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EVALUATION OF ECONOMETRIC MODELS

Comparison of Econometric Models
by Optimal Control Techniques

GREGORY C. CHOW

DEPARTMENT OF ECONOMICS

PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY

An econometric model is ordinarily a system of simultaneous, stochastic
difference equations involving endogenous variables, exogenous variables,
policy variables, and parameters. It has many numerical characteristics. To
characterize an econometric model or to compare two econometric models
is a complicated task because of the many dimensions involved. Which
characteristics are important depend on the particular use of the model. The
purpose may be the estimation of certain structural parameters, the ex-
planation of various aspects of business cycles, long-term or short-term
forecasting, or policy analysis. In this paper, we will first summarize the
existing, well-known characterizations of an econometric model (Section 1).
We will then discuss two sets of techniques to describe the properties of a
model. One is based on the theory of optimal control for deterministic sys-
tems (Section 2) and the other on the theory of optimal control for stochastic
systems (Section 3). An illustration of the techniques of Section 3 using the
Michigan Quarterly Econometric Model is given in Section 4. It should be
pointed out at the outset that the word "comparison" in the title of this

paper means "bringing out the important characteristics of" and does not
mean comparative evaluation or deciding which model is better. The latter
subject is discussed in Chow (1980).
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1. Existing Characterizations of an Econometric Model

It will be convenient for our discussion to start with a static system of
simultaneous equations and then treat a dynamic system of simultaneous
difference equations, leaving the problem of characterizing a dynamic
stochastic system as the last topic.

1.1. STATIC MODEL

Both general and partial equilibrium models are systems of simultaneous
equations. Two types of characteristics are of interest for such systems. First
are the characteristics of individual equations, as summarized by their
parameters, such as the elasticity of demand or the marginal propensity to
consume. Second are the properties of the solution to the system. These are
the properties of the reduced-form equations of an econometric model.
Rather than characterizing the relationships among endogenous variables,
such as the elasticity of demand and the marginal propensity to consume,
they describe the responses of the solution values of the endogenous variables
to changes in the exogenous variables and/or the parameters in the system.
They describe the "comparative statics" induced by the system, and they
contain the "multipliers" of an econometric model.

1.2. DYNAMIC DETERMINISTIC MODEL

Once the model becomes dynamic, being a system of difference or dif-
ferential equations, its characteristics will be more complicated but can still
be divided into two types. The characteristics of individual equations include
short-run, intermediate-run, and long-run relationships among the variables
in an equation, such as the short-run and long-run elasticities of demand and
the short-run and long-run marginal propensities to consume. The long-run
characteristics are the characteristics of the solution paths of the system, and
they represent the effects of the exogenous variables on the solution paths.
The solution paths may be damped or explosive; they may oscillate in various
ways. The effects of the exogenous variables on the solutions are the subject
of comparative dynamics. These effects are partly described by the various
dynamic multipliers, including the impact multipliers, delayed multipliers
(measuring the effects of a change in an exogenous variable in one period on
the endogenous variables in a later period), and intermediate-run and long-
run multipliers (measuring the cumulative effects of persistent changes in an
exogenous variable for several or many periods on the current endogenous
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variables). The number of different dynamic multipliers is large because the
time dimension is added into the picture. These multipliers are the coefficients
of the "final form" of an econometric model which expresses the endogenous
variables as functions of the exogenous variables after the lagged endogenous

variables have been eliminated.

1.3. DYNAMIC STOCHASTIC MODEL

After incorporating stochastic disturbances into an econometric model,

we need further tools to characterize the stochastic solution paths of an
econometric model. The first two moments of the solution path are of par-
ticular interest. The mean solution paths can be treated in the same way as
in Section 1.2; all the dynamic multipliers and the comparative dynamic
analyses are applicable to the mean paths. The variances and covariances of
the endogenous variables may not be constant through time. If the time
series generated by a system of stochastic difference equations are covariance-
stationary or nearly so, one can use the autocovariance matrix or the spectral
density matrix to summarize many of the cyclical properties, as described,
for example, in Chow (1975). Dynamic relationships between several variables

can be summarized by cross-spectral densities and by observing the leads and
lags between their turning points, in the same way that cycles of individual
endogenous variables can be described by the spectral density functions and

