2)

S81
(3)

B1 (Corn-
puted)

(4)

t-Value of
Difference

(5)

1 .7457 .0199 .7029 2.1507
2 .0548 .0248 .03 18 0.9274
3

4
.0347

—.0914
.0240
.0192

.0114

.0180
0.9708

—5.6979
5 .0522 .0243 .0165 1.4691
6 .005 1 .0258 .0042 0.0349
7 .0412 .0258 .0401 0.0426
8 —.0168 .0260 —.0116 —0.2000

Note: Column 2 lists the weights estimated in the multiple regressions, a few observations of
which are as follows:

— = A + B,(R, — ,r1_1) + 7 zero values:
— = A + — + B2(R, — ,r1_,)

+ 6 zero values;
— = A + — ,+7r,_1) + . . + B8(R,

± no zero values.
Finally, the ninth observation is of the same form as the first. There is only one multiple regres-
sion to compute all the weights. In the first observation the values of the variables 2 to 8 are zero.
In the second observation the value of variables 3 to 8 are zero; and so on.

Column 3 lists the standard errors of the coefficients.
Column 4 is the weights implied by the of the error-learning model.
Column 5 divides the difference between the two estimates of the (cols. 2 and 4) by the

standard errors of those estimated by the multiple regression (col. 3). An explanation of this pro-
cedure is given in the text.

again, using the same procedure as in Table 4-3, the differences be-
tween the two estimates are statistically significant in only two out of
eight cases. In this table, while we have estimates of the standard errors
of the 'y. computed directly from the error-learning model, we have
none for the estimates inferred from the set B estimated with the mul-
tiple regression. As before, it seems plausible to consider that the
significance of the difference between the two estimates of -y, is over-
stated in column 5.

The return to normalcy model. Perhaps the most widely recognized
phenomenon in expectational economics is the so-called return to
normalcy mechanism, whereby people expect a series to move in the
direction of its normal level. Any extrapolative model that predicts
the value of a series with a moving average of past values of the series,
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TABLE 4-4. Comparison Between the Coefficients Inferred From the Directly
Estimated Weights and the Coefficients Meiselman Estimated With the
Error-Learning Model (Durand Data, 1900—54)

Span of
Revision

(1)

y.,
(Meiselman)

(2)
S,,
(3)

(Computed)
(4)

t-Value of
Difference

(5)

•1 .7029 .0312 .7457 1.3718
2 .5259 .0419 .6109 2.0286
3 .4033 .0466 .5312 2.7446
4 .3262 .0486 .3641 0.7798
5 .2770 .0459 .2864 0.2048
6 .2349 .0414 .2546 0.4758
7 .2370 .0389 .2477 0.2751
8 .2082 .0401 .2209 0.3 167

Note: Column 2 lists the coefficients Meiselman estimated with the error-learning model and
column 3 their standard errors. Column 4 is computed from the weights estimated with a multiple
regression and listed in column 2 of Table 4-3. The formula for this computation is the same as that
shown by (12) in the text, except that now the B, are known and they, are inferred. Column 5 lists
the ratio of the difference of the two estimates of the y, to a crude estimate of the standard error
of this difference. The estimated standard error is too low because it fails to include the standard
error of the M, inferred from the B,. Therefore, the t-values listed in column 5 are overestimates.

each past value weighted less than one, will produce forecasts that lie
between the extremes of the series and its expected value.'8 Since the
estimated weights of the extrapolative model introduced in this study
are all less than one, the expectations inherent in the term structure
conform with this behavior. This behavior alone, however, does not
explain the widely observed manifestation of the expected return to
normalcy [see 101 with respect to the term structure; that is, the
tendency for yield curves to decline when current short-term rates are
high and to increase when they are low. Nor is it clear what the mean-
ing is of the normal rate as distinct from the expected and mean rate.

Algebraically, the return to normalcy hypothesis can be described
in the following linear form:

(13) — = K(A5 — K < 0,
where, (,÷2F, — is the change expected at t of the target value, in
this case the one period spot rate from t + 1 to t + 2; is the target,

8 This idea underlies Hicks' coefficient of expectation when that number is less than
one [6, p. 205]. The relevance of the normal rate to the Keynesian liquidity preference
function is considered in Section V below.
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TABLE 4-5. Statistics Computed From the Regression of the Expected Change
of Future Spot Rates on the Level of the Current One-Period Spot. Rate
(Durand Data, Annual Observations, 1900—54)

(-Value
Span of

Forecast
(1)

K
(2)

(-Value
of K
(3)

Constant
Term

(4)

of Const.
Term

(5)
R2 (adj.)

(6)

—.1627 —7.2109 .6437 7.8584 .4904
,+srt—t÷irr —.1264 —11.8510 .4909 12.6817 .7246
t+3r,—t+2rt —.0997 —17.0387 .3878 18.2505 .8452

—.0741 —12.7946 .2948 14.0311 .7543
,÷5r1 —1÷4r1 —.0737 —8.2939 .3071 9.5246 .5612

—.0475 —7.8774 .1964 8.9637 .5353
1÷7r1—1÷6r1 —.0332 —6.1131 .1382 7.0177 .4070

—.0361 —8.0801 .151! 9.3173 .5481
— 1÷8r1 —.0250 —4.1018 .0981 4.4308 .2299

Note: The regressions were of the following form — = Q + k + V,p

or spot rate, at t; is the putative normal value of the series, or nor-
mal rate, as of period 1; and K is the proportion of the deviation ex-
pected to be offset; it is negative to reflect the inverse relation between
the expected change and the deviation of the current spot rate from
the normal rate.19

It is easy to confirm the inverse relation between the slopes of the
yield curves and the levels of the one-period spot rates statistically,
by running regressions analogous to equation (13).20 The results of
these regressions are listed in Table 4-5. In every case the relation

'9The expected one-period change in the short-term rate is not quite the same as the
average slope between adjacent points of a yield curve, which is a locus of long-term
rates rather than forward rates. However, the long-term rates are simply averages of
the forward rates. The difference between, say, R3 and R2 (using simple interest) is

2 3 2 (r1+r.,)
6 -.

r3 — r2 is therefore only approximately equal to the slope of the yield curve. The
notation F and A (forecast and actual) in the following analysis is interchangeable with
r and R, forward rate and spot rate, respectively, since the present analysis assumes the
forward rates are forecasts.

20 Since by any definition the normal rate will vary slowly, the use of R, in place of
— will not seriously distort the estimated relationship. The empirical relevance

of will be shown presently.
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is significantly negative and explains a substantial part of the varia-
tion of the expected changes in rates. Table 4-5, of course, is merely
a statistical confirmation of the widely recognized relationship de-
scribed above. Since regressing — on A1 in place of
(A1 — implies a constant normal rate, its magnitude can be in-
ferred by dividing column 2 into column 4 of Table 4-5. The constant
term (column 4) is equal to K which, when divided by K, will
yield an estimate of the normal rate — approximately 4 per cent. At
the expense of elegant phrasing, one may interpret this number as the
average normal rate.

Since the normal rate, as yet undefined, is not observable, confirma-
tions of the return to normalcy model's application to the term struc-
ture typically substitute A1 for — NA1) in (13), or arbitrarily assign
some value or limited number of values to NAt. Our earlier analysis
suggests a different method. Let us define in (13) as follows:

(14) NAt = B2A1_1 + B3A1_2 + . +

In other words

(15) — = KA1 — K BI+IA I_I).

On the hypothesis that (14) is true, we can estimate K as the partial
regression coefficient in (15). But we already have an estimate of the
partial regression coefficient, K. Recall that equations (2) and (5)
above defined and respectively. Substituting (2) into (5)
we have:

(16) 1÷2F1 = + B2)A1 + (BIB2 +

+ + B,+1)A1_1_1,

21 See [14], for example. Van Home adds a variable he calls "deviation of actual
from accustomed level" to Meiselman's formulation of the error-learning model. He
divides his sample period into two subperiods. "For each . . . period . . . an arithmetic
average of the beginning forward-rate levels is calculated. This average may be thought
to represent the accustomed level for the period. The deviation is simply the difference
of the actual forward-rate level from the accustomed level and is employed as the second
independent variable [in the error-learning equation]." [14, p. 349.]

This procedure is directly analogous to the one used earlier to deduce the extrapo-
lative weights from Meiselman's error-learning model coefficients.
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and subtracting (2) from (16) we get:

(17) ,÷2F, — = + B2) — BI]A,

+ [BLB, + B,÷1) — BI]A,_,_1.

