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EVALUATION OF ECONOMETRIC MODELS

Regression Sensitivity Analysis and
Bounded-Influence Estimation*
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SLOAN SCHOOL OF MANAGEMENT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

1. Introduction

Economists and others have been building and using econometric
models for many years. A subset of these builders and users has always been
concerned about model reliability, sensitivity, and validity. The energy
crisis put certain aspects of modeling into the public and political spotlight.
Many questions have been raised about the integrity of the modeling process,
and in 1975 the National Science Foundation sponsored a conference at
Vail, Colorado, on model formulation, validation, and improvement (How-
rey, 1975). This conference caused a number of statisticians to pay more at-
tention to the statistical questions raised in connection with model reliability,
sensitivity, and validity. This paper briefly describes some of the progress that
has been made by examining a particular model and set of data. Whatfollows
should in no way be construed as a complete analysis of the data or model.

We will denote the standard regression model by

y=Xf3+.e, (1)

where X is n x p. The least-squares (LS) estimates for fi will be called b,
the least-squares residuals, e, and the estimated standard error of the regres-
sion, s. The notation (i) will be used to indicate that the ith row or observation
has been removed from a computation, and x will denote the ith row of the

X matrix.
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2. Data and Model

The data and model that we will discuss are taken from a recent paper
by Harrison & Rubinfeld (1978). In this paper a two-step procedure is used
to estimate the willingness to pay for reduced air pollution. The first step
is the estimation of a hedonic housing price equation, and the second step
is the estimation of a marginal willingness to pay function for households
in an urban area. In what follows we will only examine in detail the first step.

The hedonic housing price model used by Harrison and Rubinfeld is
LMV = I3 + /32CRIME + /33ZONE + /34INDUS + /35CHAS

+ IJ6NOXSQ + j37R00M + fl8AGE + /I9DIST
+ /31ØHWAY + /J11TAX + /312PTRATIO + /313BLACK

+ /I14STATUS + . (2)

A brief description of each variable is given in Table 1. Further details may
be found in the Harrison and Rubinfeld paper.

TABLE 1

DEFINITION OF MODEL VARIABLES

Variable Definition

LMV Logarithm of the median value of owner-occupied homes
CRIME Per capita crime rate by town
ZONE Proportion of a town's residential land zoned for lots greater than 25,000

square feet
INDUS Proportion of nonretail business acres per town
CHAS Charles River dummy variable with value 1 if tract bounds the Charles River
NOXSQ Nitrogen oxide concentration (ppm) squared
ROOM Average number of rooms squared
AGE Proportion of owner units built prior to 1940
DIST Logarithm of the weighted distances to five employment centers in the Boston

region
HWAY Logarithm of index of accessibility to radial highways
TAX Full value property tax rate (per 10,000)
PTRATIO Pupilteacher ratio by town school district
BLACK (B-0.63)2 where B is the black proportion of the population
STATUS Logarithm of the proportion of the population that is lower status

In order to obtain a measure of the willingness to pay for clean air W,
the exponential of Eq. (2) is differentiated with respect to the pollution
variable NOX. Assuming b6 is negative this gives