by the time intervals between turning points.
In this brief discussion of the existing tools to characterize econometric

models, we have mentioned the use of structural parameters, reduced-form
parameters and final-form parameters, and the tools to study cyclical prop-
erties of an econometric model. For any econometric model we can also
derive the variances and covariances of the errors of its forecastsof the future
values of the endogenous variables, given projected values of the exogenous
variables. Thus models can be characterized and compared by the variances
and covariances of the disturbances in the structural equations, in the re-
duced-form equations (measuring errors of forecasts one period ahead), and
in the final-form equations (measuring errors of forecasts many periods
ahead), For example, for an autoregressive model

Yt = ayt_i + U, = a2y,_2 + u + au,_1

the error of a two period ahead forecast has a variance equal to var(u +
au,_ j). One can also measure forecasting errors of an econometric model by
comparing its various forecasts with actual historical observations. The re-
mainder of this paper will be concerned with the characterization of an
econometric model for the purpose of formulating an optimal economic

policy.



2. Characterization of an Econometric Model
by Deterministic Control

In the optimal control of a deterministic econometric model (with its
random disturbances set equal to their expected values), a multiperiod loss
function is postulated, and its value is minimized with respect to the time
paths of the policy or control variables (a subset of exogenous variables),
subject to the constraint of the dynamic model. If the econometrician is
willing to choose a loss function, then models can be characterized and
compared by the solution paths of the key endogenous and policy variables.
Such comparisons have recently been made by the U.S. econometric model
builders who were participants in an NSFNBER Seminar on Econometric
Model Comparison under the chairmanship of Lawrence Klein. Some of the
results are described in Hirsch, Hymans, & Shapiro (1978) and in Chow
& Megdal (1978a). Optimal deterministic control paths were obtained from
several models of the U.S. economy for the 17 quarters from 1971.1 to 1975.1
using the same loss function which penalizes the squared deviations of the
inflation rate, unemployment rates, real GNP, and balance of trade from
their preassigned targets. To illustrate the results, the optimal solutions for
the inflation rate show whether or not the two-digit inflation in 1974 could
have been avoided by suitable economic policy beginning in 1971.1 according
to the participating models. The answer is mostly negative. The solutions
for the unemployment rate by and large show that significant reductions
could have been achieved during quarters of high unemployment without
seriously aggravating the inflation situation. Note that this solution does not
take into account the possible delayed effects of an expansionary policy on
inflation after 1975.1, which was the terminal quarter of the multiperiod
optimization problem.

Similarly, the optimal solution paths for the policy variables can also be
compared to show similarities and differences among models. In the experi-
ments conducted by the participants of the Econometric Model Comparison
Seminar, the policy variables are federal government nondefense expendi-
tures and unborrowed reserves. The optimal solutions for government expen-
ditures according to several models require fairly sizable increases, in the
order of 50 to 60 billions (at an annual rate) in the later quarters over the
actual expenditures. One can further compare the relative roles played by
the fiscal and monetary instruments across different models. Not only the
average deviations of the optimal settings of these instruments from some
norms (such as historical trends) but also their relative fluctuations through
time can be compared. In short, different characteristics of the optimal
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solution paths for the important endogenous and policy variables in a deter-
ministic control problem can be compared among different econometric

models.
A natural extension of the above comparison is to vary the parameters

in the loss function and to observe the resulting changes in the optimal solu-
tion paths. This is an application of the method of comparative dynamics to
deterministic models. In fact, it has been suggested by Chow & Megdal
(1978b) that the parameters in a quadratic loss function should be varied in a
systematic way in order to trace out the best available trade-off possibilities
for unemployment and inflation implicit in an econometric model. Econo-
metricians have attempted to derive the trade-off relationships between un-
employment and inflation from an econometric model by recording the
behavior of these two variables in simulations using more or less expansion-

ary, but still fairly arbitrary, paths for the policy instruments. Simulations of
this type have been performed by Anderson & Carlson (1972), de Menu &
Enzler (1972), Hirsch (1972), Bodkin (1972), and Hymans (1972), among

others. This method is defective because the unemployment and inflation rates

so obtained without optimization could usually be improved upon, as demon-
strated by the calculations using the St. Louis Model and the Michigan
Quarterly Econometric Model reported in Chow & Megdal (1978b).