The first coefficient on the right of (17) is, therefore, our estimate of
K. It will clearly be negative when B, > + B9). But, according to
(12), B1 = and + B2) = where the y's are Meiselman's error-
learning coefficients for the first. and second spans, respectively.
Therefore, K will be negative when > y,.,.,. In other words, the de-
cline in Meiselman's coefficients as the span of forecast increases is
algebraically identical to an inverse relationship between the expected
change between any two spans of forecast and the deviation of the cur-
rent spot rate from the normal rate.

To keep the algebra simple we presented the argument in terms of
the first two spans of forecasts. The results for greater spans follow in
an identical manner. The decline in the and, therefore, the fact that
B1 > + B2)> + 2B1B9 + B3) and so forth, implies, as the anal-
ysis in the previous section showed, that the extrapolative weights,
equation (1), observed for the term structure data, decline drastically
from the first weight to the second one and then taper off. In Mincer's
terminology, the f3 coefficients decline in a convex fashion.

It is the convex form of the extrapolation function that ties the de-
cline in Meiselman's coefficients y. to the return to normalcy mecha-
nism. For this pattern implies that the weight attached to the current
value A, (a weight, it turns out, that is equal in value to the error-
learning coefficient for the same span of forecast) declines for suc-
cessively greater spans of forecast.23 Therefore, the subtraction of the
shorter- from the longer-span forecast (that is, the expected change) is
equivalent to subtracting a larger from a smaller weight attached to
A,—hence the inverse relation.

But if the weight attached to A, declines with increasing span of
forecast, the weights attached to the lagged actual values A,_, must
rise, if the sum of the weights for each span of forecast is to equal 1.
In other words, as the span increases, the market gives increasing
weight to the more distant past and distinguishes less between the more

See equation (17), p. 92 of this volume.
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TABLE 4-6. Weights for Each 3pan of Forecast for Equation (12) Implied by
the Single Set of Weights Estimated for Equation (1) Data, Annual
Observations, 1916—54) -/

Span of
Forecast

(1) (2)
Ar_i
(3)

A1_2
(4) (5)

A1_4
(6) (7) (8) (9)

1 .7029 .0220 .0133 .0105 .0089 .0080 .0076 .0072
2 .5161 .0288 .0198 .0163 .0143 .0132 .0125
3 .3916 .0312 .0231 .0197 .0178 .0166
4 .3065 .0317 .0247 .0219 .0201
5 .2472 .0316 .0259 .0233
6 .2054 .03 14 .0265
7 .1758 .0312
8 .1547

Note: Looking down any column we see the weight that a particular variable gets for a particular
span of forecast. The weights are computed by taking the set shown in Table 4-I, column S. which is
an estimate of the first eight weights for equation (I) regardless of span of forecast. This single set
implies a varying set of weights (one set for each span of forecast) attached only to the inde-
pendent variables that constitute the current and lagged spot rates. For the second span, for example.
equation (I) says = + B,A B1(1÷F,) is implicitly equal to B?A, +
To get the figures listed above, we add up all the coefficients attached to the particular variable:
first A1, then A,., and so forth.

immediate and the more distant past. Long-span forecasts, therefore,
take account of the full history of the series at the expense of the cur-
rent value and, in this sense, approach what can be called a normal
rate. Table 4-6 lists the estimated weights attached to the current and
past rates for successive spans of forecast. (The table is triangular only
because there was insufficient data to make it otherwise.)

TREASURY DATA

To ascertain whether the results described in the preceding sections
were peculiar to the Durand data, we applied the same analysis to data
read off the yield curves given in the Treasury Bulletin.24

Annual rates of return on government securities were read off the
yield curves at quarterly intervals from March 1945 to December
1964. It was possible to get a continuous series only by restricting our-
selves to not more than five-year maturities; each quarterly observa-

Since Neil Wallace [16] had already read off these yield curves for his study. I

simply brought forward the data he supplied.
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tion includes the annual rates on one-year, two-year—up to five-year
maturities; five rates in all. With five rates we are able to run only three
spans of revisions in the context of the error-learning model and infer
only three weights of the extrapolation equation (1). It was not possible
to smooth so few weights to test for a systematic pattern.

Since the maturities along each yield curve are read at annual inter-
vals, the implied forecasts are also annual. As such, they should not be
related to the Spot rates observed at quarterly intervals but rather to a
four-term moving average of these spot rates. The coefficients obtained
in this manner imply a system of weights that can be appropriately
applied only to lagged spot rates observed annually instead of to the
quarterly observations used in this report. Since the available data
span is a period of only nineteen years, the use of annual observations
is not feasible. In our work with the error-learning model we have
therefore taken the annual forecasts as approximations of the quarterly
forecasts. (An experiment justifying this procedure is described in a
note to Table 4-10.) In the accuracy analysis described in Section VI
we are able to relate the forecasts to a moving average of the spot rates.

Tables 4-7 through 4-10 list the results of applying the earlier analy-
sis to the Treasury data.

Table 4-7, similar to Table 4-1, compares the estimated decline in
the coefficients of determination in regressions of the error-learning
model with the predicted decline in accordance with equation (9).25

TABLE 4-7. Comparison Between the Estimated
and Predicted Coefficients of Determination for
the Regressions of the Error-Learning Model
(Treasury Data, 1946—64)

Span Estimated R2 (adj) Predicted R2 (adj)

1 .6313 .6313
2 .3838 .3438
3 .2013 .2542•

Note: See note to Table 4-I.

The decline in the empirically estimated R2 is slower than in the predicted decline
between the first and second span; this is consistent with the presence of a nonfore-
casting component in the forward rate. There are obviously too few observations (spans
of forecast) to draw any conclusions; itt fact, the last observation goes the other way.
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Table 4-8, similar to Table 4-2, lists the, relevant statistics for the
error-learning model regressions. Again, the results are similar to those
obtained with the Durand data. When the current error, the inde-
pendent variable in the error-learning model, is replaced by a linear
combination of the prior revisions, the coefficients of determination
(column 5, Table 4-8, analogous to column 4 of Table 4-2) do not
systematically decline. Table 4-9, like Table 4-3, compares the di-
rectly estimated extrapolated weights with those deduced from the
error-learning model coefficients. Again, the differences do not ap-
pear to be significant. Finally, Table 4-10, like Table 4-4, records
the comparison between the directly estimated error-learning model

TABLE 4-8. Error-Learning Model Applied to Interest Rates on Treasury
Securities, Quarterly, 1946—64

Span
(1)

b
(2)

. Tb

(3)
R2 adj.

(4)

R2adj
(modified

model)
(5)

1 .6805 11.3004 .63129 .63129
2 .4552 6.8617 .38376 .80800
3 .3923 4.4332 .20133 .61211

The general formula of the regression is — ,÷,r,_, = a + b(R, — ,r,_) + e. Column 3 is equal to
the regression coefficients b divided by their standard errors.

Column 5 lists the coefficients of determination obtained by altering the independent variable to
consist of a linear combination of past revisions plus current error. This column corresponds to
column 4 of Table 4-2 for the Durand data.

TABLE 4-9. Comparison Between the Weights, B,, Estimated With a Multiple
Regression and Those Computed From the Coefficients of the Error-Learning
Model (Treasury Data, Quarterly, 1946—64)

Span
(1) .

B, (mult.
reg.)
(2) (3)

B, (comp.
from y,)

(4)

t-Value of
Difference

(5)

1 .6835 .0389 .6805 0.077
2 .0579 .0451 —.0079 1.4590
3 .1006 .0480 .0826 0.0350

Note: See notes to Table 4-3.



138 ECONOMIC FORECASTS AND EXPECTATIONS

TABLE 4-10. Comparison Between the Coefficients, M,, Estimated With the
Error-Learning Model and Those Computed From the Weights Estimated
With a Multiple Regression (Treasury Data, Quarterly, 1946—64)

Span
(1)

(err.
learn, mod.)

(2) (3)

y.
fr

(comp.
om B.)

