EVALUATION
OF
ECONOMETRIC MODELS
Contents

LIST OF CONTRIBUTORS xi
PREFACE xiii

Problems and Issues in Evaluating Econometric Models

JAMES B. RAMSEY AND JAN KMENTA

1. A Topical Overview 4
2. Research Recommendations 9
 Reference 11

PART I EVALUATION OF INFORMAL MODELS

The Use of Exploratory Methods in Economic Analysis:
Analyzing Residential Energy Demand

LAWRENCE S. MAYER

1. Introduction 15
2. The Strengths and Limitations of the Modes of Analysis 21
3. The Confirmatory Analysis of Residential Energy Consumption 24
4. An Exploratory Analysis of Residential Energy Demand 28
5. Conclusions 43
 References 44

Model Construction and Evaluation When Theoretical
Knowledge Is Scarce

HERMAN WOLD

Introduction 47
1. Model Formulation When Theoretical Knowledge Is Scarce 52
2. Model Fitting and Parameter Estimation with PLS 56
3. Construction and Evaluation of PLS Models 67
 References 71

Data Analysis by Partial Least Squares

FRED L. BOOKSTEIN

1. Introduction. Latent Variables and Soft Models 75
2. The Command Diagram 77
3. Polygon Diagrams 78
4. Precise Forms of the Operator "Opt" for the Relationship between Two Latent Variables 82
CONTENTS

5. Precise Forms of the Operator "Opt" for the Relationships among Several Latent Variables: Approaches to Eigenanalysis 83

Prediction Analysis of Economic Models
DAVID K. HILDEBRAND, JAMES D. LAING, AND HOWARD ROSENTHAL
1. Forms of Prediction 92
2. Evaluating Absolute Predictions 95
3. Evaluating Actuarial Predictions: An Interpretation of the Correlation Ratio and \(r^2 \) 104
4. Multivariate Prediction Analysis 108
5. Estimation of \(\mathbf{V} \) from Sample Data 115
6. Summary and Directions for Research
 Appendix 118
 References 122

Some Comments on the Evaluation of Informal Models
V. KERRY SMITH
1. Exploratory Data Analysis 124
2. Partial Least Squares (PLS) 128
3. Set Predictions and Econometric Models 129
4. Summary
 References 130

PART II SPECIFICATION ERRORS AND SENSITIVITY ANALYSIS

Aggregation and Disaggregation of Nonlinear Equations
HARRY H. KELEJIAN
1. Introduction 135
2. Single Equation Models 137
3. A Systems Generalization 148
4. Conclusions
 References 151

Regression Sensitivity Analysis and Bounded-Influence Estimation
ROY E. WELSCH
1. Introduction 153
2. Data and Model 154
3. Robust Estimation 158
4. Regression Diagnostics 159
5. Multiple-Row Diagnostics 163
6. Bounded-Influence Estimation
 References 166
CONTENTS

On Specification in Simultaneous Equation Models
WARREN DENT AND JOHN GEWEKE
1. Introduction 169
2. The Complete Dynamic Simultaneous Equation Model 170
3. Testing the Exogeneity Specification 172
4. Testing the Overidentifying Restrictions 175
5. Empirical Illustrations 181
6. A Suggestion for Standards in Empirical Work 194
References 195

Robust Analysis of the Random Model and Weighted Least Squares Regression
BRUCE M. HILL
1. Introduction 197
2. One-Way Random Model under Conventional Assumptions 199
3. Random Model without Normality 207
4. Random Model Weighted Regression 209
5. On Robustness 215
References 217

Some Comments on Papers by Dent and Geweke, Welsch, and Kelejian
SAUL H. HYMANS
References 222

Some Comments on the Papers by Welsch and Hill
WILLIAM S. KRASKER
References 223

PART III FORMAL DECISION RULES FOR COMPARING MODELS

Comparison of Econometric Models by Optimal Control Techniques
GREGORY C. CHOW
1. Existing Characterizations of an Econometric Model 230
2. Characterization of an Econometric Model by Deterministic Control 232
3. Characterization of an Econometric Model by Stochastic Control 235
4. An Illustration Using the Michigan Model 239
References 242
Bayesian Decision Theory and the Simplification of Models
JOSEPH B. KADANE AND JAMES M. DICKEY
1. Introduction 245
2. Bayesian Response to Data; Odds 248
3. Prediction 253
4. Discussion 264
References 266