W, = e(2b6NOX),
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TABLE 2

CENSUS Tit&crs

Observation Thwn Observation Town

1 Nahant 27 5-279 Needham
2-3 Swampscott 280-28 3 Wellesley
4-6 Marblehead 284 Dover
7-13 Salem 285 Medfield
14-35 Lynn 286 Millis
36-39 Saugus 287 Norfolk
40-41 Lynnfield 288-290 Walpole
42-50 Peabody 29 1-293 Westwood
51-54 Danvers 294-298 Norwood
55 Middleton 299-301 Sharon
56 Topsfield 302-304 Canton
57 Hamilton 305-308 Milton
58 Wenham 309-320 Quincy
59-64 Beverly 321-328 Braintree
65 Manchester 329-331 Randolph
66-67 North Reading 332-333 Holbrook
68-70 Wilmington 3 34-34 1 Weymouth
7 1-74 Burlington 342 Cohasset
75-80 Woburn 343 Hull
8 1-84 Reading 344-345 Hingham
85-88 Wakefield 346-347 Rockland
89-92 Melrose 348 Hanover
93-95 Stoneham 349 Norwell
96-100 Winchester 350-351 Scituate
101-111 Medford 3 52-3 53 Marshfield
112-120 Maiden 354 Duxbury
121-127 Everett 3 55-3 56 Pembroke
128-142 Somerville 357-488 Boston
143-172 Cambridge 3 57-3 64 Allston-Brighton
173-1 79 Arlington 365-370 Back Bay
180-187 Belmont 371-373 Beacon Hill
188-193 Lexington 374-375 North End
194-195 Bedford 376-382 Charlestown
196 Lincoln 383-393 East Boston
197-199 Concord 394-406 South Boston
200-201 Sudbury 407-414 Downtown (South Bay)
202-203 Wayland
204-205 Weston 415-433 Roxbury
206-216 Waltham 434-456 Savin Hill
217-220 Watertown 457-467 Dorchester
221-23 8 Newton 468-473 Mattapan
239-244 Natick 474-480 Forest Hills
245-254 Framingham 481-484 West Roxbury
255-256 Ashland 484-488 Hyde Park
257 Sherborn 489-493 Chelsea
258-269 Brookline 494-501 Revere
270-274 Dedham 502-506 Winthrop



where denotes the fitted values obtained for the model (2). It is easy to see
that 5 and b6 play especially important roles in the determination of W.

The basic data are from census tracts in the Boston Standard Metro-
politan Statistical Area (SMSA) in 1970. With tracts containing no housing
units or composed entirely of institutions excluded, the Boston sample
contains 506 observations. To aid in understanding the results that follow,
we provide a breakdown of the observations by town in Table 2.

In the process of developing the model (2), Harrison and Rubinfeld
were careful to reduce collinearity as much as possible. To check this we
computed the condition number (the square root of the ratio of the largest
and smallest eigenvalues) of the scaled explanatory variable matrix and
found it to be about 66, indicating that some collinearity remains [see Belsley,
Kuh, & Welsch (1980)]. Harrison and Rubinfeld also discuss possible
heteroscedasticity, but eventually settle on the model (2) with no hetero-
scedastic weighting.

TABLE 3

REGRESSION RESULTS'

R2 = 0.81, s = 0.18, F(13,492) = 157.

In order to summarize the data, we present some of the standard output
from least-squares regression. Table 3 lists the estimated coefficients,
standard errors, and t- statistics, along with F, R2, and s.

Many econometric texts and discussions of econometric models fail to
place enough emphasis on the verification of statistical assumptions. For
example, Harrison and Rubinfeld do not mention or display a Gaussian

Estimated coefficient Std error t-statistic

INTER 9.756 0.15 65.23
CRIME -0.0119 0.0012 -9.53
ZONE 0.0000804 0.0005 0.16
INDUS 0.000242 0.002 0.10
CHAS 0.0914 0.0332 2.75
NOXSQ -63.807 11.315 -5.64
ROOM 0.00633 0.00131 4.82
AGE 0.0000897 0.0005 0.17
DIST -0.191 0.033 -5.73
HWAY 0.0957 0.0191 5.00
TAX -0.00042 0.00012 -3.42
PTRATIO -0.0311 0.005 -6.21
BLACK 0.364 0.103 3.53
STATUS -0.371 0.025 -14.83
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Fig. 1. Normal probability plot of studentized residuals. Resistant line is Y = 0.85936X +

0.0 19074.

(normal) probability plot of the residuals. Figure 1 is a probability plot of
the studentized residuals (explained more fully in Section 4); we note the
heavy tails indicating that the Gaussian error assumption may be suspect.
The largest residual, 372, is denoted on the plot.