(4)

t-Value of
Difference

(5)

1 .6805 .0602 .6835 0.0498
2 .4522 .0663 .5251 1.0543
3 .3923 .0885 .4991 1.2068

Note: See noses to Table 4-3.
Wallace [15, p. 25] has estimated the coefficients for the error-learning modelon the basis of

annual forecasts. We have calculated from his estimates the extrapolation weights comparable to
those listed in column 4 of Table 4-9. In addition, we have estimated these weights directly with
a multiple regression and from these estimates calculated the implied set of coefficients for the
error-learning model. Each of these estimates are listed in the following table. At the bottom of the
table are references to comparable figures for the quarterly model.

y, (err. B, (comp. B, (mult. y. (comp.
Span learn, mod.) from y,) reg.) from B,)

(I) (2) (3) (4) (5)

1 .816 .816 .8116 .8116
2 .621 —.045 —.0480 .6107
3 .499 .029 .0822 .5389

Columns 2 and 5 are analogous to columns 2 and 4, respectively, in the above Table 4-10. Columns
3 and 4 are analogous to columns 4 and 2, respectively, of Table 4-9.

coefficients and those computed from the directly estimated extrap-
olative weights. As in the case of the Durand data, the differences are
not statistically significant. The footnote to Table 4-10 records the tests
shown in Tables 4-9 and 4-10, but this time treating the forward rates
as annual forecasts. For this experiment, the current error is com-
puted as the difference between the forward rate and a four-term
average of the quarterly spot rates to ensure comparability. This more
rigorous method strengthens the result.

Table 4-11, comparable to Table 4-5, lists the relevant statistics for
the regressions of the expected change in rates on the current spot
rate. The return to normalcy mechanism, while present, is not quite as
important as in the case of the Durand data. The following are the
weights attached to the spot rates for consecutive spans of forecast.
(The number of weights shown is limited by the availability of relevant
data.)
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= + +

= +

t+3Ft =

While limited, the data do indicate a similar pattern to the one described
for the Durand data.

CONCLUSION

This section considered three separately conceived models, each of
which can be described as a method of forecasting, and each of which
is consistent with an expectational interpretation of forward rates.
The principal conclusion of the analysis is that the three models are
one model looked at from three points of view. The general form
is the extrapolative model described by equation (1). This extrapola-
tive model implies a relationship between revisions of forecasts
and current errors of forecast, referred to as the error-learning model.
It also implies a correlation between expected change in target
values and the deviation of the current target value from the normal
target value. The return to normalcy phenomenon is indicated by the
negative sign of the correlation.

It is essential to distinguish between the specification of the model
and the parameters that are estimated for it. While the error-learning
model is a particular form of the extrapolative model, its application

TABLE 4-11. Statistics Computed From the Regression of the Expected Change
of Future Spot Rates on the Level of the Current One-Period Spot Rate
(Treasury Data, Quarterly Observations, 1946—64)

t-Value
Span of
Forecast

(1)
K
(2)

t-Value
of K

(3)

Constant
Term

(4)

of Const.
Term

(5)

R2
(adj.)
(6)

—.0286 —1.1820 .4471 7.1058 .0053
— —.0653 —4.5013 .3207 8.5183 .2043

t+3r1—t÷2rt —.0622 —5.8360 .2441 8.8380 .3059
— —.0422 —2.0732 .1829 3.4603 .0421

Note: See note to Table 4.7.
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to a given set of data need not result in declining revision coefficients
(as the span of forecast increase) and, therefore, in a particular pattern
of implied extrapolative weights. It is a purely empirical result. Simi-
larly, while the return to normalcy hypothesis is consistent with the
extrapolative model, because it can be expressed as a linear transfor-
mation of it, there is no necessity in practice that K be negative.
The model, equation (13), is a transformation of(1), but the hypothesis
that K is negative is subject to an empirical test. This test, however,
is redundant once the regression coefficients in the error-learning model
are observed to decline; for then the extrapolative function is convex,
which implies that the expected change will be inversely related to the
current value. Certainly, the results in this study strengthen our con-
fidence that the forward rates contain forecasts since the data were
shown to be consistent with several reasonable descriptions of fore-
casting behavior: error-learning, extrapolation, and return to nor-
malcy. The fact that the coefficients of determination in the regressions
of the error-learning model decline with span is consistent with the
presence of an autonomous component in the forecasts. This consti-
tutes further evidence in favor of a forecasting interpretation of the
term structure.

IV. DECOMPOSITION OF FORECASTS

Section III identified an extrapolative component in forward rates
and argued that the term includes something more than mechanical
projection. The analysis also pointed to the presence of a nonextrapo-
lative component in forward rates. The present section is concerned
with empirically isolating the two components of forward rates.

The following section attempts to isolate the extrapolative com-
ponent by fitting multiple regressions of the forecasts on the current
and past spot rates. The computed values of these regressions measure
the part of the forecast that is directly or otherwise related to the
current and past spot rates; it does not measure the market's actual
use of a moving average. The residuals of these regressions measure
the autonomous component of the forecasts, the component that is
not even indirectly related to the historical pattern of the interest
rate series. This estimate of the autonomous component holds, of
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course, only in the event the forward rates consist entirely of fore-
casts. Any nonforecasting component—i.e., liquidity premia, errors
of measurement, the effects of market disequilibria, and so forth
— would also fall out in the residuals. After separating the components
we measure their contributions to the accuracy of the forecasts.

The next section utilizes two standard business indicators as possible
methods of "autonomous" forecasting, providing a different decompo-
sition of forward rates into the extrapolative and autonomous corn-

• ponents. This method drops the assumption of statistical independence
between extrapolation and autonomous forecasting. It, therefore, re-
veals the extent to which the previously estimated extrapolative com-
ponent can subsume what may be autonomous forecasting. This il-
lustration explains the relatively large extrapolative component found
earlier. Indeed, if instead of isolating the autonomous component by
first exhausting the extrapolative component of the forecasts, this
study had first exhausted the autonomous potential and left the ex-
trapolative component to the residual, there is some chance the pro-
portion between induced and autonomous components would be re-
versed. The difficulty with this alternate method of decomposing the
forecasts lies in this study's inability to specify the relevant autono-
mous variables. As it stands, the method of decomposition actually
used is equivalent to an a priori specification of autonomous varia-
bles, each of them bereft of their autoregressive components.

EMPIRICAL DECOMPOSITION

To estimate the induced component of the forecasts we regressed
the forward rates, one span at a time, on the current and past spot rates:

(18) = b1A1 + b2A1_1 + . . . + +
where, = forecasts made at t referring to t + n; = residual
term; and A1_1 = spot rate lagged i periods. To conserve data we
arbitrarily stopped the lagging process after seven lags. To more
closely approximate a real forecasting situation, one would fit separate
regressions not only for each span of forecast but also for each ob-
servation, including, for any given point of forecast, only those spot
rates occurring prior to or coeval with the given period. This method,
however, would severely limit the sample size, since many observa-
tions would be used up in the process of fitting the regressions. More-
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Over, the method entails a separate weighting scheme for each fore-
cast. We chose, therefore, to run the regressions once for the whole
period.

Another method of estimating the extrapolative component is to
use the weights estimated in our work with the error-learning model.
The procedure used, however, has the advantage of estimating an
autonomous component that is uncorrelated with the extrapolative
component, a property required in our definition of autonomous fore-
casting. It is also a procedure that simulates behavior of forecasters
who, by hypothesis, project the past values of the series into the
future. It is true, of course, that this procedure maximizes the hypoth-
esized extrapolative content of the forward rate. While this is a sim-
plification of the expectational analysis, we are imposing an under-
statement of the importance and, possibly, a misspecification of the
nonextrapolative component in the forward rate.

Each of the n regressions of (18) regresses the forward rate of a
given span on the current and past spot rates. The computed value of
(18) is our estimate of the induced component of the forecast
and the residual term, of the autonomous component. We com-
puted this regression for two sets of data: the Durand data, with n
varying from I to 9, producing nine regressions; and the Treasury
data, with four regressions. The results of these computations are
shown in Table 4-12.

The figures presented in column 2 of the table indicate that the in-
duced component accounts for a large proportion of the variation of
the forecasts. The decline (as the span of forecast increases) of the
coefficients of determination does not by itself imply that the variance
of the autonomous component is increasing with span.26 In this study's
samples, however, the variance of the autonomous component in-
creases with increases in the span of forecast.

To ascertain the relative effectiveness of either component in fore-
casting the future spot rates we have run a set of regressions of the
following form:

A —fl(t+n t / 2'j+n LI t+n,

26The well-known formula relating the three statistics is — R2), where is
the variance of the dependent variable, the forward rates in this case.
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TABLE 4-12. The Per Cent Variation of the For-
ward Rates That Is Explained by the Current
and Lagged Spot Rates (Durand and Treasury
Data)

Span of R2
Forecast Adjusted

(1) (2) (3)

Durand: Annual Observations, 1916—54

Year
1 .9878 .0346
2 .9735 .0601
3 .9597 .0733
4 .9447 .0798
5 .9196 .0868
6 .909 1 .0760
7 .8890 .0748
8 .8727 .0647
9 .8015 .0805

Treasury: Quarterly Observations, 1949—64
Quarter

1 .9543 .0377
2 .9314 .0615
3 .9177 .0724
4 .8814 .0839

Note: The general form of the regression is:

= B,A, + + B,A,..7 + E,.

