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12.1 Introduction

In this chapter, we discuss some of the problems involved in constructing
price and quantity series for both capital stocks and the associated flows of
services when there are general and asset-specific price changes in the
economy.1

In section 12.2, we present the basic equations relating stocks and flows
of capital assuming that data on the prices of vintages of a homogeneous
capital good are available. This framework is not applicable under all cir-
cumstances, but it is a framework that will allow us to disentangle the effects
of general price change, asset-specific price change, and depreciation.

Section 12.3 continues the theoretical framework that was introduced in
section 12.2. We show how information on vintage asset prices, vintage
rental prices, and vintage depreciation rates are all equivalent under cer-
tain assumptions; that is, knowledge of any one of these three sequences or
profiles is sufficient to determine the other two.

Section 12.4 discusses alternative sets of assumptions on nominal inter-
est rates and anticipated asset price changes. We specify three different sets
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(2003). However, Hill and Hill did not deal with the problems associated with adjusting nom-
inal interest rates for general inflation.



of assumptions that we will use in our empirical illustration of the sug-
gested methods.

Section 12.5 discusses the significance of our assumptions made in the
previous section and relates them to controversies in national income ac-
counting. In particular, we discuss whether anticipated asset price decline
should be an element of depreciation as understood by national income ac-
countants.

Section 12.6 discusses the problems involved in aggregating over vin-
tages of capital, both in forming capital stocks and capital services. Instead
of the usual perpetual inventory method for aggregating over vintages,
which assumes perfectly substitutable vintages of the same stock, we sug-
gest the use of a superlative index number formula to do the aggregation.

Sections 12.7 to 12.10 show how the general algebra presented in sec-
tions 12.2 and 12.3 can be adapted to deal with four specific models of de-
preciation. The four models considered are the one-hoss-shay model, the
straight-line depreciation model, the geometric model of depreciation, and
the linear efficiency decline model. In section 12.11, we show how these
models differ empirically by computing the corresponding stocks and
flows using Canadian data on two asset classes. The details of the compu-
tations and the data used may be found in Diewert (2004).

Section 12.12 shows how our framework can be modified to model the
treatment of some forms of intangible capital, such as investments in re-
search and development.

Section 12.13 concludes with some observations on how statistical agen-
cies might be able to use the material presented in this chapter.

12.2 The Fundamental Equations Relating Stocks and Flows of Capital

Before we begin with our algebra, it seems appropriate to explain why ac-
counting for the contribution of capital to production is more difficult than
accounting for the contributions of labor or materials. The main problem
is that when a reproducible capital input is purchased for use by a produc-
tion unit at the beginning of an accounting period, we cannot simply
charge the entire purchase cost to the period of purchase. Since the bene-
fits of using the capital asset extend over more than one period, the initial
purchase cost must be distributed somehow over the useful life of the asset.
This is the fundamental problem of accounting.

In a noninflationary environment, the value of an asset at the beginning
of an accounting period is equal to the discounted stream of future rental
payments that the asset is expected to yield. Thus, the stock value of the as-
set is equal to the discounted future service flows2 that the asset is expected
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2. Walras (1954; first edition published in 1874) was one of the earliest economists to state
that capital stocks are demanded because of the future flow of services that they render. Al-



to yield in future periods. Let the price of a new capital input purchased at
the beginning of period t be P t

0 . In a noninflationary environment, it can
be assumed that the (potentially observable) sequence of (cross-sectional)
vintage rental prices prevailing at the beginning of period t can be expected
to prevail in future periods. Thus, in this no-general-inflation case, there is
no need to have a separate notation for future expected rental prices for a
new asset as it ages. However, in an inflationary environment, it is neces-
sary to distinguish between the observable rental prices for the asset at
different ages at the beginning of period t and future expected rental prices
for assets of various ages.3 Thus let f t

0 be the (observable) rental price of a
new asset at the beginning of period t, let f t

1 be the (observable) rental price
of a one-period-old asset at the beginning of period t, let f t

2 be the (observ-
able) rental price of a two-period-old asset at the beginning of period t, and
so on. Then the fundamental equation relating the stock value of a new asset
at the beginning of period t, P t

0 to the sequence of cross-sectional rental
prices for assets of age n prevailing at the beginning of period t, { f t

n ; n � 0,
1, 2, . . .}4 is

(1) Pt
0 � f t

0 � � � f t
1 � � � f t

2 � . . . 