Some Comments on “Comparison of Econometric Models by Optimal Control Techniques” by Gregory C. Chow
ROBERT S. HOLBROOK
References 272

PART IV ROLE OF TIME SERIES ANALYSIS IN ECONOMETRICS

The Role of Time Series Analysis in Econometric Model Evaluation
E. PHILIP HOWREY
1. Introduction 275
2. Evaluation of Dynamic Econometric Models 276
3. Univariate Time Series Analysis 284
4. Multivariate Time Series Analysis 293
5. An Analysis of Aggregate Consumption Data 298
6. Conclusion 304
References 305

Hypothesis Testing in Spectral Regression; the Lagrange Multiplier Test as a Regression Diagnostic
ROBERT F. ENGLE
1. Introduction 309
2. Serial Correlation 310
3. Band Spectrum Regression 313
4. General Linear Hypothesis Test 313
5. A Comparison of Test Criteria 315
6. A Time Domain Example 318
7. A Frequency Domain Example 319
References 320

Multicollinearity and the Estimation of Low-Order Moments in Stable Lag Distributions
MICHIO HATANAKA AND T. DUDLEY WALLACE
1. Introduction 323
2. Objectives and Precision Criteria 326
3. A Numerical Example Using δ(h) Criterion 328
4. Theoretical Arguments Supporting Claims of Precision 328
5. Other Considerations 334
References 337
CONTENTS

Some Comments on the Role of Time-Series Analysis in Econometrics 339

C. W. J. GRANGER

References 341

PART V EXPERIMENTATION AND TESTS OF ECONOMIC HYPOTHESES

Relevance of Laboratory Experiments to Testing Resource Allocation Theory 345

VERNON L. SMITH

1. Introduction 345
2. Some Preceptual Foundations of Experimental Economics 346
3. Dynamic Market Adjustment Hypotheses 351
4. Effect of Information on Price Convergence in Competitive Markets 357
5. Sealed-Bid Mechanisms for Private Goods 360
7. Conclusion 374
References 376

Token Economy and Animal Models for the Experimental Analysis of Economic Behavior 379

JOHN H. KAGEL AND RAYMOND C. BATTALIO

1. Introduction 379
2. Experimental Studies of Individual Behavior 380
3. Conclusion 398
References 398

Some Comments on the Papers by Kagel and Battalio and by Smith 403

JOHN G. CROSS

Reference 406

Some Comments on the Papers by Kagel and Battalio and by Smith 407

FRANK P. STAFFORD

References 410

Some Comments on the Role of Time-Series Analysis in Econometrics

C. W. J. GRANGER

References
List of Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Raymond C. Battalio (379), Department of Economics, College of Liberal Arts, Texas A&M University, College Station, Texas 77843
Fred L. Bookstein (75), Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan 48109
Gregory C. Chow (229), Econometric Research Program, Department of Economics, Princeton University, Princeton, New Jersey 08540
John G. Cross (403), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
Warren Deni* (169), Department of Economics, The University of Iowa, Iowa City, Iowa 52242
James M. Dickey (245), Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222
Robert F. Engle (309), Department of Economics, University of California, San Diego, La Jolla, California 92093
John Geweke (169), Department of Economics, University of Wisconsin, Madison, Wisconsin 53706
C. W. J. Granger (339), Department of Economics, University of California, San Diego, La Jolla, California 92093
Michio Hatanaka (323), Institute of Social and Economic Research, Osaka University, Suita, Osaka, Japan
David K. Hildebrand (91), Department of Statistics, The Wharton School CC, University of Pennsylvania, Philadelphia, Pennsylvania 19174
Bruce M. Hill (197), Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109
Robert S. Holbrook (269), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
E. Philip Howrey (275), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
Saul H. Hyman (219), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109