Column I is the value of n; column 2, the adjusted coeffi-
cients of determination: and column 3, the squared standard
errors of the estimate.

where, = target rate in t + n; = induced component of
forecast made at t of the spot rate (target) in t + n; ,+,,E5 = autonomous
component of the same forecast; and U,+,, = residual in the regression.
The residual, is not the error of forecast except in the special
case that = B2 = 1. The results of this regression allow us to appor-
tion the contribution of the induced and autonomous components of
the forecasts to the total accuracy of the forecasts. In particular, we
can test the null hypothesis that the autonomous component con-
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tributes nothing to the accuracy of the forecasts. In Table 4-13, we
show the relevant results of these regressions for the Durand data and
the Treasury data.

In the case of the Treasury data, the autonomous component effec-
tively adds to the forecasting accuracy of the induced component in
three of the four spans of forecast. Except for the third span the im-
portance of the autonomous component to the accuracy of the forecast
increases with span; although it would be rash to generalize this out-
come.

The Durand data, however, tell a different Story. In column 3 of
Table 4-13 we observe a significant relation, aside from the first two
spans of forecast, between the autonomous component and the future
spot rates, but the relation is inverse. Not only does the autonomous
component not contribute to the accuracy of the forecast, it in fact
detracts from it.

The reason for this perverse result is not at all clear. It is one thing
to show that a component of the forecast does a bad job in the sense
that it is unrelated to the target. In such a case we could perhaps pass
it off as noise in the data or some other euphemism for our ignorance.
But when this component is systematically perverse, when it varies
inversely with the target, we should at least try to explain it. If the
autonomous component consisted entirely or in part of a liquidity
premium, would that fact explain its behavior? Why would a liquidity
premium be related to a future spot rate except in so far as this spot
rate were related to the current spot rate? If it were related to future
spot rates, for reasons other than the relation between future and cur-
rent spot rates, some form of forecasting would be implied. But the
liquidity premium component of forward rates is isolated precisely be-
cause it is a nonforecasting component. Let us say, then, a liquidity
premium is related to future spot rates because both it and future spot
rates are related to current spot rates. But recall that the autonomous
component is isolated by regressing the forward rates on the current
and past spot rates, where the residuals of this regression are the esti-
mates of the autonomous component. By the arithmetic of least
squares, the residual term in the regression is necessarily uncorrelated
with each of the independent variables, including the current spot rate.
The liquidity premium cannot, therefore, be linearly related to the
current spot rate and at the same time be included in the autonomous
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TABLE 4-13. Selected Statistics From the Regression of the Future Spot Rates
on the Induced and Autonomous Components of the Forecasts (Durand and
Treasury Data)

Partial Partial
Correl. Cot-tel.
Coef. Coef.

Squared t-Value Squared t-Value
Span of of of B of of B
Forecast R2 (adj.)

(1) (2) (3) (4) (5) (6)

Durand: Annually, 1916—54
Year

1 .8582 14.3426 .0305 —1.0342 .8505
2 .7374 9.7700 .0746 —1.6556 .7277
3 .6362 7.7108 .1340 —2.2931 .6353
4 .5264 6.1469 .1713 —2.6510 .5432
5 .4563 5.3417 .1810 —2.7419 .4861
6 .3730 4.4973 .2011 —2.9248 .4266
7 .2912 3.7368 .1930 —2.8514 .3582
8 .2484 3.3519 .2014 —2.9285 .3310
9 .2003 .2280 —3.1688 .3150

Treasury: Quarterly, 1949—64 a
Quarter

1 .7898 13.7063 .0862 2.1715 .7856
2 .3165 4.8115 .0972 2.3195 .3378
3 .4555 6.4676 .0511 1.6410 .4499
4 .4143 5.9483 .1377 2.8256 .4431

Note: The general form of the regression is that shown in the equation on p. 142,
a The forecast components were related to a four-term moving average of the quarterly spot rates

to make the forecasts and the actuals comparable.

component.27 For these reasons, the liquidity premium cannot be used
in any simple way to explain the perverse behavior of the autonomous
component. To the extent that the liquidity.premium is a linear func-
tion of the current spot rates, it will be included in the induced com-
ponent and, perhaps for that reason, contribute to the bias in the fore-
casts that we will describe later.

27 For a discussion of the view that liquidity premia are linearly related to the current
spot rates, see Kessel {8, p. 26].
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A possible explanation for the unusual result lies in the sharp decline
in rates in the 1930's. The greater the span of forecast, the more effect
this decline will have on the results, since there will be more observa-
tions in which a forecast made in the 1920's is related to a spot rate
in the 1930's. For example, in the case of a one-span forecast, there
is a sharp difference between the forecast made in 1929 and the spot
prevailing in 1930, while, in the case of a nine-span forecast, the fore-
casts made from 1921 through 1929 will be matched with spot rates
that are unusually low. To the extent that the reversion to normalcy
hypothesis is working, the forecasts will move in the same direction
though not to the same extent as future spot rates. Since, as we have
shown, this hypothesis works through the induced component, only
the autonomous component displays the perverse result.

ESTIMATING AUTONOMOUS INDICATORS IN FORWARD RATES

There are many indicators of economic activity that largely share a
common historical process, particularly with the interest rate series.
In all likelihood, a substantial part of the relationship between the
forecasts and the indicators stems from this common historical process.
Hence, if we view the indicators as variables used in autonomous
forecasting, we must drop the notion of independence between extrap-
olation and autonomous components. This method of decomposition
of forecasts can partition the observed relationship between the fore-
casts, that is, the forward rates, and the indicators into the part due to a
shared historical process and the part that is autonomous.

The coefficients of determination of the forward rates inferred from
the Treasury data regressed by span of forecast on the Federal Reserve
Board's Index of Industrial Production are .7159, .7806, .8107, and
.8 1 76, respectively, for the first four spans of forecast.

To accomplish the partition we have run a set of multiple regressions
for each of the four spans of forecast. The forecasts are regressed on
their induced component and on the Index of Industrial Production.
In other words, we have estimated the following regressions:

(19) = + B2! + u,,
where is the column of computed values of equation (18), and
/ is the Index of Industrial Production. The object is to determine the
net contribution of either independent variable (given the other) to the
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explained variation of Table 4-14 gives the relevant statistics for
this experiment.

Comparing columns 2 and 4 of this table we conclude that the rela-
tion between the Index of Industrial Production and the forecasts of
future rates stems largely from the common historical pattern in the
variation of the spot rates and the index. There is, however, a net
relation between the index and the forecasts after allowing for the
common historical relationship, and this net relation, as seen in
column 4, grows with increases in the span of forecast.

The squared partial correlation coefficients between and
t+ILF,, given I, do not reveal the full importance of the induced com-
ponent in the total forecasts. The figures in column 2 of Table 4-14
are smaller, and necessarily not larger, than the coefficients of deter-
mination between and listed in column 2 of Table 4-12.
The partials associated with reveal the net explanatory power
of the induced component, given that the common variation between

and I is already accounted for. The extent to which I shares in
the common variation of and is, in effect, deducted from
the net contribution of This point illustrates an important char-
acteristic of our method of partitioning the forecasts into the induced
and autonomous components. Even though the induced component
appears to explain a large part of the variation of the forecasts, it may
not reveal the extent of the market's reliance on past rates, whether

TABLE 4-14. Regression of Forward Rates on Estimated Induced Component
and Index of Industrial Production (Treasury Data, Quarterly, 1949—64)

Squared Squared
Span of Partial t-Value of Partial t-Value of Gross Coef.
Forecast Correl. Reg. Coef. Correl. Reg. Coef. of Deter-

(quar- Coef. Attached Coef. Attached mination
ters) of F* to F* of I to I (adj.)
(1) (2) (3) (4) (5) (6)

1 .8866 21.8365 .0078 .6909 .9667
2 .8075 15.9938 .1049 2.6743 .9564
3 .7343 12.9808 .1947 3.8404 .9480
4 .4705 7.3615 .2394 4.3817 .9003

Note: This table is based on equation (19) in the text.
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by extrapolation or other autoregressive models, in making its fore-
casts. The indicator varies over time in relation to the business cycle
in a manner similar to that of the interest rates. Through this common
relation, part of the correlation between the forward rates and the
indicator will show up in the relation between the forward rates and the
past spot rates.

