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1. Introduction

The problem of evaluating econometric models is here viewed as a par-
ticular case of a general class of problems called decision problems. Since
the authors are attracted to a particular approach to decision problems, the
Bayesian approach, we have written this paper in order to see what light can
be shed by Bayesian decision theory on the evaluation of econometric models.

Briefly, the decisions d that might be chosen lie in some decision space 2.
There is some space Q of possible alternative circumstances 6, and your
opinion over this space is given by the probability density with element
p(0) db. If one’s utility function is U(d, ), representing the relative desirability
of the decision d if the alternative 8 were true, Bayesian decision theory
recommends that you choose that decision d which maximizes the integral

fn U(d, 0)p(6) dO (1.1)
(See F. Ramsey, 1931, Von Neumann & Morgenstern, 1947, and Savage,
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1954, for the theoretical background of this choice, called the principle of
maximum expected utility.)

The view that this simple paradigm might play a fundamental role in
statistics by providing a theory analogous to price theory in microeconomics
has been met with considerable controversy among statisticians. Some stat-
isticians maintain that the inputs, particularly the opinion p(0)d6 and the
utility function U(d, §), are very difficult to obtain in applied contexts, while
others resist the notion of any kind of organizing principle for statistics. The
burden of proof is on Bayesians to show that the principle suggested by (1.1)
is useful as a way of thinking about statistical problems and that the inputs
are worth the trouble to discover. In this light, the problem of choice between
econometric models is a fine test case.

While we will speak of econometric models in general, the specific model
we will refer to and have in the back of our minds most often is the choice
between linear regressors, especially the choice whether or not to add some
specified variable to a model. However, because our viewpoint is very general
(and this is a distinct advantage of Bayesian theory), much of what we say
has much wider applicability. )

An enormous literature already exists on these and related questions,
some of which is reviewed in Gaver & Geisel (1973), Harvey & Collier (1977),
Hocking (1976), and J. Ramsey (1974). We cannot hope to take up each of the
methods reviewed in these papers, but rather will deal with strengths and
weaknesses we find in classes of such methods.

Some methods, typified by the use of tests of hypotheses, ask whether or
not the submodel is a “true” restriction of the larger model. The level of the
test is the probability under the submodel that the statistic in question would
be as large as observed or larger. However, practicing statisticians have long
been aware that the question of the exact “truth” ofa sharp statistical hypoth-
esis is hardly ever appropriate (Berkson, 1938). Nearly every model used in
econometrics is known a priori to be literally false. Because of this, although
a typical statistical test with a small sample will rarely reject, for large enough
samples it will nearly always reject. Consequently, whether or not a test
rejects a null hypothesis appears to have more to do with the sample size
than with how true the null hypothesis is. For these reasons we find methods
based on classical tests of hypotheses to be most unsatisfactory. A purist
may object, saying that the level of a test should be set in consideration of the
power that can be achieved with that sample size, but after all these years
there is no satisfactory theory of how to decide what level of test to set, and
most practitioners use .05 or .01 in an automatic way, without justification.

The fundamental problem with the test of a hypothesis, we believe, lies
not in the failure to jiggle the level satisfactorily, but rather with the under-
lying fact of having asked a poor question. No method geared to the question
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Is the null hypothesis true? will be statisfactory in the most common situation
where we know the null hypothesis to be false. Even if one attempts to wriggle
out of this argument by claiming that what is really meant by x ~ N(10.0,
1.0) is that the mean u satisfies the inequality 9.950 < u < 10.049 and the
variance ¢? satisfies the inequality 0.950 < ¢? < 1.049, and one modifies
the test accordingly, the above argument still holds with “false” changed to
“extremely unlikely”. Of course, if the intervals are widened, their joint
probability content grows, but then they become that much less a repre-
sentation of X ~ N(10.0,1.0).

The important question in practice is not whether a true effect is nonzero,
for it is already known not to do exactly zero, but rather, How large is the
effect? But then this question is only relevant in terms of How large is how
important? This question in turn depends on the use to which the inference
will be put, namely, on the utility function of the concerned scientist. Ap-
proaches which attempt to explain model simplification from the viewpoint
of the inappropriate question, Is it true that .. . ? have a common thread in
that they all proceed without reference to the utility function of the scientist.
And therefore, from the decision theory view, they all impose normative
conditions on the utility function which are seldom explicit and often far
from the case in practice.

We explore in this paper the consequences of asking the more relevant
question Is it useful to assume that . .. ?, which requires us to be more ex-
plicit about the investigator’s utility functlon We find the utility function in
Bayesian theory to be especially useful to explain the behavior of a scientist
who, with the same data (and hence opinion) studying the same phenomenon,
sometimes uses a simpler model and sometimes a more complex one, depend-
ing on his purpose. His view of the truth has not changed, but his purpose,
and hence his utility function, has.

In response to the popular interest in questions of “truth” and the natural
interpretation of the posterior distribution as a measure of knowledge on
such questions, we begin by examining the role of the posterior odds for a
statistical hypothesis within a general two-decision setting (Section 2). We
identify the extent to which the posterior odds can be a useful summary of
data for decision making independent of the detailed utility structure. Our
finding is essentially negative, that the odds are typically not useful as a data
summary in this sense.