In order to determine the lowest inflation rate corresponding to a 6%
unemployment rate, we solve an optimal control problem using a quadratic
loss function with 1% and 6% as the targets for the inflation and unemploy-
ment rates, respectively (assuming a 1% annual inflation rate to be lower than
achievable), and 1 and 100, respectively, as the weights penalizingthe squared
deviations of inflation and unemployment from their targets. Optimization
will ensure that the unemployment rate is close to 6% and the inflation rate
will be made as low as possible. Here we are dealing with a multiperiod
optimization problem. The inflation rates obtained from the optimal solu-
tion will change from quarter to quarter, but the entire set of inflation rates
could not be improved upon in the sense that, given a 6% unemployment
rate, the sum of squared deviations of the inflation rates in all periods from
1% is the minimum. If one wishes to depict in a two-dimensional diagram
the trade-off possibilities between inflation and unemployment for many
periods, then the mean rates of these variables over time or their root mean
squared deviations over time could be plotted. The points in the diagram
are obtained by solving several optimal deterministic control problems as
formulated above, with the target for the unemployment rate varying from
4% to 9% or over whatever range of values required. Thus each econometric
model is characterized by one optimal unemployment-inflation trade-off
curve. This curve permits us to answer the important question concerning



the model: Can a 4% inflation rate be achieved while maintaining an unem-
ployment rate of 5% during a particular time period?

Before closing this section, we would like to describe briefly some of the
available algorithms to calculate the solutions to deterministic control prob-
lems using an econometric model. The algorithms can be divided into two
categories. The first treats the problem strictly as a deterministic control prob-
lem, ignoring all the random elements in the econometric model. Since the
time paths of the endogenous variables are determined by the time paths of
the control variables through the econometric model, and the multiperiod
loss is a function of the endogenous (and possibly also the control) variables,
one can regard the loss function as a function of the control variables. Various
gradient-type algorithms have been applied to minimize the loss function
with respect to the time paths of the control variables, including the works
of Fair (1974), Holbrook (1974), Craine, Havenner, & Tinsley (1976), Kalch-
brenner & Tinsley (1976), Ando & Palash (1976), and Norman, Norman &
Palash (1975). The second category is a by-product of a solution to an optimal
stochastic control problem which allows for random disturbances in an
econometric model. The mathematical expectation of a multiperiod loss
function is minimized subject to the constraint of a stochastic econometric
model, as will be illustrated by (3.2) and (3.3) of Section 3. The optimal solu-
tion will take the form of feedback control equations, i.e., x = Gfyf_1 + g1,
where x1 and y are respectively vectors of control and endogenous variables,
and G1 and g are respectively a matrix and a vector of constants to be deter-
mined by the optimal control algorithm. To obtain a solution to a deter-
ministic control problem, however, we can apply these optimal feedback
control equations to a deterministic econometric model and calculate the
time paths of both the endogenous and the control variables when the model
is subject to optimal control.

One method to obtain a set of optimal feedback control equations to
minimize a quadratic loss function subject to a system of nonlinear structural
equations as described in Chow (1975, p.285, 1976) is the following. First,
tentative paths x° of the control variables are chosen. The GaussSiedel
method is applied to solve the nonlinear equations to obtain the paths y° of
the endogenous variables corresponding to the chosen paths of the control
variables. The econometric model is linearized about these paths:

= y_i,x) çb(y, y_1,x) + 1i1(yt - y)
+ I2f(Y1 - Yr-i) + I3(x - x),

where denotes the matrix of the derivatives of the vector function with
respect to its ith argument evaluated at y, j , x. A set of time-varying,
linear structural equations is thus obtained. These equations are solved to
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produce a set of time-varying, linear reduced-form equations. Given these
reduced-form equations and the quadratic loss function, the solution to the
deterministic optimal control problem is computed in the form of optimal
feedback control equations. These equations, together with the original non-
linear structural equations, determine the time paths of the endogenous and
control variables when the system is governed by the new set of control rules.
The model is again linearized about these paths as before. The process
continues until the solution paths from successive linearizations converge.