The partials in column 4 of Table 4-14 tell a less ambiguous story.
Here we see the influence of the index on the forecasts that is inde-
pendent of the variation of the past spot rates. The crucial difference
between the two sets of partials that underlies the apparent asymmetry
of our method resides in the relative ease with which we and others
can more or less exhaust the induced variation of the forecasts com-
pared with the difficulty of exhausting the autonomous variation.28

To say that the Index of Industnal Production is related to the
autonomous component of the forecast does not imply that investors
actually consulted this particular indicator. By eliminating variables
not related to the forecasts we can reduce the set of possible indicators;
but the proper selection among the set of variables that cannot be
excluded is not a statistical problem.

We experimented with one other indicator we considered likely to
influence the forecasts of future spot rates, namely, an index of in-
dustrial stock prices.29 As before, we regressed the forecasts on their
induced component and the indicator. The coefficients of determination
of the forecasts regressed on the Index of Industrial Stock Prices are,
respectively, .786 1, .8595, .8892, and .8889 for the first four spans of
forecast. The Index of Industrial Stock Prices is related somewhat
more to the forecasts than was the Index of Industrial Production.
For the same purpose as before we have run regressions similar to
(19), replacing the Index of Industrial Production with the Index of
Industrial Stock Prices. The results are shown in Table 4-15.

We say more or less because we had to arbitrarily limit the number of lags in the
computation of the induced component to seven; we have a limited sample, and we have
fit the entire period instead of only the spot rates prevailing in the period prior to the
forecast period.

29 We did not experiment with different indexes for this purpose (or with any other
variables) but settled on the Dow Jones Index of Industrial Stock Prices recorded in
the Survey of Current Business. Whether one indicator is more correlated with the fore-
casts than another is not crucial in the present context, since our main purpose in this
section is to illustrate empirically the proposition that the decomposition of forecasts
is a method of analysing market behavior, not a literal description of it.
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TABLE 4-15. Regression of Forward Rates on Estimated Induced Component
and Index of Industrial Stock Prices (Treasury Data, Quarterly, 1949—64)

Squared Squared
Span of Partial t-Value of Partial t-Value of Gross Coef.
Forecast Correl. Reg. Coef. Correl. Reg. Coef. of Deter-

(quar- Coef. Attached Coef. Attached mination
ters) of F* to F* of S to S (adj.)
(1) (2) (3) (4) (5) (6)

1 .8532 18.8278 .0327 1.4359 .9674
2 .7215 12.5709 .1704 3.5399 .9596
3 .5921 9.4116 .2770 4.8339 .9533
4 .2356 . 4.3359 .3309 5.4918 .9123

Note: See equation (19) for the general regression underlying this table.

When both indicators are included in the regression as well as the
induced component of the forecasts, with the forward rates again
serving as the dependent variable, the results are similar to those
shown for the indicators taken separately. In Table 4-16, we see that
the presence of stock prices in the regression reduces the net contribu-
tion of the Index of Industrial Production. The adjusted coefficients
of determination shown in Table 4-16 are, in fact, lower than those for

TABLE 4-16. Regression of Forward Rates on Estimated Induced Component,
Index of Industrial Production, and Index of Industrial Stock Prices (Treasury
Data, Quarterly, 1949—64)

Span of Squared Squared Squared Gross
Fore- Partial (-Value of Partial t-Value of Partial i-Value of Coef. of
cast Correl. Reg. Coef. Correl. Reg. Coef. Correl. Reg. Coef. Deter-

(quar- Coef. Attached Coef. Attached Coef. Attached mination
ters) of F* to F* of S to S of! to S (adj.)
(1) (2) (3) (4) (5) (6) (7) (8)

1 .8545 18.7676 .0343 1.4604 .0094 —.7561 .9673
2 .7211 12.4550 .0733 2.1792 .0002 .1120 .9589
3 .5929 9.3479 .1091 2.7104 .0077 .6830 .9529
4 .2359 4.3044 .1345 3.0541 .0163 .9960 .9122

Note: The general regression underlying this table is as follows:
= + B,S + B3! + I'.
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the simpler regression in Table 4-15. This experiment concludes the
analysis of the relationship between the indicators of economic activity
and the decomposition of forecasts;3°

V. NONFORECASTING COMPONENTS OF FORWARD
RATES

LIQUIDITY PREFERENCE

The expression "liquidity preference" appears in the interest rate
literature in two distinct contexts, a fact that has led to a certain amount
of confusion. One concept of liquidity preference describes the
liquidity premium as a component of the forward rates that is added
to the expected rate in accordance with the degree of uncertainty with
which the expectation is held. The less certain the expectation, the
higher the premium. Since the prices of longer-term securities typically
vary more than those of shorter maturities, the premium would ordi-
narily be higher on longer maturities; the greater variation of prices
implies a greater variation in the possible holding period yields and,
therefore, a greater uncertainty attached to any particular yield. This
analysis is applicable, although with varying degrees of importance,
whether the security is held to maturity (in which case there is no
selling price variation) or is sold in advance of maturity. Even when
the security is held to maturity, its value will fluctuate with the price,
and the measured wealth of its holder along with it. In many situations
—in principle, in all situations—a decline in measured or paper wealth
is as significant as a decline in realized or cash equivalent wealth.
Where it is not, the price fluctuations are less important. Since long-
term securities provide stable income streams and obviate the expense
of continual reinvestment, they are preferable to short-term securities
in cases in which unrealized capital changes are not important. A posi-
tive liquidity premium implies that on balance the reverse is true. Since
there are arguments for and against the likelihood of a liquidity pre-
mium, its presence is ultimately an empirical question.

In Keynesian literature, the term "liquidity preference" means

For an interesting analysis of the relationship between economic indicators and the
forward rates see Wendel [17].
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something else. There, the liquidity preference function relates the
demand for money to the level, not the dispersion, of interest rates.
According to Keynesian theory, when this level is low relative to some
normal or typical rate, investors expect future rates to be higher, and
vice versa. If the interest rate were regarded simply as the opportunity
cost of holding money, implying a negatively inclined demand curve for
money (as a function of the interest rate), the introduction of this ex-
pectational theory justifies hypotheses about its shape [13). Liquidity
preference in this context refers to expectations of a change in the
level of rates, not to the risk of a change in rates. For a given expecta-
tion, the liquidity premium due to risk will vary with the certainty with
which the expectation is held. When, for example, the current rate is
at its normal level, and therefore, according to the expectational theory
under review, rates are not expected to change, liquidity premia may
still exist and may differ in accordance with the risk that the expecta-
tion of no change will prove to be wrong. The determinants of this
risk (and, therefore, of the liquidity premia) are difficult to specify;
but certainly the dispersion of rates in the near past will be a factor in
the expected dispersion of future rates.3'

This notion of an expected return to normalcy is the basis for the
controversy some years back over the so-called liquidity trap. In
principle, a liquidity trap exists when the level of rates falls so far
below normal that investors, expecting an ultimate rise in rates, and

It may be that this dispersion is itself a function of the level of rates, a fact that
would empirically obscure the distinction between the two concepts of liquidity prefer-
ence. But, if there is such a relation, it should hold not for the arithmetic difference be-
tween the level of the current rate and the mean level but for the absolute difference,
since it is the probability of a turn, whether up or down, that justifies the relation.
Therefore, to predict liquidity premia with knowledge of the level of rates alone requires
an additional hypothesis that investors' concern over dispersion is asymmetrical. When
the level of rates is high and expected to fall, the investor risks a double beating: He
accepts a lower rate on longer term securities, whose prices will fall drastically in the
event future rates rise instead of fall. This situation could produce a large liquidity
premium. However, when the level of the current rate is low and expected to rise, the
investor requires a higher rate on longer-term securities in compensation for the ex-
pected rise in rates and capital loss. In the event he is wrong and rates actually fall
further he is twice blessed — he obtains the higher initial yield plus the unexpected capital
gain. Since the investor, in effect, hopes he is wrong, he does not require a liquidity
premium to cover this possibility. This asymmetry may account for the often hypothe.
sized positive relation between liquidity premia and the level of rates. On this point see
Cagan [I].
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therefore decline in prices, are unwilling to hold bonds out of fear
that the expected capital loss will wipe out any income they earned
from holding bonds instead of money. At this level of rates, the de-
mand for money is said to be infinite. The use of the term "liquidity"
in this context implies market forecasting of future rates. In the case
of the liquidity trap, the term "liquidity" refers to the investor's pref-
erence for holding money rather than bonds because the expected
return from holding bonds (consisting of interest payment plus the
difference between the buying and expected selling prices of the bonds)
is too low to compensate him for losing the convenience of storing his
wealth in the form of money. Although originally expressed in terms of
bonds and money, the concept of liquidity preference can be gen-
eralized to mean equalization of expected rates of return on all assets.
When the level of rates is high, for example, investors, expecting rates
to fall (and therefore prices to rise), will accept a lower nominal yield
on longer-term securities in expectation of a favorable capital change
when the rates fall. This situation is embodied in a declining yield
curve. At the same time that the declining yield curve implies the
market's forecast of lower rates, it can be said to reflect the market's
attempt to equalize expected yields on different maturities. In either
case, the shape of the yield curve is a measure of expectations.