We turn then to the specific problem of how to choose predictors in the
normal multiple regression model (Section 3). Without nontrivial prior
belief in any null hypothesis, we consider the question of how to decide
whether or not to accept a restriction or “simplification” on the class of
available predictors. In other words, attention is redirected from the simpli-
fication of sampling models to the simplification of predictors. Results are
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summarized and compared for predictive utilities in the familiar squared-
error-loss form (Lindley, 1968) and a new predictive utility in the form of a
probability density function (Dickey & Kadane, 1977). Comparisons are
made to various truth-test criteria and traditional predictor-selection criteria.
A general montonicity is noted for the predictive expected utility as a func-
tion of the predictor class, whereby cost-free predictor variables tend to be
included in the optimal predictor on a foregone basis. We discuss the con-
sequent paradox of Bayesian overfitting (Section 4).

Alternative Bayesian discussions of selecting regression models are given
by Leamer (1978a,b) and by Davis & DeGroot (1978).

2. Bayesian Response to Data; Odds

When one obtains new data D, Bayesian theory suggests how one should
take this data into account in changing one’s opinion about 8. Suppose that
the probability of observing D, if 6 were the true state of nature, is, under one’s
opinion, given by the function l(DIO). Then one’s new opinion should be
represented by your conditional distribution of 8, given D, given by

p(6|D)d6 = I(D|6)p(6) db / fﬂ I(D|6)p(6) db. 2.1)

Technically, Eq. (2.1) has used a rather simple result from probability theory
called Bayes’ theorem, from which the name Bayesian statistics derives. Of
course, the opinion used in the earlier Eq. (1.1) must be your own current
opinion at the time of the decision, and hence must take into account all of
the information available to you, that is, one’s opinion must be changed by
Eq. (2.1) every time new data appear. ’

We now undertake to model the simplest sort of decision that might be
made. We suppose that there are two hypotheses, H and H®. You are sure both
cannot be true (H n H° = (), but that one of them is true (P(H U H®) = 1).
We denote the odds for H, O(H), as

O(H) = P(H)/P(H") = P(H)/(1 — P(H)) (2.2)

When new data D are observed, the prior odds O(H) change to posterior
odds O(H | D) in the following way, using Bayes Theorem:

O(H|D) = BL(H)O(H), 2.3)
where '

By(H) = p(D|H)/p(D|H°)
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and
p(D|)) = fJ l(D|0)p(9)d9/fJ pO)d6  for J=H,H"

The quantity Bp(H) is called the Bayes factor and is constant among persons
having the same likelihood and the same conditional priors, given H and H®.
The usefulness of the Bayes factor as an expression for how strongly your
current beliefs support H has been explored in a series of papers by Jeffreys
(1961), Edwards, Lindman, & Savage (1963), and Dickey (1971, 1973a, 1974,
1976, 1977, 1979); see also Lindley (1957, 1961).

The goal of this section is to show that Bayes factors have a very limited
usefulness in the two-decision context. We note that Bayes factors do appear
in other contexts (see, for example, Zellner & Vandaele (1975, pp. 640-641))
not discussed here. :

2.1. EVIDENCE FOR A DIcHOTOMOUS DECISION

Suppose that the relevant decision space D has only two desicions, d,
and d,, which we can think of as deciding in favor of or against H, respectively.
With respect to the utility function U(d, 6), the optimal decision is to choose
that decision d at which the maximum of {U,, U,} occurs, where

U, = E[U(@, B)] = [, UG, 0p@)d0,  i=12 24

(Here the tilde over a symbol emphasizes that the symbol denotes a random
variable.) The expectation is conditional on all information, including any
sample data, as explained in Eq. (2.1). .

We need a notation for the conditional expectation of a utility function
under the different hypotheses. Thus we write

am=mwnmn=ﬁwwm@wﬂﬁ@w, @5)

for i =1,2'and J = H, H®. Using this notation, we can write
U, = U,H)PH) + U,(H°)P(H®), i=12 (2.6)
Finally, we introduce the notation V() = U(d,,0) — U(d,,0), and write
VJ)=EV@®|))=0,(J)-U), J=HH" 2.7

Then
Ul - Uz = Ul(H)P(H) + Ul(Hc)P(Hc) - Uz(H)P(H) - Uz(Hc)P(Hc)
= V(H)P(H) + V(H)P(H®). ' (2.8)
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Without loss of generality, we assume V(H) > 0, so that if we knew H were
true, with our present distribution of probability over H, we would prefer
to make decision d, (H is true), rather than decision d, (H° is true). Then it is
easy to see from (2.8) that U, > U, if and only if

O(H) = P(H)/P(H°) > — V(H)/V(H). (2.9)

1t is tempting to consider (2.9) as a threshold criterion on the odds. To do so,
we are particularly interested in the situation when only O(H), and not the
right-hand side of (2.9), depends on the distribution over €.

TABLE 1
True
H H¢
0 —Ly,
Accept e —L,, 0

An important special case of this model is where the utilities only depend
on whether 8 € H or 6§ € H°. Thus we might have the utility structure in
Table 1 (see, for example, Edwards et al., 1963; Zellner, 1971; and Gaver &
Geisel, 1973), where L,, and L,, are both typically positive. The analysis
above specializes to the criterion “accept” H (decide d,) iff

O(H) = Ly,/L,;. 2.10)
After data D are observed, (2.10) can be expressed equivalently as
0(H|D)2 Li;/L,,, ' (2.11)
or, by using (2.3) with (2.11), '
By(H) = Ly,/[L,,0(H)]. (2.12)

Thus the Bayes factor is the appropriate function of the data on which to have
a threshold (and L,,/[L,;O0(H)] is the appropriate threshold), above which
it is optimal to choose d;, and below which it is optimal to choose d,. This
optimistic special case suggests that perhaps there is something special about
the Bayes factor in general that makes it a canonical summary of the data.
That this is not so is the burden of the next result. '

For the Bayes factor to be a sufficient summary of the data, the right-hand
side of (2.9) must not depend on the data. However, when data are available,
the expectations on the right-hand side of (2.9) are posterior expectations and
in general depend on the data. A sufficient condition for their independence
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of the data is that V(6) be constant within H and within H. In general, the
condition is also necessary in a sense now to be defined. The result applies
separately to the numerator and to the denominator of the right-hand side of
(2.9), though the statement is made in terms of the denominator.