3. Characterization of an Econometric Model
by Stochastic Control

The feedback control algorithm described at the end of Section 2 provides
a nearly optimal solution to the original stochastic control problem when
the random disturbances in the econometric model are retained. It can there-
fore be used to characterize a stochastic econometric model from the view-
point of optimal economic policy. When the random disturbances of an
econometric model are taken into account in the formulation of economic
policy, two important consequences should be noted. First, as we have
pointed out, the solution will take the form of feedback control equations.
Second, the solution paths for both endogenous and control variables become
stochastic. In order to characterize them, we need at least the expected paths
and the autocovariance matrices of the variables in the system under feedback
control. The expected paths can be approximated by the solution to the
deterministic control problem obtained by replacing the random distur-
bances by their expected values. The autocovariance matrix of the system can
be easily computed by using the time-varying, linear feedback control equa-
tions and the linearized reduced-form equations obtained from the last iter-
ation (or linearization) using the preceding algorithm. See Chow (1975, Chap-
ter 3), for example, on the methods of computing the autocovariance matrix.
Hence the dynamic properties of the optimal control paths of the endogenous
and control variables can be used to characterize and compare stochastic
econometric models as well as deterministic models.

When dealing with stochastic models, we can supplement the unem-
ployment-inflation trade-off curves proposed in Section 2. These curves are
constructed from the deterministic time paths of these variables in the optimal
deterministic control solution or from the expected time paths, denoted by

of the (approximately) optimal stochastic control solution. Let Yit and Y2t
stand for the unemployment and inflation rates respectively. We could vary
the weights in the loss function, as suggested in Section 2, and plot the



resulting combinations of 1311/T and J 1Y2/T. We could also plot the
square roots of J= 1 (1t - a1)2/T and J. (f - a2)2/T, where a1, and alf
are some target paths for unemployment and inflation and may be set equal
to zero. The contribution of the ith variable to the multiperiod expected
loss is given by

T T T

E(y - a,)2 = ( - a1)2 + E(y - (3.1)
t=1 t=1 t=l

Hence the sums E(y - y1)2 of the variances over T periods for the
unemployment rate and the inflation rate can be plotted. Or the total con-
tributions, consisting of T= 1 ( - a)2 and E(y - y)2, from the
unemployment and inflation rates can be plotted on a two-dimensional
diagram. A curve can be traced out by varying the parameters of the loss
function as the unemployment-inflation trade-off curve was traced out in
Section 2.

The main purpose of this section, however, is to propose some summary
measures to characterize an econometric model for policy purpose, rather
than simply exhibiting the mean paths and the covariance matrix of the major
economic variables prevailing when the model is subject to optimal feedback
control. The basic idea is a generalization of the reduced-form equations of a
static model relating the endogenous variables to the control variables. The
multipliers are the derivatives of these reduced-form equations. Our prob-
lem is complicated because we are studying the effects of the policy variables
in the context of a nonlinear, dynamic, stochastic econometric model, which
is being controlled to minimize the expectation of a multiperiod objective
function. Rather than measuring the effects on many individual endogenous
variables, we propose to measure the effects of the current control variables
on the total expected loss for all future periods until the end of the planning
horizon. We will choose a scalar function relating the multiperiod expected
loss to the control variables of the first period. This function is derived directly
from the well-known stochastic control theory based on the method of
dynamic programming as follows.

First, assume a quadratic loss function for T periods with k = Ka

T T

W = (y - a)'K(y - a) = (yKy, - 2yk + aK1a). (3.2)
t=1 t=1

Second, the nonlinear econometric model is linearized about the solution
paths of the Optimal deterministic control problem as described at the end
of the last section, yielding the following reduced-form equations

= Ay_1 + Cx + b, + Ut, (3.3)