Recent writers on the term structure have been aware of the distinc-
tion between the two concepts. Wendel [17), for example, distinguishes
"regressive forecasting" from "liquidity-hedging," his terms for the
expected return to normalcy and the attempt to avoid the dispersion
of possible yields around the expected yield, respectively. Kessel [7]
ingeniously used the distinction to explain the so-called humped yield
curve. After demonstrating to his satisfaction32 that liquidity premia
are positively related to the level of one-period spot rates, Kessel
argued that these premia dominate the short part of the yield curve.
When the level of rates is high relative to some normal level, however,

32 According to Kessel, if the bill rate is taken as compensation for eschewing the
services of money, then liquidity premia may be viewed as compensation for eschewing
the services of money substitutes. Since a three-week bill is closer to a two-week bill
than a two-week bill is to money, the premium for holding a three-week bill instead of a

bill is less than the premium for holding a two-week bill instead of money.
To complete the analogy, Kessel reasoned that liquidity premia should rise with interest
rates: The cost of holding two- instead of three-week bills should rise with the cost of
holding money instead of two-week bills [8, pp. 25 if].
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future rates are expected to revert toward their normal level, causing
the yield curve to decline. This effect, according to Kessel, is most
apparent beyond the short part of the curve. The resulting yield curve
when the level of rates is high has the familiar humped shape, similar
in appearance to a right-skewed frequency distribution. Thus, Kessel's
explanation of the humped yield curve clearly requires both a liquidity
premium positively related to the level of rates and a convex distribu-
tion of extrapolative weights.

ERRORS OF MEASUREMENT

There is little question but that the smoothing of the term structure
data into yield curves enhances the autoregressiveness of the data. The
use of the raw data in place of readings from the yield curves would
result in lower coeffiôients of determination in the extrapolative re-
gressions, as well as in the error-learning model regressions. Apart
from the closeness of fit, the question remains whether the smoothing
of data is also responsible for the convex pattern of weights observed
earlier and, therefore, for the conclusions that were based on this
pattern of weights.

One conclusion of the earlier analysis was that the parameters ob-
served in connection with any one of the three autoregressive models
implied the parameters of the other two. It is enough, therefore, to
show that the parameters of at least one of the models do not depend
on the smoothing of the data in order to release the entire analysis
from this constraint.

A study of the actual yield curves reveals that, regardless how faith-
ful the yield curves are to the raw data, there is no tendency for them
to alter the direction of rates along a given curve. In October 1959,
for example, the level of government rates was relatively high, and the
yield curve, as well as the yields themselves, declined with maturity;
in April 1963 the level of rates was relatively low, and both the curve
and the yields inclined.33 The same idea materializes in the case of
Durand's data [4, "Basic Charts"]. This characteristic of the data
motivated the expected return to normalcy model and constitutes
evidence of the appropriateness of the model.

Since the inverse relationship between the slope of the yield curve

Treasury Bulletin, December 1959, p. 54, and June 1963, p. 71, respectively.



154 ECONOMIC FORECASTS AND EXPECTATIONS

and the level of rates is characteristic of the raw data rather than an
artifact of the yield curves, the test of the expected return to normalcy
model is sound. While the use of the raw data would result in poorer
fits and less stable coefficients, it could not abrogate the inverse rela-
tionship, which is observable even without regression analysis. The
main results of this study, therefore, do not depend on the smoothing
of the data, in the case of the Durand data, however, the importance
of the extrapolative component is likely to be overstated.

VI. ACCURACY OF THE FORECASTS

THE MEAN SQUARE ERRORS

Several commentators have rejected the expectations hypothesis on
the grounds it was implausible for market forecasts to be so bad for so
long ([5] and [3]). Mejselman, however, regarded the plausibility cri-
terion as irrelevant, alleging that the expectations hypothesis asserts
only that the market attempts to forecast future rates, not that it is
successful. Between these extremes are those writers who regard the
bad forecasting record implied by the term structure as an indication
that expectations, while perhaps an important determinant of the term
structure, is not the only relevant factor. Within this group, Kessel
emphasized the importance of liquidity premia, while Wendel proposed
some combination of liquidity preference and hedging.

The presence of liquidity premia would cause an upward bias in the
forecasts. However, it does not follow that an upward bias implies
the presence of liquidity premia, since the forecasts themselves may
be biased. Whatever the cause of the commonly observed tendency
for long-term rates to exceed short-term rates, it is useful to separate
this effect from the purely random error of forecast. Even when non-
forecasting components are not an issue, for example, when the data
are explicit forecasts, isolation of a bias in prior forecasts may sug-
gest adjustments of current forecasts to offset the bias. Therefore,
instead of simply reporting the mean square error of forecasts, we
shall separate the contributions to the error of the bias and the random
term.

The mean square error of forecasts, M E(A, — can be broken
down into the mean error squared (A — F)2, and the mean of the
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squared deviations of the individual errors from the mean error, or
the variance of the errors, — F1) — (A — F)]2. The purpose of this
decomposition is to allow us to distinguish between the systematic
errors of forecast, or the bias, and the random errors.34 A perfect cor-
relation between the actuals and forecasts implies the absence of a
random error but does not preclude a consistent bias in the forecasts.
The random error, for example, would be unaffected by the existence
of a constant liquidity premium that caused the forward rate to con-
sistently overstate the true forecast. In the case where the correlation
coefficient was 1, the mean square error of forecast would be zero only
in the case where a = 0 and b = I in the regression:

(20) = a + + u.

Since a = A — bF, a would equal the mean bias only in the case where
b = 1. There are, therefore, two sources of bias: mean bias and bias
in the slope, the remaining error being random. It is useful, for this
reason, to further decompose the mean square error.

(21) M E(A1 F1)2 = (A — F)2 + (1 —

b is the regression coefficient in (18) and r2 the coefficient of
determination. Following Mincer and Zarnowitz, we combine the first
two terms on the right into and call the residual term Mi-, so that
MF = + Mi-. If the combined term, is not significantly different
from zero, it is not necessary to show the two components of error
separately. Since the significance of both the constant term and the
regression coefficient of (20) enters into the significance of UF, it is
desirable to test the two terms together.35

To evaluate the effectiveness of the forecast it is useful to establish
as a criterion a hypothetical set of forecasts that can be generated
mechanically, and the effectiveness of which varies with the ease of
forecasting any particular series. In general, the ease in forecasting a
series is a function not only of the variance of the series but also of the
degree of autocorrelation in the series. The more systematically the
series varies over time the easier it is to forecast, for reasons that
should be apparent from our earlier analysis. However, a series whose

See Jacob Mincer and Victor Zarnowitz, "The Evaluation of Economic Forecasts,"
and the references therein, in Chapter I of this volume.

15 The formula for this test is given in [7, p. 24].
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variation is random with respect to time, unless its range of movement
or its variance is very small, is difficult to forecast (assuming no
knowledge about the relation between this series and other series).

Many researchers have used the so-called naive models to generate
their hypothetical or "benchmark" forecasts. The naive models are
simply a class of moving averages relating the current value of some
series X to its own lagged values, or

(22)
=

The two most common variants of these models are the "no change"
and the "same change" models. In the former, B1 is set to 1 and B1 to 0
for i > 1. In the latter, B, = 2, B2 = —1, and B = 0 for i > 2. Other,
more complicated, systems of weights have been used. But these
methods have in common the fact that the B, coefficients are chosen
without regard to achieving the maximum fit between and
Since the degree of fit is, in this context, the measure of the effective-
ness of the hypothetical forecasts, these methods do not provide the
strongest criterion possible for evaluating them.36

For reasons analogous to those used to support our method of esti-
mating the induced component of the forecast, an estimation form is
required that will exhaust the extrapolative potential of the data. The
naive model must provide the sternest criterion possible in evaluating
the forecast. To aim for less is to tie the conclusion to the particular
naive model chosen and therefore to invite questions of its importance.
No set of a priori weights will guarantee the best extrapolation.