Theorem. Let Py be the class of all continuous-type distributions
with densities py(0) over an analytic segment H of a finite dimensional Eu-
clidean space. Assume V(0) is bounded and continuous. Then the expectation
E[V®|H]= [ V(0)py(0)d0 is constant in py over Py if and only if V is
constant in 6 over H.

Proof. The sufficiency of constant Vis immediate. To see that this con-
dition is also necessary, assume that it does not hold. Suppose 6,0, are two
values in H for which V(6,) > V(8,). Choose neighborhoods N; and N,
of 0, and 0,, respectively, for which the two image sets are disjoint,
V(N,) n V(N,) = &. If two densities py and p% have their support sets
contained in N; and N,, respectively, then | V(0)ph(6)d0 > | V(0)p;(6) 0
(since the two integrands satisfy this same inequality), which then contradicts
the constancy of the expection. W

The proof extends easily to any subclass of 2 which contains distribu-
tions having arbitrarily small probability for the complements of arbitrary
neighborhoods. This typically true for the set of conditional posterior distri-
butions from all possible data in a given statistical decision problem. Thus we
see that when utility takes more than two values within H and/or H®, the
threshold on the odds, and hence the preferred decision, will depend on the
conditional uncertainties given H and given H®.

Consequently, the adequacy of the Bayes factor as a summary of the data
depends on the acceptability of a utility structure similar to Table 1. Sucha
structure cannot be close to correct for the most common problems because
if I wrongly accept H (make decision d;), it matters for almost every practical
purpose whether, although wrong, H is close to correct or very far from
correct. Thus in the simple versus composite case (say, testing whether or not
a normal mean is 10.0), the Bayes factor cannot summarize the data. Of
course, this holds as well for the yet more common composite versus com-
posite cases.

For this reason it is our judgement that the Bayes factor theory, originally
justified in the simple versus simple case as the Bayesian version of hypothesis
testing, does not fill the need of econometricians for a useable, theoretically
well-based way of choosing models. Note that we arrive at this conclusion
even when positive probability is put on the truth of the null hypothesis,
although, as explained in Section 1, we doubt that this is appropriate in
general.
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2.2. HypoTHESIS DEFINED BY THE DECISION PROBLEM

In Section 2.1 we started with a hypothesis H (for example, # = 10.0) and
an alternative (for example, 8 # 10.0), and found (restrictive) conditions
under which the Bayes factor is sufficient as a representation of the impact
of new data. Our method was essentially to take the hypothesis H (and there-
fore also its complement H°) as fixed and to try to modify the utility functions
in ways that would lead to the Bayes factor. In this section, by contrast, we
try the reverse, that is, we begin with a reasonable utility function for a two-
decision problem and work backward to see what sort of hypothesis H a
procedure based on the Bayes factor would imply. We propose to choose the
hypothesis H by the requirement

Udy,0) = U(d,,0) forall feH,
U(d,,0) < U(d,,0) forall feH"
Then d; would be the preferred decision for any known 6 in H, and d, would

be preferred for any known 6 in H®. Consequently, we define a hypothesis H
for inference relative to a given two-decision problem by

(2.13)

H={0:U(d,,0) > U(d,,0)}. (2.14)

To connect this theory with the kind of theory discussed in Section 2.1,
consider, for example, what happens if our objective is to give an accurate
estimate of 8. Let us suppose that decision d; simplifies the model by declaring
that § = 6*, when 6* is some particular value (like 8* = 10, for example). In
this case, suppose that our reward is some function of 8, say S,(6). Alter-
natively, if 8 is not declared to have the value 10, then it must be estimated,
say by some 8. Then the reward that we receive is a function of both 8 and 6,
say S,(8,6). Anscombe (1963) considers an estimation loss function which
is constant if the parameter is freely estimated (S,(0,6) = U,) but propor-
tional to the square of the parameter if the estimate is taken to be zero
(S1(68) = U 10%, where U, is negative).

Now of course, 8 must be chosen as best it can be if the second decision
is made, that is, § = 8, where 8, maximizes E[S,(8,8) |D].

Of particular interest are utility pairs differing by a constant “reward for
simplicity” U* > 0, where

S1(0) = S,(6%,0) + U*. (2.15)
In this case, we obtain by (2.14) the “hypothesis”
H={0:5,0p,0) — S,(6%,6) < U*}. (2.16)

Consider, for example, the familiar negative squared error, S,8,0) =
— (6 — 6)*. Then, if  is to be freely estimated, the optimal estimate will be the
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posterior mean 0, = E[§|D], and H takes the form
H=1{6: 0S40* + 0p) — $U*/(6* — bp)}, 2.17)

where the sense of the inequality is taken to match that of 6% < 0, Thus H
turns out to be an infinite half-line, and worse, one that depends on the data
through 6.

Our attempts to find a link decision theory and the problem of choosing
a probability model have failed, and we make no further such attempts here.
In both cases we sought to retain some kind of formal decision theoretic
meaning for classical hypothesis-testing ideas. A similar such failure is
reported in Edwards et al(1963).