236 GREGORY C. CHOW



COMPARISON OF MODELS BY CONTROL TECHNIQUES 237

where x is a vector of control variables which may be incorporated as a
subvector of the endogenous variables Yt if necessary and u is a vector of
serially uncorrelated random disturbances. Using the method of dynamic
programming (Chow, 1975, Sec. 8.1), we find the optimal strategy by first
minimizing the expected loss E(yT aT)KT(yT - aT) for only the last period
T with respect to XT. Substituting (3.3) for YT in this expectation and dif-
ferentiating the result with respect to XT, we obtain a linear feedback control
equation X = GTYT 1 + g. We then minimize the sum of the expected
losses for the last two periods with repsect to XT_1, assuming that the last
period policy XT shall be optimal, i.e., substuting the minimum expected loss
for period T into the minimand. Continuing the process backward in time,
we finally minimize the sum of the expected losses for all T periods with
respect to x1 of the first period, assuming that x2, . . . , X will be optimal.
This sum, after all the future minimum expected losses from period 2 onward
have been duly inserted, is the expectation of a quadratic function of the
economic variables y for the first period only:

V1 = E(y'Hy1 - 2y'1h1 + cj), (3.4)

where the coefficients H1, h1, and c1 can be calculated by standard formulas
(Chow, 1975, p.179). Using (3.3) to substitute for Yi in (3.4) and taking expecta-
tions, we have

V1 = x'1C'1H1C1x1 + 2x'1C'1(H1A1y0 + H1b1 - h1)

+ (A1y0 + b1)'H1(A1y0 + b1) + E(u'1H1u1) - 2(A1y0 + b1)'h1 + c1

= x'1Qx1 + 2x'1q + d (3.5)

Thus, assuming that the policies from period 2 onward will be optimal, the
expected multiperiod loss is a quadratic function of x1 as given by (3.5). The
optimal first-period policy 2 is obtained by minimizing (3.5) with respect to
x1, yielding the associated minimum expected multiperiod loss V =
Note that the subscript of V denotes the fact that this cumulated expected
loss is computed from period 1 onward.

Our proposal is to use the quadratic function V1(x1), as given by (3.5), to
characterize and compare econometric models. This function gives the total
expected loss from period 1 to period T in terms of the control variables x1
in the first period, assuming that future policies from period 2 to period T
will be chosen optimally. It appears to capture the essential information
contained in an econometric model concerning the effects of the current
policy variables on economic welfare as measured by the loss function. It is
applicable to deterministic models as a special case where the vectors u
of random disturbances for all periods are set equal to zero. The constant



Optimal strategy from A

Optimal strategy from B

term din the quadratic function (3.5) will be affected since E(u'1H1u1) is zero
and its component c1 is dependent on future E(uHu1).

To compare two econometric models A and B, we use the functions
V1A(xl) and V1B(xl) obtained by the dynamic programming algorithm applied
to these models respectively, given the same multiperiod loss function. Let
X1A and 1B respectively minimize ViA and V1B. One can certainly compare
the two models by their first-period optimal policies 1A and In fact,
in Section 2 we have pointed out that the entire optimal solution paths tA

and xtB(t = 1,. . . , T) obtained from two deterministic models can be com-
pared. However, by simply inspecting the values of X1A and X1B we cannot
tell how different the policy recommendations from the two models are.
Perhaps the function V1A(xl) is fairly flat around 1A and V1A(1B) is not
much larger than V1A(2A). This means that, as far as model A is concerned,
X1B is about as good a policy as 1A On the other hand, V1B(1A) may be
much larger than V1B(1B); that is, as far as model B is concerned, its optimal
policy 1B is much superior to the optimal policy 1A derived from model A.

To depict the differences between two models A and B for the purpose
of obtaining a reasonable first-period policy x1, the following payoff matrix
can be used as an example:

States of the World

A B

When we consider the welfare consequence of using the optimal policy 1A

from model A if model B happens to be true, we do not assume that the policy
recommendations from model A will be followed period after period. Rather,
we assume that the (mistaken) policy from model A will be followed only in
the current period and the (correct) policies from the hypothetically true
model B might be followed from period 2 on. The rationale for the above
payoff matrix is that the decision maker is not committed to follow the mis-
taken policies from an incorrect model in the future. To measure the welfare
loss in adopting 21A for only the first period while allowing for the possibility
to behave optimally later on assuming model B to be true, we compare
V1fl(21A) with V1B(21B) in the above matrix. If V1B(i1A) - VIB(21B) is small
while V1A(1B) - V1A(21A) is large, as illustrated by the numbers given for the
payoff matrix above, one would adopt 21A by the minimax criterion. A
Bayesian would assign probabilities P(A) and P(B) to the two models and
adopt the policy to minimize expected loss. In the above numerical illustra-