In principle, an optimal extrapolation depends on the structure of
the series and must be estimated from the data.37 In practice, this is
difficult to accomplish but, as an approximation, we fit one regression
for the whole period and use the (squared) standard error of the esti-
mate as the measure of the mean square error of forecast. By regressing
the forward rates on the appropriate target values within the sample
period for which the benchmark was computed, we computed compar-
able measures of the errors of forecast of the forward rates and of the

36 While we have no desire to magnify this fine point, it is a fact that some researchers
test their models against excessively weak naive models and congratulate themselves
unduly on their success.

See Mincer and Zarnowitz, p. 32 if of this volume.
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optimal benchmark. We can say optimal benchmark because the
method equates the squared standard error of the estimate, necessarily
a minimum, with the mean square error of forecast.

To compute this benchmark we ran, for each span of forecast n,
the following multiple regression

(23) = + + . + +

where is the, spot rate at t + n and a random term. Equation
(23) measures the maximum amount of the variation of the spot rate
that it is possible to explain with the variation of its own lagged
values.38

We computed the summary statistics MF, UF, and described
earlier, for both the forward rates and the hypothetical forecasts based
on the naive model. We then took ratios of the former statistics to the
latter to determine the forecasting effectiveness of the forward rates
relative to the moving average forecasts. The presumption is that one
forecaster, with knowledge of current and past economic activity and
of the relations among the available economic time series, should
forecast better than another forecaster with knowledge only of the
past behavior of the series being forecast. Table 4-17 shows the rele-
vant results of the simple regressions of the actual values (that is,
the forecast targets) on the relevant forward rates for the Durand and
the Treasury data. The general form of the regressions is shown in
equation (20) above. Table 4-18 decomposes the errors of forecast
into three components, as described in equation (21), and relates the
components to those of the hypothetical forecasts. If the forward rate
had forecast as well as the hypothetical forecasts, the figures in column
(8) of Table 4-18 would center on unity. In the case of the Durand
data, the ratios are between 1.5 and 2.0; although the corresponding
figures for the Treasury data are not far from unity. Comparing
columns (7) and (8), especially for the Treasury data of Table 4-18,
one can see the extent to which the bias obscures the relation between
the forecasts and the future rates. In conclusion, while the forecasts

One should take account of the stringency of this criterion in evaluating the empiri-
cal results below. However, given the low level of accuracy of the autonomous com-
ponent of the forecast, described above, it is unlikely the conclusion of the present
analysis would change with respect to the Durand data, although perhaps it would with
respect to the Treasury data, if a weaker naive model were used.
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TABLE 4-17. Relation Between Forecasts and Future Spot Rates

Span of
Forecast

(1)
b.4F

(2)
t-Value (bAF) Intercept

(3) (4)
R2 (adj.)

(5) (6)

Durand: Annually, 1916—54

1

2
3

4
5
6
7
8
9

1.0397
1.0456
1.0318
.8811
.9938
.9473
.8608
.8330
.6167

13.61 19 —.4013
8.6671 —.6383
6.3368 —.7592
4.7555 —.7523
3.8369 —.9016
3.0377 —.8118
2.3785 —.5509
1.9541 —.5341
1.2561 .2368

.8328

.6670

.5141

.3688

.2705

.1819

.1118

.0709

.0154

.6170
1.2318
1.7930
2.3291
2.6919
3.0188
3.2775
3.4287
3.6332

Treasury: Quarterly, 1949—64
1

2
3

4

.8603

.5467

.6416

.7056

13.9589 .0666
5.2188 1.0583
6.7367 .8176
6.5607 .6960

.7885

.3353

.4605

.447 1

.1627

.5114

.4150

.4253

Note: Each of the regressions is of the following form: A,., = a ± ± ii,,, a = I, 9.

implied by the Durand data clearly do not evince effective forecasting
ability, those implied by the Treasury data do much better, and they
deteriorate less rapidly than the naive model.

FORECASTiNG AND THE TERM STRUCTURE OF INTEREST RATES

This study has explored the importance of extrapolative forecasting
as a determinant of the term structure. It has shown not only that an
extrapolative model accounts for a large part of the variation of the
forward rates but that this model implies a method of making forecasts
that is both plausible and consistent with other proposed models. If
extrapolation of past spot rates were in fact the only method the market
used to forecast future rates, then, at best, its forecasts would equal
the performance of the naive model. (In this context recall that the
naive model used in this study is optimal in view of the method used
to evaluate the forecasts.) While the Treasury data reveal some
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TABLE 4-18. Comparison Between the Errors of Forecast Due to the Forward
Rate Forecasts and the Moving Average Forecasts (Durand Data, Annual
Observations, 19 16—54)

Span of MF
Fore- (I — b4,.)2 M. (cols.
cast — (1 — 2 + 3 + 4) RM RM'
(1) (2) (3) (4) (5) (6) (7) (8)

Durand: 1916—54

I .0626 —.0152 .6170 .6644 .3935 1.6884 1.5679
2 .2087 —.0372 1.2318 1.4033 .8131 1.7258 1.5115
3 .3765 —.0467 1.7930 2.1228 1.1297 1.8790 1.5871
4 .5488 —.0645 2.3291 2.8134 1.5182 1.8531 1.5341
5 .7590 —.0695 2.6919 3.3814 1.7190 1.9670 1.5659
6 .9356 —.0953 3.0188 3.8591 1.8729 2.0604 1.6118
7 1.0396 —.0883 3.2775 4.2288 1.9904 2.1245 1.6466
8 1,1661 —.0747 3.4287 4.5201 1.8147 2.4908 1.8894
9 1.2510 —.0407 3.6332 4.8435 1.8151 2.6684 2.0016

Treasury: Quarterly, 1949—64
1 .1341 —.1247 .1627 .1721 .1499 1.1481 1.0854
2 .1009 .0605 .5114 .6728 .4779 1.4078 1.0701
3 .0574 .0379 .4150 .5103 .4013 1.2716 1.0341
4 .0157 .0286 .4253 .4696 .4427 1.0607 0.9607

- Note: Columns 2 through 5 are based on equation (19). See text for explanation of symbols.
Column 6 is computed from equation (21), where A,÷, = + Since there is no bias in the
moving average, M Mt.

autonomous forecasting, its extent is too small to compensate for the
market's inability to take maximum advantage of the extrapolation. If
it is true that extrapolation is the dominant method of forecasting, then
the ratios in column 8 of Table 4- I 8, again referring to the Treasury
data, are actually surprisingly close to unity. The fact that the per-
formance of the forward rates improves relative to the naive model as
span increases, and actually exceeds the naive model in the fourth
span, is consistent with the evidence in Table 4-12, which shows that
the importance of the autonomous component increases with span.

Nevertheless, the skimpy evidence of autonomous forecasting is dis-
appointing to those who support a simple expectations hypothesis. It is
not possible to ascertain whether the ineffectiveness of the autonomous
component is due to a varying liquidity premium, in the absence of a
method of accounting separately for the variation of this component.

4.-.
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Another possible source of trouble lies in the greater vulnerability of
the forward rates to errors of measuring the long-term rates as the
maturity of the latter increases.39 Such an effect can be visualized as
follows: Assume simple interest. Say the one-period spot rate is 3.00
and the two-period, long-term rate 3.01; the implied forward rate is
2(3.01) — 3.00 = 3.02. Now consider the same numbers for higher ma-
turities: The nine-period long-term rate is 3.00 and the ten-period long-
term rate 3.01. In this case, the implied forward rate is 10(3.01) —
9(3.00) or 3.10. If either of the two rates in each comparison included
a measurement error of one basis point, it would throw off the ten-span
forward rate by ten points, but the two-period rate by only two points.
We have no way of evaluating the importance of this effect.

In the case of the Durand data, however, the markedly inferior per-
formance of the forward rates compared with that of the naive model is
troublesome. The perverse behavior of the autonomous component ex-
plains part of this result, but there still remains the inability to make
maximum use of the extrapolative potential.