The consequence of this failure is that something must go, either our
Bayesian approach or classical hypothesis testing. Having declared our pur-
pose in this paper to explore the consequences of Bayesian decision theory
for choosing models, with particular reference to econometrics, it will come
as no surprise to our readers that our choice is to keep our Bayesian decision
theory and see what its consequences are. In the next section, then, we begin
anew to see where Bayesian theory will lead us. We introduce the normal
linear model and the briefly review the behavior of classical and Bayesian
“truth-testing” procedures for later comparisons before turning to our pre-
ferred Bayesian methods. Our purpose is constructive and is designed to lead
to theoretically based but useful procedures, rather than retrospective, that
is, to see if we can find some explanation for old procedures derived from
other perspectives.

3. Prediction

3.1. THE DISTRIBUTIONS

To obtain a context in which one can judge the suitability of a decision
model, we specify the usual normal linear sampling model in which the re-
sponse variable y has a normal distribution conditional on the concomitant
r-dimensional vector variable x with linear mean x” § and variance o2 Given
a sequence of values for x, conditional independence is assumed under the
sampling model for the corresponding values y. We shall consider the family
of natural conjugate prior distributions for g and ¢ and make direct use of
the posterior predictive distribution for future y given x. This distribution is
the mixture of sampling distributions for y given x, mixed over the posterior
distribution of g and o. It models one’s coherent postdata personal un-
certainty about future y taking account of the fact that g and o are not known.
See Raiffa & Schlaifer (1961) for details.
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For much of our development the distribution of future x is arbitrary.
But special interest attaches to the case when the vectors x; are “random,”
more precisely are independently sampled from a multivariate normal dis-
tribution, say with unknown mean and variance ¢, and . Given that the prior
uncertainty is independent between (¢,X) and (B,0), then by an obvious
factorization of the likelihood function, so is the posterior uncertainty, and
future x will be posterior independent of (B, o). Geisser (1965), under “igno-
rance” priors on (£ X), and Ando and Kaufman (1965), under conjugate
priors, obtain multivariate-z predictive distributions for x with moments ap-
proximately matching the empirical moments of observed x,,...,X,

Ex|D)=%, V(x|D)=n"! z (x; — D)(x; — ). 3.1)

i=1

We shall use (3.1) as an approximation.

3.2. TRUTH-TEST CRITERIA

A variety of rather arbitrary criteria for selecting a linear model appear
in practice, such as the modified multiple correlation statistic R* = 1 — 52/
{3(yi — ¥)*/(n — 1)}, where vs? is the sample error sum of squares, n is the
sample size, and v = n — r, where r is the number of concomitant variables
included in the regression. This is typically preferred to the unmodified
statistic, R? = 1 — vs?/Y (y; — 7)?, merely because the latter is monotonically
increasing for any nested sequence of models, whereas R? may sometimes
decrease when a new variable is added. On the other hand, the modified
statistic need not lie in the unit interval [0,1]. (See Gaver & Geisel, 1973,
for a sense in which R? is a Bayesian criterion for choice when comparing
two models of equal dimensionality.)

Some criteria are intended to answer the question, Is the model true?
The traditional F test asks this question of the smaller model H in a nested
pair of models H = Q. Denote by r,x, B, and ¢ the parameters in the larger,
unquestioned model Q where r is the dimensionality of f. Then if H is defined
by linear constraints on f, we can, without loss of generality, define the vari-
ables in such a way that H takes the nested discarded-variables form

H: py=0, (3.2a)

where
x=(xp,xx) = (BE.BR" (3.2b)
The parameters of H as a normal linear model will then be denoted by ry,

Xpg, By, 0y = g.
Tests for inference on the hypothesis H are available based on a sample
of n realizations of (y, x). For example, the traditional F- test is based on the
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error sums of squares (SSE) for the two models, SSE(H) and SSE(Q), and
the sum of squares between (SSB),

SSB(H, Q) = SSE(H) — SSE(Q). (3.3)
The test rejects H if
SSB(H,Q) > (r — rg)s*F,_ .y, ,(.95), (34)

where s> = SSE(Q)/v, the usual unbiased estimate of a2. Note that this
threshold on the between sum of squares is approximately constant in the
sample size n for large n, as was noted by Lindley (1968) in the o%-known
case.

Under this same nesting, the odds-ratio test for “truth” has been devel-
oped in Dickey (1971). Consider a mixed-type prior distribution with positive
probabilities P(H), P(H*), and conditional prior densities P(ﬂ,ach) and
P(By,c|H) of the natural conjugate form.

Under the natural assumption of the continuity condition, that the con-
ditional prior distributions P(By,o|Bx) are continuous-in-distribution in
Py at Bx = 0, one obtains in the Bayes factor Bp(H) a useful approximation
to the Bayes factor for a more realistic hypothesis in the form of a neighbor-
hood set closely surrounding H. The neighborhood Bayes factor would
result from various integrable continuous-type distributions with a mound
of high density over the neighbourhood set. Of course, the quality of the
approximation depends on the data outcome D. (As always, the conditional
distribution P([IH,alH ), and hence also the Bayes factor, is not unique to
the conditioning event H, but depends on the choice of conditioning param-
eter Bx (Gunel & Dickey, 1974).) :

The resulting approximate Bayes factor Bp(H) is proportional to the
density ordinate of the usual F statistic (as opposed to the traditional tail
area). The decision threshold on the between sum of squares, following from
a fixed threshold on the Bayes factor, is proportional to the logarithm of
sample size in the known-variance case

SSB(H, Q) > C log(n). 3.5)

Contrast this with the threshold in (3.4). Even for small sample sizes, the
tendency is for a Bayes factor to require more extreme data for rejection than
the tail area test requires (Dickey, 1977).