In the above equation, 1 � i t
1 is the rental price escalation factor that is

expected to apply to a one-period-old asset going from the beginning of pe-
riod t to the end of period t (or, equivalently, to the beginning of period t �
1), (1 � i t

1)(1 � i t
2 ) is the rental price escalation factor that is expected to ap-

ply to a two-period-old asset going from the beginning of period t to the
beginning of period t � 2, etc. Thus, the i t

n are expected rates of price change
for used assets of varying ages n that are formed at the beginning of period
t. The term 1 � r t

1 is the discount factor that makes a dollar received at the
beginning of period t equivalent to a dollar received at the beginning of pe-
riod t � 1, the term (1 � r t

1 )(1 � r t
2 ) is the discount factor that makes a dol-

lar received at the beginning of period t equivalent to a dollar received at
the beginning of period t � 2, and so on. Thus, the r t

n are one-period nom-
inal interest rates that represent the term structure of interest rates at the be-
ginning of period t.5

(1 � i t
1)(1 � i t

2)
��
(1 � r t

1)(1 � r t
2)

1 � i t
1

�
1 � r t

1

Measurement of Capital Services and Asset Price Changes 481

though he was perhaps the first economist to formally derive a user cost formula, as we shall
see, he did not work out the explicit discounting formula that Böhm-Bawerk (1891, p. 342)
was able to derive.

3. Note that these future expected rental prices are not generally observable due to the lack
of futures markets for these future period rentals of the assets of varying ages.

4. The sequence of (cross-sectional) vintage rental prices ( f t
n ) is called the age-efficiency

profile of the asset.
5. Peter Hill has noted a major problem with the use of equation (1) as the starting point of

our discussion: namely, unique assets will by definition not have used versions of the same
asset in the marketplace during the current period, and so the cross-sectional rental prices 
f t

n for assets of age n in period t will not exist for these assets! In this case, the f t
n should be



We now generalize equation (1) to relate the stock value of an n-period-
old asset at the beginning of period t, P t

n , to the sequence of cross-sectional
vintage rental prices prevailing at the beginning of period t, { f t

n}; thus, for
n � 0, 1, 2, . . . , we assume

(2) Pt
n � f t

n � � � f t
n�1 � � � f t

n�2 � . . . 

Thus, older assets discount fewer terms in the above sum; thus, as n in-
creases by one, we have one less term on the right-hand side of equation (2).
However, note that we are applying the same price escalation factors (1 �
i t

1), (1 � i t
1)(1 � i t

2), . . . , to escalate the cross-sectional rental prices pre-
vailing at the beginning of period t, f t

1, f
t
2, . . . , and to form estimates of fu-

ture expected rental prices for each vintage of the capital stock that is in use
at the beginning of period t.

The rental prices prevailing at the beginning of period t for assets of var-
ious ages, f t

0, f
t
1, . . . are potentially observable.6 These cross-section rental

prices reflect the relative efficiency of the various vintages of the capital
good that are still in use at the beginning of period t. It is assumed that
these rentals are paid (explicitly or implicitly) by the users at the beginning
of period t. Note that the sequence of asset stock prices for various ages at
the beginning of period t, P t

0, P
t
1, . . . is not affected by general inflation

provided that the general inflation affects the expected asset rates of price
change i t

n and the nominal interest rates r t
n in a proportional manner. We

will return to this point later.
The physical productivity characteristics of a unit of capital of each age

are determined by the sequence of cross-sectional rental prices. Thus, a
brand-new asset is characterized by the vector of current rental prices for
assets of various ages, f t

0, f t
1, f t

2, . . . , which are interpreted as “physical”
contributions to output that the new asset is expected to yield during the
current period t (this is f t

0 ), the next period (this is f t
1), and so on. An asset

that is one period old at the start of period t is characterized by the vector
f t

1, f t
2, . . . , and so on.7

We have not explained how the expected rental price rates of price

(1 � i t
1)(1 � i t

2 )
��
(1 � r t

1)(1 � r t
2 )

1 � i t
1

�
1 � r t

1

482 W. Erwin Diewert

interpreted as expected future rentals that the unique asset is expected to generate at today’s
prices. The (1 � it

n ) terms then summarize expectations about the amount of asset-specific
price change that is expected to take place. This reinterpretation of equation (1) is more fun-
damental, but we chose not to make it our starting point because it does not lead to a com-
pletely objective method for national statisticians to form reproducible estimates of these fu-
ture rental payments. However, in many situations (e.g., the valuation of a new movie), the
statistician will be forced to attempt to implement P. Hill’s (2000) more general model. In sec-
tion 12.12 below, we apply a variant of the expected rentals interpretation of our equations to
value intangible capital.