In general, we would also look at the residuals plotted against each ex-
planatory variable. It is more informative to make partial-regression plots.
This graphical device can be motivated as follows. Let X[k] be the n x (p - 1)
matrix formed from the data matrix, X, by removing its kth column, Xk.
Further let Uk and Vt, respectively, be the residuals that result from regres-
sing y and Xk on X[k]. As is well known, the kth regression coefficient of
a multiple regression of y on X can be determined from the simple two-
variate regression of Ut Ofl Vk. The partial-regression plot for bk is a scatter
plot of the Ut against the Vt along with their simple linear-regression line.
The residuals from this regression line are, of course, just the residuals
from the multiple regression of y on X, and the slope is b, the multiple
regression estimate of /3k Finally, the simple correlation between Ut and
Vt is equal to the partial correlation between y and X in the multiple regres-
sion. The computational details for these plots are discussed by Mosteller
& Tukey (1977).

The most interesting of these plots, the one for the crime variable, is
shown in Fig. 2. Clearly, a few census tracts in Boston are rather influential
in the determination of the crime coefficient.
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Fig. 2. Partial-regression piot for CRIME variable. Standard error = 0.001245. Regression
line is Y= 0.011866X.

This preliminary look at the data (1 Gaussian probability plot and 14
partial-regression plots) has already caused us to question the Gaussian error
assumption, to become conerned about influential observations and outliers,
and to wonder if it was wise to put Boston and its suburbs together for cali-
brating this model. In the next section we try to assess the impact of the pos-
sible failure of the Gaussian error assumption.

3. Robust Estimation

If the error distribution for the Harrison and Rubinfeld model is not
Gaussian, then we would like to use maximum likelihood estimates for
the "correct" error model. Since this model is not known, a reasonable
strategy is to explore models in a neighborhood of the Gaussian model to
see how sensitive the estimated coefficients are to changes in the error model.
For point estimation we would want a procedure that is reasonably efficient
at the Gaussian model and at neighboring error models.

Huber (1973) has proposed such an estimator where the criterion func-
tion is given by

Ir2/2, < c,

pc(r)= II-ciri - c2/2, fri > c,
(3)
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4. Regression Diagnostics

The partial-regression plots presented in Section 2 provide useful clues
about influential data. There are a number of other diagnostic tools which
can provide us with more precise information. The underlying philosophy
is that by perturbing small portions of the data we will learn about obser-
vations that might be excessively influential in the determination of estimated

coefficients, forecasts, and policy.

LS Huber

s 0.18 0.14

INTER 9.756 9.629

CRIME 0.0119 0.011
ZONE 0.0000804 0.0000368

INDUS 0.000242 0.001214

CHAS 0.0914 0.0768

NOXSQ 63.807 50.446
ROOM 0.00633 0.0115

AGE 0.0000897 - 0.0006583
DIST 0.191 0.164
HWAY 0.0957 0.0704

TAX 0.00042 0.00036
PTRATIO 0.0311 0.0289
BLACK 0.364 0.551

STATUS 0.371 0.281
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and the parameters (including scale) are estimated by minimizing

ap[(y, - x/3)/a] + d(n - p)a. (4)
1

Note that when c = cc this reduces to least-squares.
We chose c = 1.345 and d = 0.3591 which correspond to an estimator

with 95°/ efficiency on Gaussian data. The results are presented in Table
4. There are a number of relatively large changes, including STATUS and
ROOM (more than three LS standard errors). NOXSQ, of special interest

to Harrison and Rubinfeld, changed by more than one standard error.
My tentative conclusion based on these simple procedures is that the final
results of the Harrison and Rubinfeld study should be stated using the LS
and Huber estimation procedures in order to provide a range of values
for consideration.