For large sample sizes, either criterion, (3.4) or (3.5), is nearly certain to
reject H in statistical practice, since H is nearly always known not to hold
exactly, and the “power” of either test increases to unity in n. (This analysis
for the Bayes factor assumes, of course, that the full model Q@ = H u H® holds
exactly. However, we believe that the same phenomenon occurs in greater
generality.) Of course, this phenomenon could be adjusted for by arbitrarily
changing the level of the test (3.4) with sample size n or some similar ad hoc
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response in the case of the Bayes factor (3.5). Rather than pursue such a line,
we develop below a decision threshold on SSB(H, Q) that is proportional to
the sample size n—whereby it will no longer hold that one nearly always
decides against simplicity when n is large.

3.3. PREDICTORS AND UTILITY

We now neglect the concept of a smaller sampling model H and the
artificial question of the “truth” of H. As a subset of the parameter space,
H will receive no special positive probability. The family of natural conjugate
prior distributions will apply to g, o over Q.

We begin with a continuous action space and derive a discreteaction
space in a natural way. Consider the problem of predicting a future value of
y from a future concomitant value x. That is, the decision maker must choose
after sampling, based on the information he has gained, a predictor, or pre-
dictor function, j(x). He is assumed then to receive a utility Wdepending on
his choice and on the future outcome. Typically, Wis large for j(x) near y.

Since the decision maker must choose a whole function §(-), it seems
natural that the utility Wshould depend on the chosen function, as well as
on the realized values $(x), y. W might, for example, impose penalties for
choosing a complicated predictor function or a predictor depending on co-
ordinate variables in x which are costly to observe. As an illustration, consider
the utility

N N c~[7-y]? if  $(-)is constant in x,
W{9(x),y, 9(-)} = {_ [500—y]?  otherwise.

The utility function (3.6) offers a reward c if you are willing to have the same
prediction j regardless of x. This means that x need not be measured for the
prediction. Thus agreeing in advance to this restriction save some effort,
whose cost is c. Intuitively, if x does not vary much anyway, and/or if the
connection between y and x is weak, and/or if ¢ is large, the simpler predictor
would be the more favored.

We shall assume in general that there are classes of predictor functions
defined such that within each class I, W is constant in §(-) € I for given values
J(x) and y. In the example shown in (3.6), there are two such classes: I, con-
sisting of all constants § and I, of the general functions y(x). It will be natural
in such predictor-choice problems to identify the derived problem of how to
choose between classes 1.

Thus we seek to compute

max max [ W51, y, yi(Dp(y]%)dy p(x) dx. (3.7)

Fr()

(3.6)
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This formula looks more formidable than it really is. The maximization with
respect to I and J;(+) occurs after the integration with respect to y and x
because they are chosen before y and x are known.

According to the principle of maximal expected utility, a single posterior-
predictive distribution based on a single parametrized sampling model
should be used to calculate the expected utilities of all the competing pre-
dictors. Strictly speaking, we are no longer concerned with deciding between
probability models, but rather with choosing a class of predictors I.

Since the class of utilities of particular interest to us are those for which
the only feature of §;() to affect W is its membership in the class I, we will
write, with only slight abuse of notation, W(9;(x), y,I) instead of W(§(x),
 90)).

We now specialize our utility function to the form

W(j)\’ y’I) = UIW(j)\’ )’) + U;k’ (38)

where w( 7, y) measures the utility of predicting y when y turns out to be the
realization of the process and U; and U¥ are constants depending on I that
reflect, for example, the cost of measuring and computing from the variables
permitted by the class I.

To distinguish w(, y) from W(§, y, I), we call the former a purely predic-
tive utility component since it is, strictly speaking, not a utility function, but
rather one aspect of the utility function (3.8). The illustration (3.6) is a special
case of (3.8) in which

U11= UIZ= 1’ U?‘1=C, U?;:O, and W(j)\, )’)= ___(j)\_y)l

The form (3.8) is especially convenient because the associated expected
utility preserves the linearity of Win w as

W) = Uw(I) + Uf, (3.9)
where

() = max [ [w(9,00, p(y[x)dy p(x)dx
y1(%)
and
W(1) = max [[W(5:00, 3, Dp(y|x)dy p(x) dx
y1()

Hence the optimal choice between two classes of predictors I; and I, will
proceed by a comparison between the expected purely predictive performance
of the two models (W(I;) and W(I,)) to the multiplicative (Uy, and Uyp,)
and/or additive (U¥, and U},) rewards for simplicity, as summarized by (3.9).

Two important special cases suggest themselves. If U;, = Up, = U, so
that the rewards for simplicity are purely additive, maximum expected
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utility reduces to the criterion: prefer I, over I, if and only if
w(l,) — w(l,) > (U}, — U¥)/U. (3.10)

Similarly, if U}, = U¥,, so that the rewards for simplicity are purely multi-
plicative, maximum expected utility reduces to: prefer I, over I, ifand only if

W1 0)/W(l5) = Up,/U,,. (3.11)

The predictor classes considered here are of the discarded-variable type.
The class of all predictor functions is restricted to dependence on only a
specified subvector x;,

Y6 =i(xp),  x = (x5, x0)", (3.12)

where for ease of notation x; consists of the first few coordinates of x. The
subscripts I and K are used analogously to H and K in (3.2). Note that if
a specific independent variable, say x,, is included in x;, then all functions
of that variable are contained in the class I of available predictor functions.
For example, higher powers of x, cannot be excluded without excluding x,
itself. Another limitation of this form is that one cannot consider whether or
not to have a zero intercept as a choice between classes I. An advantage of
this form is that if one considers that the main cost of having x, included in
the set of variables on the basis of which a prediction  is to be made is the
cost of measuring x,, then it is quite reasonable to allow the most flexible use
of x, for prediction.