6. This is the main reason that we use this escalation of cross-sectional rental prices ap-
proach to capital measurement rather than the more fundamental discounted future expected
rentals approach advocated by Hill.

7. Triplett (1996, p. 97) used this characterization for capital assets of various vintages.



change i t
n are to be estimated. We shall deal with this problem in section

12.4. However, it should be noted that there is no guarantee that our ex-
pectations about the future course of rental prices are correct.

At this point, we make some simplifying assumptions about the ex-
pected rates of rental price change for future periods it

n and the interest
rates r t

n. We assume that these anticipated specific price change escalation
factors at the beginning of each period t are all equal; that is, we assume

(3) i t
n � i t ; n � 1, 2, . . . 

We also assume that the term structure of (nominal) interest rates at the be-
ginning of each period t is constant; that is, we assume

(4) r t
n � r t ; n � 1, 2, . . . 

However, note that as the period t changes, r t and i t can change.
Using assumptions (3) and (4), we can rewrite equation (2), which relates

the sequence or profile of stock prices of age n at the beginning of period t
{P t

n} to the sequence or profile of (cross-sectional) rental prices for assets
of age n at the beginning of period t { f t

n}, as follows:

(5) Pt
0 � f t

0 � � � f t
1 � � �2

f t
2 � � �3

f t
3 � . . . 

Pt
1 � f t

1� � f t
2 � � �2

f t
3 � � �3

f t
4 � . . . 

Pt
2 � f t

2� � f t
3 � � �2

f t
4 � � �3

f t
5 � . . . 

Pt
n � f t

n� � f t
n�1 � � �2

f t
n�2 � � �3

f t
n�3 � . . . 

On the left-hand side of equations (5), we have the sequence of period-t as-
set prices by age starting with the price of a new asset, P t

0, moving to the
price of an asset that is one period old at the start of period t, P t

1, then mov-
ing to the price of an asset that is two periods old at the start of period t,
P t

2, and so on. On the right-hand side of equations (5), the first term in each
equation is a member of the sequence of rental prices by age of asset that
prevails in the market (if such markets exist) at the beginning of period t.
Thus, f t

0 is the rent for a new asset, f t
1 is the rent for an asset that is one pe-

riod old at the beginning of period t, f t
2 is the rent for an asset that is two

periods old, and so on. This sequence of current market rental prices for
the assets of various vintages is then extrapolated out into the future using
the anticipated price escalation rates (1 � i t), (1 � i t)2, (1 � i t)3, and so 
on, and then these future expected rentals are discounted back to the be-
ginning of period t using the nominal discount factors (1 � r t), (1 � r t)2, 

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t
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(1 � r t)3, and so on. Note that given the period-t expected asset inflation
rate i t and the period-t nominal discount rate r t, we can go from the (cross-
sectional) sequence of vintage rental prices { f t

n} to the (cross-sectional) se-
quence of vintage asset prices {P t

n} using equations (5). We shall show be-
low how this procedure can be reversed; that is, we shall show how, given
the sequence of cross-sectional asset prices, we can construct estimates for
the sequence of cross-sectional rental prices.

Böhm-Bawerk (1891, p. 342) considered a special case of equations (5)
where all service flows fn were equal to 100 for n � 0, 1, . . . , 6 and equal to
0 thereafter, where the asset inflation rate was expected to be 0 and where
the interest rate r was equal to .05 or 5 percent.8 This is a special case of
what has come to be known as the one-hoss-shay model, and we shall con-
sider it in more detail in section 12.7.

Note that equations (5) can be rewritten as follows:9

(6) Pt
0 � f t

0 � � �Pt
1;

Pt
1 � f t

1 � � �Pt
2;

Pt
2 � f t

2 � � �Pt
3;

. . . 

Pt
n � f t

n � � �Pt
n�1; . . . 

The first equation in equations (6) says that the value of a new asset at
the start of period t, P t

0, is equal to the rental that the asset can earn in pe-
riod t, f t

0,
10 plus the expected asset value of the capital good at the end of

period t, (1 � i t) P t
1, but this expected asset value must be divided by the

discount factor, (1 � r t ), in order to convert this future value into an equiv-
alent beginning-of-period-t value.11

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t
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8. Böhm-Bawerk (1891, p. 343) went on to construct the sequence of vintage asset prices us-
ing his special case of equations (5).