*Present address: Eli Lilly International Corporation, Indianapolis, Indiana 46206
Joseph B. Kadane (245), Department of Statistics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
John H. Kagel (379), Department of Economics, College of Liberal Arts, Texas A&M University, College Station, Texas 77843
Harry H. Kelejian (135), Department of Economics, University of Maryland, College Park, Maryland 20740
Jan Kmenta (1), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
William S. Krasker* (223), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
James D. Laing (91), School of Public and Urban Policy, University of Pennsylvania, Philadelphia, Pennsylvania 19174
Lawrence S. Mayer† (15), Department of Statistics, Princeton University, Princeton, New Jersey 08540
James B. Ramsey (1), Department of Economics, New York University, New York, New York 10003
Howard Rosenthal (91), Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
V. Kerry Smith (123), Department of Economics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
Vernon L. Smith (345), Department of Economics, College of Business and Public Administration, University of Arizona, Tucson, Arizona 85721
Frank P. Stafford (407), Department of Economics, University of Michigan, Ann Arbor, Michigan 48109
T. Dudley Wallace (323), Department of Economics, Duke University, Durham, North Carolina 27706
Roy E. Welsch (153), Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Herman Wold (47), Department of Statistics, University of Uppsala, S-751 20 Uppsala, Sweden

*Present address: Graduate School of Business Administration, Harvard University, Soldiers Field, Boston, Massachusetts 02163
†Present address: Analysis Center, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Preface

The origins of this book go back several years to the time when the National Bureau of Economic Research (under the auspices of the National Science Foundation) was sponsoring various seminars for the purpose of assessing and enhancing the progress of applied economic research. One of the seminars was entrusted with the problem of devising criteria for the evaluation of econometric models. A group of interested scholars and researchers met several times to discuss various issues related to this problem. The result was compiled in a single publication¹ which represented a comprehensive statement of the state of the art at the time. After the completion of this study it became very clear that the existing knowledge did not and still does not take us very far toward the solution of the problem of econometric model evaluation and that it might be desirable to explore new approaches to the problem.

This consideration led us to conduct an inquiry about some ongoing work which might be relevant in the fringe areas of econometrics and applied economics. A call for papers for presentation at a symposium held in Ann Arbor produced a number of submissions.

The papers included in this volume represent our selections of those submissions. Each paper was subjected to a rigorous refereeing and editorial process as if it had been submitted to a leading professional journal. The only major difference was that we were concerned more with the originality of ideas, as viewed from the mainstream of econometrics, and with the form of exposition than with the novelty of theorems and techniques or technical brilliance.

The main purpose of the volume at hand is to bring to the attention of students and researchers in applied economics some of the new approaches to model formulation and evaluation that are not yet discussed in the standard econometric literature but that do appear to be promising or at least worth knowing about.

Some of these approaches have already been described in journal articles or book chapters, but not in a form that would make them accessible, or sometimes even understandable, to econometricians or to the users of

econometrics. For instance, there is no systematic discussion in the econometrics literature of such topics as Tukey's exploratory data analysis, of Wold's partial least squares analysis, or of the problems of economic experimentation. Other approaches presented in this volume are quite novel in their focus and may well be worth developing into practical tools of applied econometrics.

The book thus provides for topics on the boundaries of econometrics a compendium that could serve as a basis or an inspiration for further work toward the progress of our discipline.

The list of fellow econometricians and economists from whose advice we have benefited is quite long. It includes all the formal discussants, whose comments appear in the text, all the external referees, who have to remain anonymous but whose contributions were nevertheless very important, and many others with whom we had informal discussions about some of the issues raised in this volume. Our special thanks go to W. Barnett, M. E. Bock, W. H. Du Mouchel, G. Fromm, K. Gaver, M. S. Geisel, M. E. Ireland, G. C. Judge, E. Learner, W. H. Locke Anderson, J. McCall, D. McFadden, M. T. Maloney, C. Manski, D. W. Peterson, E. D. Rothman, H. Shapiro, W. Spivey, R. L. Teigen, V. M. R. Tummala, and W. J. Wroblewski, who participated in various official and unofficial capacities in the symposium and contributed to the discussion.

A commendation is due to David Coe, who served as a very able rapporteur for the symposium, and to Mary Braun, whose secretarial and typing help went well beyond the call of duty. Finally, we are indebted to the National Science Foundation for financial support in running the symposium and to the University of Michigan for the provision of facilities. One of the editors, Jan Kmenta, would also like to acknowledge the support of the Humboldt Foundation of Germany and of the Institute of Econometrics at the University of Bonn in the final stages of the preparation of the manuscript.