V1A(jA) 100 V1B(i1A) 95

V1A(1B) 300 V1(1) 90
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tion, unless P(A) is very small as compared with P(B), 1A will yield a smaller

expected loss than
If model A is assumed to be fairly accurate, we can evaluate a historically

adopted policy x1 by the difference V1A(xj) - V1A(1A), where the function

V1A() is obtained by using the historical period in question as period 1. This
difference measures the welfare cost of adopting the historical policy x1,

rather than the optimal policy 1A The logic is identical with that of com-
paring VlA(lfl) and VlA(2l as suggested in the previous paragraph. This
approach to the evaluation of historical policies is discussed in Chow (1978).

4. An Illustration Using the Michigan Model

To illustrate the method of Section 3, the Michigan Quarterly Economet-
ric Model (Hymans & Shapiro, 1973) has been used to calculate the function
V1(x1). The optimal control problem solved is the one posted by the partici-

pants of the NSFNBER Econometric Model Comparison Seminar referred
to in Section 2. That is, the number of periods is 17, covering the quarters
from 1971.1 to 1975.1. The objective is to minimize the loss function

17

[ j2 + .75(u1 - 4.0)2 + .75(GNP gap1 - 0)2

+ (TB1 - 0)2 + .1(IJR$1 yt)2], (4.1)

where ji is the annual rate of inflation measured by the GNP deflator,
= 3.0 for t = 1,.. . ,12, = 7.0 for t = 13,. . . ,17, u is the unemployment

rate, GNP gap is the percentage deviation of GNP in 1958 dollars (GNP58)
from capacity output, TB is trade balance as a percentage of GNP in current
dollars, URS is unborrowed reserves in billions of current dollars, and
represents a smooth expansionary path for UR$. The policy variables set up
for our computations are government transfer payments GTRP$, un-
borrowed reserves URS, and nondefense government purchases of goods and

services GFO$, all in billions of current dollars. However, the first control
variable GTRPS was not treated as such by the participants of the Economet-

ric Model Comparison Seminar. Therefore, we simply fixed it as its historical
path by using the historical path as the target path and assigning a large
penalty weight of 100 to the square of its deviation from target [this part of
the loss function not being shown in function (4.1)]. The UR$ term in the loss
function serves to prevent erratic behavior of the monetary instrument. The
estimated residuals in the structural equations were added back to the
intercepts, at the suggestion of the seminar participants, resulting in a deter-
ministic control problem although our method can handle the stochastic



case as well. The optimal control solution paths for the major endogenous
and control variables have been discussed elsewhere (Chow & Megdal,
1978a). We will study the function V1(x1) below.

The quadratic function V1(x1) = x'1Qx1 + 2xq + d is given by the fol-
lowing matrix Q and vector q

[100.00097 .00003 .002371 -8270.3161
Q = .00003 .10301 .00100

, q = 2.798 (4.2)

[ .00237 .00100 .00861] 0.897]

The vector of control variables in period 1 which minimizes V1 is

= [82.7005 26.3770 78.3233]. (4.3)

The derivatives of V1 with respect to the three control variables are 2Qx1
-F- 2q. They are of course zero at x1 = 2. If the first control variable x11
deviates slightly from its minimizing value 82.70, say x11 = 83.70 billion, and
the other two control variables retain their optimum values, the derivative
of V1 with respect to the first is very large, being equal to 100.0, which is the
leading diagonal element of Q. On the other hand, when the second and third
control variables are increased by 1 billion from their optimum values, the de-
rivatives will only be .1030 and .0086, respectively. The function V1 increases
very sharply as x11 deviates from its optimum value because we have put a
heavy penalty on the deviation of this variable from its historical or target
value 82.70; we are in fact not treating this variable as a genuine control
variable. V1 increases more rapidly when the second control variable (un-
borrowed reserves) deviates from its optimum than when the third control
variable (nondefense government purchases) deviates from its optimum,
partly because the former variable enters explicitly in the loss function (4.1).