An alternative class of predictors not pursued here is the class of con-
strained linear predictors. This is the class of all linear forms satisfying a
specified linear constraint on the coefficients, or without loss of generality,
the class of all linear forms in a specified subvector x;,

¥(x) = x1B;. (3.13)

Constrained linear predictors are studied in papers of Goldstein (1975a,b,
1976). :

Having stated that we will study the discarded-variables class of predictors
under the general form of utility (3.8), it remains only to specify the purely
predictive utility component in order to have a closed-form decision problem
ready for analysis. In this paper we report results for two such choices: the
usual negative squared error

w(P y) == -y (3.14a)

which is taken up in Section 3.4, and a less familiar function is probability
density form

Wi y) = f9 = y), (3.14b)
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where f, is the probability density of a random variable o as developed in
Section 3.5.

3.4. NEGATIVE SQUARED ERROR AS PURELY
PRrEDICTIVE UTILITY COMPONENT

Having outlined a decision model for consideration, we now summarize
the resulting decision criterion in the discarded-variable case for comparison
to other Bayesian procedures and to classical procedures. The derivations
are not dealt with at great length since they are given in a line of studies
including Anscombe (1963), Dickey (1967), Lindley (1968), Harrison &
Stevens (1976) and Dickey & Kadane (1977).

We use the negative squared error form for the purely predictive utility
(3.8), (3.14a), and the optimization procedure outlined in (3.7). Lindley (1968)
derived the corresponding criterion in the case of known 2. Starting with the
expectations over y and x, we have, given I and ;(+),

E[{f’“‘ yl(i)}z] = E[E[{f - E(J’|XI) + E(J’lxz) - j;I(xI)}Z lil]]
= E[E[{y = E(y[x)}*|x/]]

+ E[E[{E(y|x)) — pi(x}*|x(]]. (3.15a)
This expectation is minimized by the choice
Pi(x1) = E(p|x)), (3.16)

which makes the second summand zero. Using this choice and resuming the
calculation in (3.15a), we have
—w(I) = E[Var(y|x,)]
= Var y — Var[E(y|x,)]
= E(o%) + Var(X'B) — Var[E(B)"E(x|x,)]
= E(0%) + E(B"RX"B) — E(B"R)E(X") — Var[E(B)E(x[x,)]
= E(o?) + tr[ERXNEBB")] — E("ERXE(B)
+ E(B)"ERK")E(B) — E(B)"E®)ER™E(S) — Var(E(B)"E(x|x,)]
= E(o?) + tr[E(xx") Var(B)] + E(B)* Var(x)E(f)
—E(B)" Var[E(x|x))]E(B)
= E(0?) + tr[ E(xx") Var(B)] + E(B)*E{Var[x|x,]}E(B), (3.15b)
which is equivalent to Lindley’s (1968) Eq. (10).
To simplify the discussion of these findings, we specify the popular
“ignorance” prior density within the natural conjugate family

p(B,0) = c/o. (3.17)
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The results for this case also hold as approximations in large samples for the
more general case (Dickey, 1976).

For sample data D = (y, X), wherey = (y1,.. ., yoand X = (Xy,...,X,)’,
denote the usual sufficient statistics by

N=X"X, b=N"'XTy,

v=n—r s2=v Yy - Xb)T(y — =y 1 (3.18)
, y )'(y — Xb) = v~ 'SSE(Q),

where r is the dimension of x, that is, the number of independent variables
in the regression model Q, and v is the degrees of freedom. Then the resulting
posterior distribution is given by

(8|, D) ~ N®(b,62N"1), (3.19a)

an r-dimensional normal distribution with mean b and variance matrix
o2N~!, and by

(@*| D) ~ s*/(3/v), (3.19b)

s? divided by a chi-square random variable with v degrees of freedom, divided
by v. The optimal predictor in class I (3.15) is then

Pi(xp) = X?CI > (3.20)

where ¢; denotes the usual subset-regression least-squares coefficient vector
based on D; = (y, X;) where the matrix X = (X, Xy) is partitioned according
to x' = (xJ,x5)T. The corresponding predictive utility (3.15b) becomes

—W(I) = (1 + r/n)s*v/(» — 2) + SSB{, Q)/n. (3.21)

Note that in both (3.15b) and (3.21) one term alone depends on the class
I. In the case of additive rewards (U, = 1), one prefers class I, over I, if
and only if n(UF — U¥) is exceeded by the difference

SSB(I,,Q) — SSB(I,,9). (3.22)

This difference will itself be a between sum of squares SSB(I,I,) in the
nested case I; = I,. Hence as stated previously, one obtains a threshold
on SSB proportional to sample size, in distinction to the previous thresholds
(3.4) and (3.5).

Note the lack of dependence of the criterion on any feature of the model
Q other than the property that the predictor variables of I, and I, are both
subsets of those of some model to which a prior distribution in the “ig-
norance” form applies. In particular, this lack of dependence holds whether
or not I, and I, are nested.

