This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Fatal Years: Child Mortality in Late Nineteenth-Century America

Volume Author/Editor: Samuel H. Preston and Michael R. Haines

Volume Publisher: Princeton University Press

Volume ISBN: 0-691-04268-3

Volume URL: http://www.nber.org/books/pres91-1

Conference Date: n/a

Publication Date: January 1991

Chapter Title: Appendix B, The State Earnings Index

Chapter Author: Samuel H. Preston, Michael R. Haines

Chapter URL: http://www.nber.org/chapters/c11548

Chapter pages in book: (p. 221 - 225)

APPENDIX B

THE STATE EARNINGS INDEX

O ACCOUNT for spatial income variation, an index of state earnings was constructed. One obvious choice would be the 1900 state personal income estimates of Easterlin (1957). These estimates, however, are heavily influenced by the occupational structure of a state. Since we have information on an individual's occupation, we seek a measure of occupation-specific wage levels, aggregated across occupations using a set of weights that is identical for all states. For this purpose, we utilize the earnings data presented by Lebergott (1964: Tables A-23 to A-29) by state for 1899-1900 for six selected occupations or industries (farm laborers, common laborers, domestic service, cotton manufacture, woolen manufacture, and iron and steel manufacture). To obtain comparable estimates from that source, monthly wages of farm laborers were multiplied by 12; the weekly wages of domestic workers were multiplied by 52; and the daily wages of common laborers were multiplied by 5.6 days per week and 44 weeks per year. The earnings of the textile and metal workers were already on an annual basis. Thus, farm laborers and domestic service workers were assumed to have had a full year's employment, while common laborers were not. Not all occupations or industries were represented for all states. There were 48 states (data for Alaska and Hawaii were not available) and the District of Columbia. A total of 186 cells resulted. The following dummy variable regression equation was estimated:

 $Ln(Y_{ij}) = B_0 + \sum_{i=1}^6 B_i I_i + \sum_{i=1}^{49} B_i S_j,$

where $Ln(Y_{ij}) =$ natural log of earnings for occupation/industry *i* and state *j*;

B = coefficient;

 I_i = dummy variable for occupation or industry i ($i = 1 \dots 6$);

 S_i = dummy variable for state j (j = 1 . . . 49).

The regression results are presented in Table B.1. Three models are given. Model I includes only the occupational dummy vanables. The omitted category is iron and steel manufacture. It had the highest average earnings, so that all the coefficients are negative deviations from iron and steel manufacturing incomes. The constant term is thus, in this case, the natural logarithm of the state average of iron and steel earnings per worker. Model II includes only dummy variables for states. The reference category is California, which had the highest average income in this sample. The constant term is therefore the logarithm of the average earnings in California, and the dummy variables measure deviations from it. Finally, Model III includes both occupational and state dummy variables.

A perusal of Table B.1 reveals that occupation is much more successful in explaining variation than is location (i.e., state of residence). The R² for Model I is .594 and R² adjusted for degrees of freedom is .583, whereas the R² for Model II, with only the state dummy variables, is only .292 and the adjusted R² only .045. The Model II equation is not even jointly significant at a 5 percent level, as measured by the F-ratio (which is only 1.180). Nonetheless, Model III, which has both occupational and state dummy variables, is *much* more successful than either of the other two in explaining variation in earnings per worker. It has an R² of .916 and an adjusted R² of .882, and it is jointly significant at a 1 percent level (as measured by the F-ratio). The conclusion that can be drawn is that, although occupation is a better predictor of earnings per worker than state of residence, both sets of variables belong in the model.