TABLE 4

ROBUST REGRESSION RESULTS
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x1(b - b(i))

(
h1 \1/2

DFFITS, -
= 1 - h1)

er.
s(i)

At this point it is easy to see that neither h1 nor er alone will usually be
sufficient to identify an influential observation (one with a large value of
IDFBETAS or DFFITS). DFFITS is essentially the product of these two
quantities and if h, is large, DFFITS can be large even if 1e2'I is small. The
reverse is also true, and the examination of just the residuals (as is commonly
done) can be misleading.

We now return to the Harrison and Rubinfeld data. The observations
with li 2p/n = 0.055, e 2.58 (o = 0.01), and DIFFITSI > 0.43 are
listed in Table 5. The cutoff for DFFITS is based on the fact that when the
X data is perfectly balanced, hL = p/n for all i and DFFITS (p/n -
er. To provide some idea of the relative size of DFFITS we have plotted it
against census tract in Fig. 3.

s(i)J(XTX) 'i., \/:I:= iCj s(i)(1 -
where c is the appropriate element of CT = (XTX) -1 XT, and the scaled
change in fit,

(8)

Two basic diagnostic quantities are the diagonal elements of the least-
squares projection matrix (X(XTX) 1X1'),

= x(XTX)xT, (5)

and the studentized residuals,

er = e/J1 - hs(i). (6)

Both h, and er are discussed extensively in Hoaglin & Welsch (1978) and
Belsley, Kuh, & Welsch (1980). Briefly, when h is more than twice its average
value, p/n, we say the ith observation is a leverage point and may be an
influential observation. The point 381 in Fig. 2 is a leverage point, but the
y data must be used before we can say it is an influential observation. The
purpose of examining h is to detect multivariate outliers in the explanatory
variable space that could not be detected via scatter plots. This measure
is also an effective replacement for the tedious examination of all bivariate
scatter plots. We prefer e, to e since e' has a Student's t-distribution with
n - p - 1 degrees of freedom when the Gaussian error assumptions hold.
If we were to add a column to X consisting of all zeros except for a one in
the ith row, then e' is the t-statistic for testing the significance of the co-
efficient of this new ö column.

The two fundamental single-row diagnostic quantities are the scaled
change in estimated coefficients (due to deleting the ith row),

DFBETASJ
- b(i)



TABLE 5

REGRESSION DIAGNOSTICS

INDEX

Fig. 3. Scatter plot of DFFITS versus' Index.

Observation h Observation er Observation DEFITS

381 0.295 372 4.51 381 1.655

419 0.184 373 4.16 419 1.101

406 0.153 402 -3.99 373 0.986

411 0.112 401 -3.95 406 0.911

369 0.098 400 -3.94 369 0.879

365 0.089 490 -3.53 365 -0.859

156 0.084 413 3.52 490 -0.823

343 0.082 399 -3.30 413 0.788

366 0.077 398 -3.21 399 -0.724

163 0.077 410 3.16 215 0.721

153 0.074 506 -3.07 372 0.711

371 0.073 215 2.91 368 0.703

284 0.069 417 -2.85 401 -0.600

162 0.068 368 2.76 411 0.598

164 0.068 365 -2.75 506 -0.591

415 0.067 369 2.66 400 -0.581

143 0.067 417 -0.572

157 0.067 366 0.567

370 0.066 410 0.508

155 0.063 404 -0.477

368 0.061 491 -0.476

127 0.060 370 0.457

124 0.059 420 -0.454

215 0.058

258 0.057

160 0.056



Now we turn to the problem of deciding whether or not these points
are causing special problems for the Harrison and Rubinfeld analysis.
Using the rough rule that a value of DFBETASI > 0.12 (=2.58/.j5) may be

troublesome, we found that for NOXSQ this value was exceeded in 22 cases
with 0.38 (413) the largest DFBETAS. While 0.38 is well beyond the sample
size adjusted cutoff of 0.12 it is rather small in the sense of statistical vari-
ability (0.38 standard deviations of the coefficient) and when compared to
the values obtained for DFFITS and the DFBETAS for another variable,
CRIME.