The persistent bias in the forward rate forecasts is another matter.
This study has not isolated the source of this bias. There is an un-
deniable tendency for yield curves to incline; an undeniable tendency
for longer maturities to yield more than shorter maturities. Kessel per-
suasively argues that the source of this bias lies in the presence of a
liquidity premium. Since interest rates for most of the postwar period
have been low relative to historic levels, the continuing expectation
that they would rise also imparts a bias to the forecasts. Whatever the
source of the bias, there is little question but that a method of evaluat-
ing the forecasts that failed to separate the bias from the random error
would cast a shadow over the relevance of forecasting in the determina-
tion of the term structure.

VII. SUMMARY AND CONCLUSIONS

This report is an extension of recent attempts to evaluate the hypothe-
sis that yield differentials of securities, differing only by their term to
maturity, are determined by market forecasts of future spot rates of

39This point was made by Van Home [15].
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interest. Since its inception, this hypothesis has appealed to the
theorist's urge to summarize in a simple way the vagaries of many
groups acting from diverse motives over the whole range of securities.
Opponents of the hypothesis, aside from those who argue that the mar-
kets for different maturities are independent of each other, think it im-
plausible to suppose that investors make some point estimate of a
short-period rate expected to prevail several years later. This criticism,
however, is based on an invalid analogy between a market and an indi-
vidual. The market, like a mean, is an abstraction that may differ from
any of the elements participating in it. Horizons differ among the many
investor groups, and few may extend over a long period. But the fact
remains that yields on nine-year and ten-year securities differ by vary-
ing amounts that are unlikely to be explained by variations in the
supply of securities. These variations in the yield curve will inspire
speculative action whenever their implied forward rates are unusual.
The process of ensuring reasonable forward rates is arbitrage rather
than speculation, and it lends a certain smoothness to the term struc-
ture. The practice of arbitraging along the yield curve implies no un-
usual horizon, although some investors will look further than others
and define reasonableness in a narrower range, at which point arbitrage
shades into speculation. There is no great risk in eliminating an implied
negative forward rate, but exchanges along the yield curve become
more and more speculative as investors attempt to replace one reason-
able forward rate with another. How far the observed forward rate
must differ from the expected rate before it inspires arbitrage will
differ for different investors: Some, obviously, never arbitrage along
the yield curve; others, only when the implied forward rates are, per-
haps, negative; others will come in for fine adjustments. There is in
this process nothing to offend one's sense of reality, even if the more
abstract analysis temporarily ignores the market mechanism.

At some point there may be two alternative investments available —
a security with n periods left to maturity and one with n + 1. The yield
differential of the longer security depends on what one-period yield is
expected in the (n + l)st period. A rise in the one-period yield in n + 1
would drive down the price on the longer security at the start of period
n + 1, in order that buyers of this security in n + I could get the same
yield as that available on a one-period security during the (n + I )st
period. The expectation in period t of a fall in the price of the n + I
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term security in period n + 1 is equivalent to an expectation of a rise
in the one-period rate in period n + 1. If, on balance, investors act to
equalize the yields of the different, maturities, then any observed dif-
ferences in these yields at some point implies particular
of future rates (or prices). The link between the equalization of ex-
pected holding-period yields and forecasts of future rates, therefore,
resides in the fact that a holding-period yield is equal to the sum of the
coupon return (if any) and the difference between the known buying
and the expected selling prices of the security.

The present study is not directly concerned with an evaluation of the
expectations hypothesis. Instead, the hypothesis is assumed correct,
and the data are evaluated for their implications of how the forecasts
are made and for the effectiveness of the forecasts. To consider how
the forecasts are made, a dichotomy—one of many possible frames of
reference—is proposed that separates the forward rates, regarded for
this purpose as forecasts, into the part that is related to the current
and past spot rates and the part that is not—the induced and autono-
mous components, respectively. The induced (or extrapolative) com-
ponent is most generally expressed as a weighted average of current
and past spot rates but is not limited to an extrapolative procedure as
the term is generally used. Instead, the induced components collects
all possible arrangements of current and past spot rates, as well as the
autoregressive components of other variables that are contemporane-
ously related to the forecasts. Most of the text is devoted to a discus-
sion of this point. The optimal arrangement of the current and past spot
rates, as distinct from the arrangement the forecasts are observed to
utilize, is used as a standard for evaluating the accuracy of the fore-
casts.

The study considered the following three variants of the induced
component:

(I) the extrapolation model = B1A, + . +

(2) the error-learning model — = a + B(AE —

(3) the return to normalcy model — = K(A1 —

k < 0;

where, 1÷,,F, = forecast made at t of a target at t + n; = actual value
at t; and = normal value at 1. The first model says forecasters project
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some weight of averaged current and past actual values. The second
model says forecasters revise their forecasts in accordance with re-
vealed errors of earlier forecasts. The third model says forecasters
project a change in target values in the direction of a normal value. All
three models are, of course, linear.

Since one linear autoregressive model is naturally a linear transfor-
mation of any other linear autoregressive model, the parameters esti-
mated for one such model imply corresponding weights for the others.
However, for a given span of forecast, the models need not utilize the
same number of past values; more generally, the models may differ in
the number of their zero coefficients. This study circumvents the prob-
lem of comparability by considering several spans of forecasts, each of
which utilizes different values of the series. Therefore, the error-
learning model, which utilizes only one lagged value of the series for a
given span, will, over several spans, generate a sufficient number of
parameters for comparison with an extrapolative model of one span.
Since the term structure data incorporate several spans of forecast,
they are well suited to the present study.

By establishing algebraically the transformations bridging the extrap-
olative, error-learning, and return to normalcy models, the study is
able to demonstrate the comparability between the parameters directly
estimated for any one of the models and those implied by the estimated
parameters of the other two. Because of the common derivation of the
three models, or of any other linear autoregressive models, it is clearly
not possible to select from among them one that can be said to describe
the data most adequately. The models are simply alternate methods of
describing the induced component.

The algebraic equivalence among the three models, however, does
not nullify the value of distinguishing among them, since they each
imply different motivations for behavior, It is entirely possible, for ex-
ample, to obtain a set of parameters for the extrapolative and error-
learning models that are plausible but that yield parameters for the
return to normality model that contradict the hypothesized expected
return to normalcy. While it is not possible to ascertain the precise
motivation underlying the forecasts, it is possible to distinguish be-
tween the models that do and do not yield parameters that are plausible
with respect to their behavioral implications.

Since interest rates are related on a contemporaneous basis with
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other variables that could conceivably influence the forecasts, the
autoregressive structure of interest rates will include part of the
autoregressive structure of these other series — the extent of the in-
clusion being determined by the extent of the contemporaneous corre-
lation. The relative influence of the induced and autonomous com-
ponents on the forecasts depends, therefore, on which of the two com-
ponents is measured directly. This study estimated the autonomous
component only alter exhausting the extrapolative potential of the fore-
casts, thereby excluding from the autonomous component the autore-
gressive components of the other variables. It is important to inter-
pret the relative importance of the two components in the light of this
method, which clearly exaggerates forecasters' actual reliance on the
autoregressive structure of the target series.

With respect to the accuracy of the forecasts, the study showed that
the forecasts did not perform as well as the autoregression model.
While this reveals a bad forecasting record, it does not imply
that the market is not trying to forecast. This report has shown that
moving averages of past rates account for the major part of the varia-
tion of the forecasts; the last result implies that these moving averages
can themselves stand improvement.

An important part of the accuracy analysis lies in the breakdown
of the total mean square error into the part due to bias and the
part that is random. The importance of the bias relative to the total
mean square error increases, in the case of the Durand data, from about
10 per cent for the one-span forecast to about 25 per cent for the nine-
span forecast. For the Treasury data, the ratio is about one-third
throughout. The extent of this bias has evoked considerable comment
in the literature on the term structure, and its source has been variously
explained. For most of the period in which the bias is observed in both
sets of data, the one-period spot rates were abnormally low. The
mechanism described earlier—the apparent expectation that rates will
return toward some central tendency—would also produce a bias in
the errors of forecast, especially in the Durand data where the rise in
rates expected in the early 1930's failed to materialize for two decades.

The effect of liquidity preference on the term structure is a complex
subject that is outside the scope of this report. It is likely that the mag-
nitude of the liquidity premium changes with shifts in the degree of an
investor's certainty about future rate movements. If so, the liquidity
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premia would obscure part of the effectiveness of the true forecasting
component of the forward rates. A sequel to this study could very
reasonably be based on an analysis of this subject. A clean test for the
efficacy of this analysis could be based on the determination whether
the removal of properly isolated liquidIty premia, so isolated, showed
the true forecasting component of the forward rates more clearly.
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