The first term of (3.21), (1 + r/n)s?v/(v — 2), is the Bayesian posterior
predictive squared error of the optimal predictor jo(x), based on the full
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set of r variables. This term refers literally to the context in which inference
and prediction are both made from the full model Q. Thus this term is the
“cost of doing business,” the cost we must pay for the prediction regardless
of other costs. If we infer from the full model to obtain the posterior ex-
pected squared error for optimal prediction by a smaller class I, there is
then the additional term SSB(I,Q)/n. Hence a statistician obeying the
principle of maximum expected utility and evaluating predictor classes
from the standpoint of the full inference model would prefer the larger
predictor class of any nested pair if no special rewards are given for simplicity
(that is, if U; = U and U¥ = U*). We shall return to this aspect in Section
4,

For the next few paragraphs we discuss expected squared errors cal-
culated from a sampling theory viewpoint. Lest this change in point of
view cause confusion, we pause here to remind the reader about the distinc-
tion. In Bayesian theory, the random variables are what is unknown, namely
the values of parameters. The data, once observed, are no longer random
(we know the outcome), and hence calculations like (2.1) are done condi-
tional on the observed data outcomes. By contrast, in traditional sampling
theory, the random variables are the “data that might have been,” distributed
conditionally on the values of the parameters. Each side in the discussion
accepts the mathematics of the other side; the discussion is rather about
which computations are relevant for inference.

Taking expectations now under the sampling model, holding the param-
eters fixed, we find

E(y — 91)* = (1 + ry/n)oi, (3.23)

where 62 is the sampling-model conditional variance of y given x;. This
expectation is commonly estimated by the statistic,

(1 + r;/n)SSE(I)/v;. (3.24)

Traditionally, one compares values of (3.23) for various subsets I. Such
a criterion is less than appropriate for several reasons, including that the
expectation is not conditional on the observed data D. Instead, it is an
average over values of the coefficient estimate ¢; which did not occur, and
therefore violates the likelihood principle, which is a consequence of the
Bayesian axioms.

A statistician who uses the estimate (3.23) ignores the data Xg. The
similarity in form of (3.24) to the first term of (3.21) yields an interpretation
of the traditional statistic (3.24) as an approximate posterior predictive
squared error of y; for a Bayesian statistician whose prior uncertainty
implies conditional independence between (y,x;) and Xy given y and X.
To take this position for various sets x; would be to place very special
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conditions on the joint distribution of future data (y,x) and known data
D= (Y»XI»XK)'

It can be shown that a Bayesian who believes H: ffx = 0 but otherwise
has prior “ignorance” would have the same predictor as someone who was
“ignorant” within Q but was forced to discard xx, namely,

f(X) = E(le»ﬂK = O»D) = X}‘E(ﬁllﬂK = 09D)
= xj¢;, = Pi(x),

using (3.20). The person believing H would interpret (3.24) as his optimal
posterior predictive squared error (as opposed to (3.21) for the believer
in Q). To compare (3.24) for two difference choices I; and I, under this
interpretation would be to first state a prior opinion that §; =0 with
“ignorance” on the remaining coefficients f;, and then an analogous prior
with respect to I,. To hold both opinions simultaneously would be a con-
tradiction.

(3.25)

3.5. PrOBABILITY DENsITY FORM OF PURELY
PrepicTIiVE UTILITY COMPONENT

We now consider the second kind of purely predictive utility component,
that in the form of a probability density function (pdf) of f, (¥ — y); see
(3.14). Tt will help the reader’s intuition to think of the density f, of the
random variable a as symmetric and unimodal with mode at zero. Thus
we most prefer (have highest utility for) a zero predictive error (§ — y).
Our preference decreases as the error increases in absolute value, and we
are equally displeased by an over-prediction (§ — y positive) and an under-
prediction (§ — y negative) of equal magnitude. Such a utility function has
the advantage of being bounded, and hence stable (Kadane & Chuang,
1978); by comparison, negative square error has neither property. Tiao
and Afonja (1976) discuss the special case in which f is the normal pdf;
some of these densities f, are in the class of conjugate utilities proposed
by Lindley (1976). Our analysis follows Dickey & Kadane (1977).

Suppose now that o has two moments, so that we may write

E@ =0, Var(x)=ad> (3.26)

The variable a has an interesting interpretation. If “a miss is as good as
a mile,” that is, if any but the most accurate estimates are considered nearly
equally worthless, then a would be taken to be quite small. On the other
hand, if the idea is to be roughly correct, then a could be taken to be larger.
Thus a measures an important aspect of an investigator’s utility function,
one that might change from one occasion to the next, even with the same
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data and the same formal decision problem, depending on the investigator’s
purpose.

Conditional on I, the expected purely predictive utility component
achieved is

(1) = max [[ £(9:00 = Mp(y|x)dy plx) dx1, (3:27)
()

where we have already used the fact that $;(x) depends on x only through
X;. We notice that the inner integral is a familiar form. In fact, it is the
formula for the convolution of two random variables o and y, with the
resulting density evaluated at ;(x). Thus we may write

ffa(ﬁ;(X) = p(y[x)dy = furyin Ir(X1)). (3.28)
Substituting this expression in (3.27), we have
W) = max [ for e S106)p06) dxi. (3:29)
yI¢

Since the class of predictors 7,(+) are all functions of x;, the maximization
in (3.29) can be performed pointwise in x; before integration. Hence

w(I) = [ [gnaxﬁﬂ.x,(yf(xo)}p(xo dx;. (3:30)

V1(x1)

Now « is unimodal and symmetric, with center of symmetry 0. Similarly,
conditionally on x;, y — E(y|x;) is assumed unimodal and symmetric with
center of symmetry 0. Since these two random variables are independent,
their convolution is also unimodal and symmetric with mode at 0 (Wintner,
1938, p. 30). Because the mode of this convolution is at 0, the mode of f, 4y,
is at E(y|x;), and hence the best choice of §,(x;) is

u(xp) = E(y[xy). (3.31)

The resulting purely predictive utility component is

W) = [ 1% s - pstenP D) dXs.