9. Christensen and Jorgenson (1969, p. 302) do this for the geometric depreciation model,
except that they assume that the rental is paid at the end of the period rather than the begin-
ning. Variants of the system of equations (6) were derived by Christensen and Jorgenson
(1973), Jorgenson (1989, p. 10), Hulten (1990, p. 128) and Diewert and Lawrence (2000,
p. 276). Irving Fisher (1908, pp. 32–33) also derived these equations in words.

10. Note that we are implicitly assuming that the rental is paid to the owner at the begin-
ning of period t.

11. Another way of interpreting say the first equation in equations (6) runs as follows: the
purchase cost of a new asset Pt

0 less the rental ft
0 (which is paid immediately at the beginning

of period t) can be regarded as an investment, which must earn the going rate of return r t.
Thus, we must have (Pt

0 – ft
0) (1 � r t ) � (1 � i t )Pt

1, which is the (expected) value of the asset at
the end of period t. This line of reasoning can be traced back to Walras (1954, p. 267).



Now it is straightforward to solve equations (6) for the sequence of pe-
riod-t cross-sectional rental prices, { f t

n}, in terms of the cross-sectional as-
set prices, {P t

n}:

(7) f t
0 � Pt

0 � � �Pt
1 � (1 � r t)�1[Pt

0(1 � r t) � (1 � i t)Pt
1 ]

f t
1 � Pt

1 � � �Pt
2 � (1 � r t)�1[Pt

1(1 � r t) � (1 � i t)Pt
2 ]

f t
2 � Pt

2 � � �Pt
3 � (1 � r t)�1[Pt

2(1 � r t) � (1 � i t)Pt
3 ]

. . . 

f t
n � Pt

n � � �Pt
n�1 � (1 � r t)�1[Pt

n(1 � r t) � (1 � i t)Pt
n�1 ]; . . . 

Thus, equations (5) allow us to go from the sequence of rental prices by age
n{ f t

n} to the sequence of asset prices by age n{P t
n}, while equations (7) al-

low us to reverse the process.
Equations (7) can be derived from elementary economic considerations.

Consider the first equation in equations (7). Think of a production unit as
purchasing a unit of the new capital asset at the beginning of period t at a
cost of Pt

0 and then using the asset throughout period t. However, at the end
of period t, the producer will have a depreciated asset that is expected to be
worth (1 � i t ) Pt

1. Since this offset to the initial cost of the asset will only be
received at the end of period t, it must be divided by (1 � r t ) to express the
benefit in terms of beginning-of-period-t dollars. Thus the expected net
cost12 of using the new asset for period t is Pt

0 – [(1 � i t )/(1 � r t )] Pt
1.

The above equations assume that the actual or implicit period t rental
payments f t

n for assets of different ages n are made at the beginning of
period t. It is sometimes convenient to assume that the rental payments are
made at the end of each accounting period. Thus, we define the end-
of-period-t rental price or user cost for an asset that is n periods old at the
beginning of period t, u t

n , in terms of the corresponding beginning-of-
period-t rental price f t

n as follows:

(8) ut
n � (1 � r t) f t

n ; n � 0, 1, 2, . . . 

Thus, if the rental payment is made at the end of the period instead of the
beginning, then the beginning of the period rental f t

n must be escalated by
the interest rate factor (1 � r t ) in order to obtain the end-of-period user
cost u t

n.

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t

1 � i t

�
1 � r t
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12. This explains why the rental prices ft
n are sometimes called user costs. This derivation of

a user cost was used by Diewert (1974, p. 504; 1980, pp. 472–73; 1992b, p. 194) and by Hulten
(1996, p. 155).



Using equations (8) and the second set of equations in (7), it can readily
be shown that the sequence of end-of-period-t user costs {ut

n} can be defined
in terms of the period-t sequence of asset prices by age {Pt

n} as follows:

(9) ut
0 � Pt

0(1 � r t ) � (1 � i t )Pt
1

ut
1 � Pt

1(1 � r t ) � (1 � i t )Pt
2

ut
2 � Pt

2(1 � r t ) � (1 � i t )Pt
3

. . . 

ut
n � Pt

n(1 � r t ) � (1 � i t )Pt
n�1; . . . 