Figure 4 is a plot of DFBETAS against census tract for the CRIME
variable. There are 14 IDFBETAS larger than the 0.12 cutoff and three
points, 381(1.59), 419(1.00), and 406(0.87), which appear excessively in-
fluential. These same points surfaced in the DFFITS analysis and since the
fit, j, plays an important role in the determination of the willingness to pay,
W, some attention to these points is warranted. We might wish to rerun the
regression with these points deleted. This does not mean that these points
should be forgotten, but they do appear to need special consideration.

2.00

1.00

0.00

-. 0 100 200 300
INDEX

Fig. 4. Scatter plot of DFBETAS (CRIME) versus Index.

While it is tempting to use DFFITS as a summary measure, it can be
wasteful if we are only interested in a few coefficients. If a point does not
affect the coefficient we are interested in, then deleting it may increase the
standard error of this coefficient needlessly. Influential data points may be
the only points with certain kinds of information and our goal is to iden-
tify their influence and show that they need to be used wisely in model
development.

162 ROY E. WELSCH
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5. Multiple-Row Diagnostics

If we look at each observation separately, the influence of one point may
be masked by another, or the true impact and nature of a group of influential
observations may not be fully diagnosed. Therefore, it is necessary to con-
sider perturbing subsets of observations.

A variety of multiple-row methods are discussed in Beisley et al. (1980)
Welsch & Peters (1978), and Andrews & Pregibon (1978). Many of these are
quite costly for large data sets like the one under consideration. A cheaper
stepwise approach has often proved to be quite effective for large data sets.
Let D, denote the index set of size in for a set of observations to be set aside.
Thus b(D1) would be the least-squares estimates obtained without the use
of the observations denoted by the row indices in Dm.

The stepwise procedure for each subset size, m, begins by finding a starting
set, based on single row methods, for example, the indices of the m
largest values of IDFFITSI. consists of the indices of the m largest
values of

- b(D)]I. (9)

If = stop. Otherwise form by considering the in largest values of

- b(D))]I. (10)

This process is continued until a set is found such that D' =
Generally, this procedure is performed for in = 1, 2, 3, etc., and this allows
for a possible modification. Instead of going back to single row methods to
start the process for each m, we just use the final set and find the in + 1
largest values of

(11)

to start the process for m + 1.
The philosophy behind this procedure is that the largest changes in fit

should occur for those points not used in the estimation of the coefficients.
Different starting sets D? can lead to different final sets Rather than
a drawback, we have found this to be an advantage and often use both of
the starting procedures outlined above. After having obtained an ordered
list of the values of (11) for each in, there is often a gap in each set. If there
are more than in values larger than the location of the gap, we proceed to
the set for in + 1 because more points probably should be set aside. If there
are fewer than in points larger than the location of the gap, then some of
the deleted fit values (11) are close to the nondeleted fit values and fewer
points should be set aside. Thus, when there is a clear choice, m* is chosen
to be that value of in where the number of points beyond the gap also equals
in. The set then denotes the potentially influential points that will require
closer examination.



For the Harrison and Rubinfeld data both starting methods converged
to 381, 419, 406, and 411, with 415 a possibility. The multiple row analysis
has not revealed any masked points, except perhaps 415 if we had been
looking only at DFFITS. However, 415 is in the h list in Table 5.

We have listed the results of deleting these five points in Table 6. There
is little change in NOXSQ over the LS results, but a substantial change in
the CRIME coefficient. This is not always the case and in some situations
multiple-row techniques will affect a coefficient when single-row methods
do not.