This is in the form of a mixture of densities (here evaluated at zero). The
corresponding mixture random variable has zero mean and variance V, where

V =a® + E[Var(y|x))] (3.33)

Suppose g is the density of some location-scale family (for specificity, one
can think of g as ¢, the standardized normal density). Then we assume the
approximation

(3.32)

[ 70 per - P (1) A%, = g2/ VAV, (3.34)
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so that, in particular,

[ 19w - sorenp ) %, = g(O)/VH2. (3.35)
Hence we have the approximation
w(I) = g(0)/{a® + E[Var(y|x)]}'/* (3.36)

For a normal approximation, g(0) = (2n)~ /2. Note that E[Var(y|x,)] is
evaluated in (3.15b). In the “ignorance” prior case, by (3.21),

V =1 + r/n)s*v/(v — 2) + SSB(1,Q)/n. (3.37)

It is interesting to compare the decision criteria that result from (3.36)
with those we have seen in (3.16) and (3.21) in the squared error loss case. In
the case that all “rewards” are multiplicative (U§ = U), the criterion for two
nested predictor models, I; < I,, prefers I, for

SSB(I,, I,) > n[a® + V][(U,/U,)* — 1].

Compare this with the criterion (3.22) which also has the form of a threshold
on the between sum ofsquares. Again, note the proportionality of the thresh-
old to sample size.

4. Discussion

We have seen that the Bayesian odds ratio is not useful as a complete
data summary for decision making. Indeed, the very concept of inference
about the “truth” of a model has come under question. Also, in the specific
decision problem of choice of predictor in a normal linear model, we have
found that the predictive criterion behaved as a function of sample size in
such a fashion that even if the F test tail area and the Bayesian odds for a
submodel were very small (3.4), (3.5), the optimal predictor could still be the
predictor based only on the submodel, (3.22), (3.36). In other words, one can
have coherent preference for the use of a simple model even if it is known to
be “false.”

According to Occam’s razor, one should prefer scientific models that are
simple. In our decision criteria for prediction it has turned out that positive
rewards for simplicity are necessary to imply preferences for simple nested
predictor classes. For our utilities W(§, y, I) (3.8), the obvious monotonicity
of the purely predictive expected utility component

I, <1, = w(ly) < w(l5),

implies that positive rewards, (U} — U$,)/U (3.10) or log(U,,/U,) (3.11), will
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be needed. This result is quite general since to maximize a functional w[ 7(*) ]
over a larger class of functions j(-) can never lead to a smaller maximum
value w. Hence, to the extent that real decision makers are coherent, the fact
that simple predictor models are used could mean that positive rewards do
exist.

The principle is clear that one should not deliberately exclude a cost-
free variable from influence on one’s predictor, provided that one maintains
the freedom to use it in an optimal way. It could turn out, though, that the
optimal way itself implies a predictor which is a function of the other variables
only. In our treatment of the normal linear model, this happens with prob-
ability zero for a prior distribution of continuous type. However, a mixed-
type prior distribution could lead to such an event with nontrivial probability
as follows.

, Using a probability density form of predictive utility w, one may consider
linear predictors based on a parameter estimate f. If the probability is posi-
tive for a submodel of the form H: B = 0, then the predictive expected utility
w(ﬁ) = E(w|H)P(H) + E(w|H®)P(H®) will typically have two local maxima
in B, one for which have B ; = 0 and the other with B ; # 0. A high value of P(H)
will tend to imply that the overall maximum is achieved at the first of these
points. Hence, even without positive rewards for simplicity, W will be maxi-
mized by the simpler predictor. (For details, see Dickey & Kadane, 1977
In our view, however, mixed-type priors that put positive probability on low
dimensional subspaces are not usually realistic in the context of most social
sciences. Consequently, positive rewards for simplicity seem to be required
to explain why good economists work with simple models.

Common sense and statistical folklore warn against using too many
variables in a regression relative to the sample size. Least squares estimates
are notoriously prone to outliers and other problems and become even more
suspect in high dimensions. For example, the traditionally estimated expected
squared error of prediction (3.24) increases for large values of r;/n. Yet the
Bayesian methods developed in Section 3 require the use of all available cost-
free variables. This phenomenon has been called by Lindley (1978) the
paradox of Bayesian overfitting.

We offer two explanations of this difficulty. The first, also cited by Dickey
(1973b) and by Lindley (1978) in his discussion of Young (1977), is that the
model chosen for illustration in Section 3 takes as its prior the ignorance
form (3.17), which is justified as an approximation to a proper subjective
prior distribution by the theory of stable estimation (Edwards et al., 1963).
This approximation yields the least squares estimates. It will be valid when
sample size n is large relative to the dimensionality of the regressors (r;), so
the approximation tends not to be valid precisely where the problem occurs
(r; large relative to n).
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Our second explanation, a basic premise of this paper, is that previous
efforts in this area have not taken explicit account of the utility function of
the economist. Just as in the past many efforts have been made to avoid proper
subjective prior distributions on the parameters, many economists and
statisticians try to avoid the statement of an explicit utility function for the
problem of model choice. In problems of estimation this is not such a severe
difficulty because, if the posterior distribution is symmetric, every symmetric
utility function having its maximum at zero will result in the same estimate,
namely the posterior center of symmetry. Thus it is not necessary to think
about whether your utility is negative squared error, negative absolute error,
or normal pdf form since they all result in the same estimate. However, as
we have seen, the choice of models problem is essentially different in this
respect. For choosing models, there seems to be no alternative to an honest
assessment of your utility function and, in particular, of your personal
weighting of accuracy against parsimony.
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