Equations (9) can also be given a direct economic interpretation. Con-
sider the following explanation for the user cost for a new asset, u t

0. At the
end of period t, the business unit expects to have an asset worth (1 � i t )P t

1.
Offsetting this benefit is the beginning-of-period asset purchase cost, P t

0.
However, in addition to this cost, the business must charge itself either the
explicit interest cost that occurs if money is borrowed to purchase the as-
set or the implicit opportunity cost of the equity capital that is tied up in
the purchase. Thus, offsetting the end-of-period benefit (1 � i t )P t

1 is the
initial purchase cost and opportunity interest cost of the asset purchase,
P t

0(1 � r t ), leading to an end-of-period-t net cost of P t
0(1 � r t ) – (1 � i t )P t

1

or u t
0.

It is interesting to note that in both the accounting and financial man-
agement literature of the past century, there was a reluctance to treat the
opportunity cost of equity capital tied up in capital inputs as a genuine cost
of production.13 However, more recently there is an acceptance of an im-
puted interest charge for equity capital as a genuine cost of production.14

In the following section, we will relate the asset price profiles {P t
n} and

the user cost profiles {u t
n} to depreciation profiles. However, before turning

to the subject of depreciation, it is important to stress that the analysis pre-
sented in this section is based on a number of restrictive assumptions, par-
ticularly on future price expectations. Moreover, we have not explained
how these asset price expectations are formed, and we have not explained
how the period-t nominal interest rate is to be estimated (we will address
these topics in section 12.7). We have not explained what should be done if
the sequence of secondhand asset prices {P t

n} is not available and the se-
quences of vintage rental prices or user costs, { f t

n} or {u t
n}, are also not

available (we will address this problem in later sections as well). We have
also assumed that asset values and user costs are independent of how
intensively the assets are used. Finally, we have not modeled uncertainty
(about future prices and the useful lives of assets) and attitudes toward risk

486 W. Erwin Diewert

13. This literature is reviewed in Diewert and Fox (1999, pp. 271–74).
14. Stern Stewart and Co. has popularized the idea of charging for the opportunity cost of

equity capital and has called the resulting income concept economic value added (EVA).



on the part of producers. Thus, the analysis presented in this chapter is only
a start on the difficult problems associated with measuring capital input.

12.3 Cross-Section Depreciation Profiles

Recall that in the previous section, P t
n was defined to be the price of an

asset that was n periods old at the beginning of period t. Generally, the de-
cline in asset value as we go from one vintage to the next oldest is called de-
preciation. More precisely, we define the cross-section depreciation D t

n
15 of

an asset that is n periods old at the beginning of period t as

(10) Dt
n � Pt

n � Pt
n�1; n � 0, 1, 2, . . . 

Thus, Dt
n is the value of an asset that is n periods old at the beginning of pe-

riod t, P t
n, minus the value of an asset that is n � 1 periods old at the be-

ginning of period t, P t
n�1.

Obviously, given the sequence of period-t cross-section asset prices
{P t

n}, we can use equations (10) to determine the period-t sequence of de-
clines in asset values by age, {D t

n}. Conversely, given the period-t cross-
section depreciation sequence or profile, {D t

n}, we can determine the
period-t asset prices by age n by adding up amounts of depreciation:

(11) Pt
0 � Dt

0 � Dt
1 � Dt

2 � . . . 

Pt
1 � Dt

1 � Dt
2 � Dt

3 � . . . 

. . . 

Pt
n � Dt

n � Dt
n�1 � Dt

n�2 � . . . 

Rather than working with first differences of asset prices by age, it is more
convenient to reparameterize the pattern of cross-section depreciation by
defining the period-t depreciation rate �t

n for an asset that is n periods old at
the start of period t as follows:

(12) �t
n � 1 � � � � ; n � 0, 1, 2, . . . 

In the above definitions, we require n to be such that P t
n is positive.16

Obviously, given the sequence of period-t asset prices by age n, {P t
n}, we

Dt
n

�
Pt

n

Pt
n�1

�
Pt

n
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15. This terminology is due to P. Hill (1999), who distinguished the decline in secondhand
asset values due to aging (cross-section depreciation) from the decline in an asset value over
a period of time (time series depreciation). Triplett (1996, pp. 98–99) uses the cross-section
definition of depreciation (calling it deterioration) and shows that it is equal to the concept of
capital consumption in the national accounts, but he does this under the assumption of no ex-
pected real asset price change. We will examine the relationship of cross-section to time series
depreciation in section 12.5 below.