Since the first control variable is really fixed, we will simplify our analysis
by reducing V1 to a function of only the second and third control variables.
When x11 is fixed at its historical value 82.70, the quadratic function V1
involves

[.103,013 .000,9991 [-2.7954
- .008,614]

q - [o.7o11
If we had computed the function V1 for another econometric model, we would
use its optimum values for the two control variables to evaluate the function
(4.4) and compare the result with the minimum value of(4.4). We would also
use the optimum values for (4.4) to evaluate the function V1 derived from the
other model and compare the result with the minimum of the latter function.
We could also plot the contour maps of these two functions on the same dia-
gram and compare them. Without the second V1 at our disposal, we will

(4.4)
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evaluate (4.4) at the historical values of the control variables, which are 29.5

and 24.1, respectively. Note that the second figure differs a great deal from
the optimum value 78.3 given in (4.3). At these historical values, the multipe-

nod loss V given by (4.4) is 26.00 higher than its minimum.
To examine the figure 26.00 more closely, we will compute the difference

between the first-period losses of the two policies. The figure 26.00 is com-

posed of this difference and the remainder which measures the extra loss from
period 2 to T attributable to the historical (nonoptimal) policy as it affects
the initial economic condition at the end of period 1. The optimum solution
values and the historical solution values of the variables entering the loss
function (4.1) for period 1(1971.1) are given in the accompanying tabulation.

The first-period losses resulting from these two solutions are 11.47 and 24.61,

respectively, the difference being 13.14. (Note that the target value for UR$1

was set at its historical value 29.5, accounting for a contribution of .1(26.4
- 29.5)2 = .961 to the first-period loss of the optimum policy.) The main
contribution to the first-period loss of the historical policy is from the GNP
gap, equal to .75(5.01)2 = 18.83. Although the loss function (4.1) weighs the
inflation term by 1 and the unemployment term by only .75, it penalizes low
output quite heavily through the GNP gap. In short, 13.14 or about half of
the extra multiperiod loss 26.00 is allotted to the difference between the first-
period losses. The assumption is that, no matter whether the first-period
policy is optimal or not, the policies from period 2 on will be optimally chosen.
The nonoptimal policy in period 1 adds 13.14 to the loss in period 1 itself,
as computed from the two sets of solution values of the variables included in
the loss function shown above. It adds an almost equal amount to the total
loss from period 2 to period 17, assuming the policies in these periods to be
optimal. The 26.00 figure can also be compared with the total loss of 248.03

for all 17 periods if optimal policies had been followed throughout.
The fairly sizable difference between the outcomes of the two policies is

not surprising because the historical value of federal government nondefense
purchases in 1971.1 is 24.1 billion and its optimal value from solving the
optimal control problem using the loss function (4.1) is 78.3 billion. We have
not considered the political feasibility of such a large increase in government
expenditures. To do so would require putting an extra term for this control
variables in the loss function. Several questions are of interest when optimal
control techniques are applied to analyze and compare econometric models.

Solution j u1 GNP gap1 TB1 UR$1

Optimum 6.07 5.08 .48 - .182 26.4

Historical 4.69 5.95 5.01 .278 29.5



When the optimal solution deviates so much from the historical trend, would
the model remain to be valid? If not, how should the model be changed? Or
should we keep the model and pull the solution closer to the trend by adding
extra terms in the loss function? In fact, an important use of optimal control
is to reveal the properties of an econometric model under systematic varia-
tions of the control variables. If we adopt a policy closer to the historical
trend, such as 40.0 billion for federal nondefense purchases as compared with
the optimal value of 78.3 billion, how much would we lose if the model re-
mained valid at the optimum solution? (The answer is that the multiperiod
loss would increase from the minimum 248.03 by only 12.65, instead of 26.00,
when the two control variables equal 26.377 and 40.0, respectively.)

In this paper, we have reviewed briefly some existing tools for character-
izing and comparing econometric models and described several techniques
based on the theories of optimal control of deterministic and stochastic
econometric models. In particular, a curve depicting the best inflation-un-
employment trade-off can be used to characterize an econometric model.
Furthermore, we propose the use of a quadratic function V1A(xl) which
measures the T-period expected loss based on a model A if x1 is the policy
for period 1 while the policies for the remaining periods from 2 to T will be
optimal. This function is simple; it has nine parameters as illustrated by (4.2)
when there are three control variables, and five parameters as illustrated by
(4.4) when there are two control variables no matter how complicated model
A is. It captures the essential information concerning the response of the
model to the policy variables and can be used to characterize a model from
the viewpoint of policy analysis and formulation.