The estimated coefficients in Model III permit the estimation of predicted average state workers' annual earnings, holding constant occupational and industry composition at their averages over all states. The estimates are given in Table B.2. In that table the values of Ln(Y) and Y are given and are converted to an index, dividing each value by the Y(= 244) for the whole sample. This is the index used in the regressions in Chapter 4. One advantage of using the Lebergott (1964) data is that the types of earnings estimates produced are rather close in nature to those derived from the 1901 cost-of-living survey (U.S. Commissioner of Labor 1903), Douglas's study of wages (1930), and other estimates from Lebergott that were used to impute income for individual occupations. The estimated values of the state earnings index were assigned to each worker on the basis of state of residence for the regression analysis.

For purposes of comparison, Table B.2 also includes the Easterlin estimates of state-level income per capita for 1899–1900. The correlation between them is quite reasonable, with a zero-order correlation of .810 and a Spearman rank order correlation of .819.

1899–1900						
	(1)		(2)		(3)	
	Coefficient	Significance	Coefficient	Significance	Coefficient	Significance
Independent variables:						
Constant	6.1121	NC	5.9545	NC	6.5496	NC
Occupation						
Farm laborer	-0.8376	***			-0.9532	***
Common laborer	-0.3117	***			-0.2759	***
Domestic servant	- 1.1511	***			- 1.1516	***
Cotton manufacture	-0.5626	***			-0.4932	***
Woolen manufacture	- 0.4630	***			-0.4468	***
Iron & steel mfg.	NI	NI			NI	NI
State						
Maine			-0.3562	_	-0.2872	***
New Hampshire			-0.3035	_	-0.2346	**
Vermont			-0.4135	*	-0.3445	***
Massachusetts			-0.1713		-0.2130	**
Rhode Island			- 0.2799		-0.2110	*
Connecticut			-0.2226	-	- 0.2644	**
New York			- 0.2539		- 0.2956	***
New Jersey			- 0.2661		-0.3078	***
Pennsylvania			-0.2475		-0.2892	***
Ohio			- 0.3140		-0.3557	***
Indiana			-0.3672	<u> </u>	- 0.4090	***
Illinois			-0.2238		-0.2535	**
Michigan			- 0.3361		- 0.3658	***
Wisconsin			- 0.2960		-0.3257	***
Minnesota			-0.4082	—	-0.2965	***
Iowa			-0.5130	*	-0.4013	***
Missouri			-0.3376		-0.3672	***
North Dakota			-0.3861		-0.0281	_
South Dakota			-0.4532	~	-0.0952	
Nebraska			- 0.4448	*	-0.2464	**
Kansas			- 0.5679	*	- 0.3695	***
Delaware			-0.4351	**	- 0.4556	***
Maryland			- 0.5169	*	- 0.5586	***
Dist. Columbia			-0.2846		-0.6038	***
Virginia			- 0.6286	**	-0.6703	***
West Virginia			- 0.3871	 ***	-0.4168	***
North Carolina			-0.9608	***	-0.8918	***
South Carolina			-1.0373	***	-0.9140	***
Georgia			-0.9341		- 0.9758	
Florida			-0.9309	***	-0.7326	***
Kentucky			-0.4875	**	-0.5292	***
Tennessee			-0.7152		- 0.7569	***
Alabama			-0.6714	***	-0.8327	***
Mississippi			- 0.7969		-0.8498	***
Arkansas			- 0.9369	***	-0.7385	***
Louisiana			- 0.9261	***	- 0.7277	***
Oklahoma			- 0.7954	**	-0.4374	**

TABLE B.1 Equations Predicting Earnings in Various Occupations and States of Residence: U.S., 1899–1900

	(1)		(2)		(3)	
	_ Coefficient	Significance	Coefficient	Significance	Coefficient	Significance
Texas		•	-0.5158	**	- 0.5455	***
Montana			-0.0012	<u> </u>	0.3568	**
Idaho			-0.1314		0.2266	
Wyoming			- 0.0795	_	0.2785	
Colorado			- 0.3233	_	0.0347	
New Mexico			-0.5563		- 0.1983	
Arizona			-0.1285	_	0.2295	
Utah			-0.2211	_	0.1369	
Nevada			-0.0117	_	0.3463	*
Washington			- 0.2474	_	0.1106	— <u>–</u>
Oregon			- 0.3377		-0.0203	
California			NI	NI	NI	NI
Ν	186		186		186	
R-square	0.594		0.292		0.916	
Adjusted R-square	0.583		0.045		0.882	
F-ratio	52.690	***	1.180	-	27.233	***

TABLE B.1 (cont.)