TABLE 6

DELETED REGRESSION RESULTS

6. Bounded-Influence Estimation

We have seen in the course of our analysis that there are some very
influential observations, especially for certain coefficients. The Huber robust
estimation procedure discussed in Section 3 is designed to maintain high
levels of efficiency (low variance) when the error distribution is moderately
heavy-tailed. Does it also insure that the perturbation of small subsets of
the data will have moderate influence? If iteratively reweighted least-squares
(Holland & Welsch, 1977) are used to solve (4), then the final Huber weights
give five values of

- b(i))
s(i),fh

(12)

Deleted LS

s 0.18 0.18

INTER 9.788 9.756
CRIME 0.0191 0.0119
ZONE 0.000312 0.0000804
INDUS 0.000731 0.000242
CHAS 0.0873 0.0914
NOXSQ 63.665 63.807
ROOM 0.00626 0.00633
AGE - 0.0000808 0.0000897
DIST 0.217 0.191
HWAY 0.1106 0.0957
TAX - 0.00035 - 0.00042
PTRATIO - 0.0305 - 0.0311
BLACK 0.391 0.364
STATUS 0.355 0.371

164 ROY E. WELSCH



REGRESSION SENSITIVITY ANALYSIS 165

greater than 0.43: 381(1.20), 419(0.74), 406(-0.66), 411(0.52), and 369(0.44).
There has been a reduction in the number of potentially influential points
as well as the size, but the influence of 381 is still pronounced. This is not a
criticism of robust regression, but rather an effort to point out that another
reasonable estimation strategy might be to bound the influence of small
subsets of data. Our estimates will still be robust against long-tailed error,
but less efficient because of the bound on the influence.

A measure of infinitesimal influence is to attach a weight, , to the ith
observation and differentiate the weighted least-squares estimate b(21). This
gives

ôb(21)

aAi

and a corresponding infinitesimal influence for the fit of

xj(XTX)_xiej = h,e. (14)

Note that (8), DFFITS, is closely related to (14).
A simple one-step bounded-influence estimate can be obtained by solving

wx(y1 - x1fl) = 0,

where

wi= 0.34

1. IDFFITSd

= (XTX) -

The cutoff of 0.34 is chosen for approximately 95% asymptotic efficiency.
There are obviously other ways to choose w, and the procedure could also
be iterated. Certain types of optimal weight functions have been developed
by Krasker (1978) and Krasker & Welsch (1979). In effect, (16) is a way to
start the iterative procedure for finding optimal weights. Since we do not
have the space to describe the process fully, we will just examine the results
of this starting step.

Using these weights in formula (12) gives 0.753 as the largest value of
DFFITS (observation 414). We have done a better job of controlling the
influence of individual observations. For example, the value of DFFITS for
observation 381 is 0.13. (Iteration would allow a particular bound to be more
nearly achieved.) Observation 414 appears in none of our other diagnostics.
This "unmasking" is a by-product of bounded-influence estimation, which
is acting on more than one observation and may therefore be considered a
multiple-row technique. However, it acts in a smooth way (not w = 1 or 0)
afid therefore provides a different insight.

if IDFFITS1 0.34

if DFFITS > 0.34

(13)

(16)



TABLE 7

BOUNDED-INFLUENCE COEFFICIENTS

Table 7 indicates that for NOXSQ the Huber robust and bounded in-
fluence approaches lead to similar estimated coefficients. (This is not un-
reasonable since we found no overly influential points for NOXSQ.) There
is, however, quite a difference for CRIME as we might expect in view of the
influential points we found. It is also of interest to look at the weights to see
which observations or groups of observations were downweighted.

It is important to emphasize that bounded-influence estimation is not a
substitute for a serious scrutiny of influential observations. This procedure
will let the data as a whole provide a rough set of weights and an alternative
fit. In the Harrison and Rubinfeld case, we should have been alerted to both
long-tailed error (for NOXSQ) and influential data (for and W). In general,
we feel that alternative fits and coefficients should be given to users of a
model so that they can get some idea about how sensitive the model is to
the perturbation of data and of statistical assumptions.
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