ACKNOWLEDGMENTS

I would like to thank Ettie H. Butters for excellent programming assistance and J. Kmenta,
J. Ramsey, and a referee for helpful comments and to acknowledge financial support from
the National Science Foundation.

REFERENCES

Anderson, L. C., & Carlson, R. M. An econometric analysis of the relation of monetary variables
to the behavior of prices and unemployment. In 0. Eckstein (Ed.), The econometrics of
price determination. Washington, D.C.: Board of Governors of The Federal Reserve
System, 1972. Pp. 166-183.

Ando, A., & Palash, Carl. Some stabilization problems of 1971-75, with an application of
optimal control algorithms. American Economic Review, 1976, 66(2), 346-348.

Bodkin, R. D. Wage and price formation in selected Canadian econometric models. In 0.
Eckstein (Ed.), The econometrics of price determination. Washington, D.C.: Board of
Governors of The Federal Reserve System, 1972. Pp. 369-385.

242 GREGORY C. CHOW



COMPARISON OF MODELS BY CONTROL TECHNIQUES 243

Chow, G. C. Analysis and control ofdynamic economic systems. New York: Wiley, 1975.
Chow, G. C., An approach to the feedback control of nonlinear econometric systems. Annals

of Economic and Social Measurement, 1976, 5(3), 297-310.
Chow, G. C., Evaluation of macroeconomic policies by stochastic control techniques. Inter-

national Economic Review, 1978, 19(2), 311-320.
Chow, G. C., Evaluation of econometric models by decomposition and aggregation. In I.

Kmenta and J. Ramsey (Eds.), Methodology of macroeconomic models. Amsterdam:
North-Holland PubI. 1980, in press.

Chow, G. C., & Megdal, S. B. The control of large scale econometric systems. IEEE Transac-
tions on Automatic Control, 1978, AC-23(2), 344-349(a)

Chow, G. C., & Megdal, S. B. An econometric definition of the inflation-unemployment trade-
off. America,, Econo,nic Reviem,', 1978, 68(3), 446-453(b)

Craine, R., Havenner, A., & Tinsley, P. Optimal macroeconomic control policies. Annals of
Economic and Social Measurement, 1976, 5(2), 191-204.

de Menil, G., & Enzler, J. J. Prices and wages in the FR-MIT-Penn econometric model. In
0. Eckstein (Ed.), The economnetrics ofprice determination. Washington, D.C.: Board of
Governors of The Federal Reserve System, 1972. Pp. 277-308.

Fair, R. C. On the solution of optimal control problems as maximization problems. Annals
ofEconomic and Social Measurement, 1974, 3(1), 135-154.

Hirsch, A. A. Price simulations with the OBE econometric model. In 0. Eckstein (Ed.), The
Econometrics of price determination, Washington, D.C.: Board of Governors of The
Federal Reserve System, 1972. Pp. 237-276.

Hirsch, A. A., Hymans, S. H., & Shapiro, H. Econometric review of alternative fiscal and
monetary policies, 1971-75. Review of Economics and Statistics, 1978, LX(3), 334-345.

Holbrook, R. S. A practical method for controlling a large nonlinear stochastic system. Annals
of Economnic and Social Measurment, 1974, 3(1), 155-176.

Hymans, S. H. Prices and price behavior in three U.S. econometric models. In 0. Eckstein
(Ed.), The econometrics of price determination. Washington, D.C.: Board of Governors
of The Federal Reserve System, 1972. Pp. 309-324.

Hymans, S. H., & Shapiro, H. The Michigan quarterly econometric model of the U.S. economy.
The Economic Outlook for 1973, Ann Arbor, Michigan: The University of Michigan, 1973,
Pp. 113-155.

Kalchbrenner, J. H., & Tinsley, P. A. On the use of feedback control in the design of aggregate
monetary policy. American Economic Review, 1976, 66(2), 349-355.

Norman, A., Norman M., & Palash, C. On the computation of deterministic optimal macroeco-
nomic policy, Research Paper No. 7507, Federal Reserve Bank of New York, 1975.