Source: Data from Lebergott 1964.

Note: The dependent variable is the log of annual earnings in a particular occupation/state-ofresidence category. A one-tailed significance test was used in models 1 and 2. A two-tailed significance test was used in model 3. NC = not calculated; NI = not included; *** = significant at least at a 1 percent level; ** = significant at least at a 5 percent level; * = significant at least at a 10 percent level; \sim = not significant at least at a 10 percent level.

State	Estimates derived	from Table B.1	Easterlin's estimates		
	Annual earnings (\$)	Ratio to national average	Annual income (\$)	Ratio to national average	
Alabama	163	0.6680	88	0.4356	
Arizona	471	1.9303	321	1.5891	
Arkansas	179	0.7336	89	0.4406	
California	374	1.5328	365	1.8069	
Colorado	388	1.5902	318	1.5743	
Connecticut	287	1.1762	278	1.3762	
Delaware	237	0.9713	220	1.0891	
Dist. Columbia	205	0.8402		_	
Florida	180	0.7377	112	0.5545	
Georgia	141	0.5779	86	0.4257	
Idaho	470	1.9262	221	1.0941	
Illinois	291	1.1926	260	1.2871	
Indiana	249	1.0205	182	0.9010	

 TABLE B.2

 Estimates of Annual Earnings Levels by State: U.S., 1899–1900

	Estimates derived	from Table B.1	Easterlin's estimates		
State	Annual earnings (\$)	Ratio to national average	Annual income (\$)	Ratio to national average	
Iowa	251	1.0287	202	1.0000	
Kansas	259	1.0615	187	0.9257	
Kentucky	221	0.9057	120	0.5941	
Louisiana	181	0.7418	128	0.6337	
Maine	281	1.1516	187	0.9257	
Maryland	214	0.8770	204	1.0099	
Massachusetts	303	1.2418	304	1.5050	
Michigan	260	1.0656	185	0.9158	
Minnesota	278	1.1393	207	1.0248	
Mississippi	160	0.6557	84	0.4158	
Missouri	259	1.0615	188	0.9307	
Montana	535	2.1926	415	2.0545	
Nebraska	293	1,2008	212	1.0495	
Nevada	529	2.1680	395	1.9554	
New Hampshire	296	1.2131	214	1.0594	
New Jersey	275	1.1270	277	1.3713	
New Mexico	307	1.2582	148	0.7327	
New York	279	1.1434	323	1.5990	
North Carolina	153	0.6270	72	0.3564	
North Dakota	364	1.4918	209	1.0347	
Ohio	262	1.0738	222	1.0990	
Oklahoma	242	0.9918	114	0.5644	
Oregon	382	1.5656	248	1.2277	
Pennsylvania	280	1.1475	250	1.2376	
Rhode Island	303	1,2418	293	1.4505	
South Carolina	150	0.6148	74	0.3663	
South Dakota	340	1.3934	183	0.9059	
Tennessee	176	0.7213	101	0.5000	
Texas	217	0.8893	138	0.6832	
Utah	429	1.7582	183	0.9059	
Vermont	265	1.0861	190	0.9406	
Virginia	192	0.7869	110	0.5446	
Washington	418	1.7131	296	1.4653	
West Virginia	247	1.0123	117	0.5792	
Wisconsin	270	1.1066	179	0.8861	
Wyoming	495	2.0287	311	1.5396	
Total	244	_	202		

TABLE B.2 (cont.)

.

Source: Table B.1 and Easterlin 1957.