16. This definition of depreciation dates back to Hicks (1939, p. 176) at least and was used
extensively by Edwards and Bell (1961, p. 175), Hulten and Wykoff (1981a,b), who call it de-
terioration, Diewert (1974, p. 504), and Hulten (1990, p. 128; 1996, p. 155).



can use equations (12) to determine the period-t sequence of cross-section
depreciation rates, {�t

n}. Conversely, given the cross-section sequence of
period-t depreciation rates, {�t

n}, as well as the price of a new asset in pe-
riod t, P t

0 , we can determine the period-t asset prices by age as follows:

(13) Pt
1 � (1 � �t

0 )Pt
0

Pt
2 � (1 � �t

0 )(1 � �t
1 )Pt

0

. . . 

Pt
n � (1 � �t

0 )(1 � �t
1 ) . . . (1 � �t

1 )Pt
0 , . . . 

The interpretation of equations (13) is straightforward. At the beginning
of period t, a new capital good is worth P t

0. An asset of the same type but
that is one period older at the beginning of period t is less valuable by the
amount of depreciation �t

0P
t
0 and hence is worth (1 – �t

0 )P t
0, which is equal

to P t
1. An asset that is two periods old at the beginning of period t is less

valuable than a one-period-old asset by the amount of depreciation �t
1P

t
1

and hence is worth P t
2 � (1 – �t

1 )P t
1, which is equal to (1 – �t

1 )(1 – �t
0 )P t

0 using
the first equation in equations (13), and so on. Suppose L – 1 is the first in-
teger that is such that �t

L–1 is equal to one. Then P t
n equals zero for all n �

L; that is, at the end of L periods of use, the asset no longer has a positive
rental value. If L � 1, then a new asset of this type delivers all of its services
in the first period of use and the asset is in fact a nondurable asset.

Now substitute equations (12) into equations (9) in order to obtain the
following formulas for the sequence of the end-of-period-t user costs by age
n, {ut

n}, in terms of the price of a new asset at the beginning of period t, P t
0,

and the sequence of cross-section depreciation rates, {�t
n}:

(14) ut
0 � [(1 � r t ) � (1 � i t )(1 � �t

0)] Pt
0

ut
1 � (1 � �t

0)[(1 � r t ) � (1 � i t )(1 � �t
1 )] Pt

0

ut
n � (1 � �t

0 ) . . . (1 � �t
n�1)[(1 � r t ) � (1 � i t )(1 � �t

n )] Pt
0 ; . . . 

Thus, given P t
0 (the beginning-of-period-t price of a new asset), i t (the nom-

inal rate of new asset price change that is expected at the beginning of pe-
riod t), r t (the one-period nominal interest rate that the business unit faces
at the beginning of period t) and given the sequence of cross-section vin-
tage depreciation rates prevailing at the beginning of period t (the �t

n), then
we can use equations (14) to calculate the sequence of the end-of-period
user costs for period t, the u t

n . Of course, given the u t
n, we can use equations

(8) to calculate the beginning-of-period user costs (the f t
n ) and then use the

f t
n to calculate the sequence of asset prices by age P t

n using equations (5),
and finally, given the P t

n, we can use equations (12) in order to calculate the
sequence of depreciation rates for assets of age n at the beginning of period
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t, the �t
n. Thus, given any one of these sequences or profiles, all of the other se-

quences are completely determined. This means that assumptions about de-
preciation rates, the pattern of user costs by age of asset, or the pattern of
asset prices by age of asset cannot be made independently of each other.17

It is useful to look more closely at the first equation in equations (14),
which expresses the user cost or rental price of a new asset at the end of
period t, u t

0, in terms of the depreciation rate �t
0, the one-period nominal

interest rate r t, the new asset inflation rate i t that is expected to prevail at
the beginning of period t, and the beginning-of-period-t price for a new as-
set, P t

0.

(15) ut
0 � [(1 � r t ) � (1 � i t )(1 � �t

0)] Pt
0 � [r t � i t � (1 � i t )�t

0]Pt
0.

Thus, the user cost of a new asset u t
0 that is purchased at the beginning of

period t (and the actual or imputed rental payment is made at the end of
the period) is equal to r t – i t (a nominal interest rate minus an asset infla-
tion rate that can be loosely interpreted18 as a real interest rate) times the
initial asset cost P t

0 plus (1 � i t )�t
0 P t

0, which is depreciation on the asset at
beginning-of-period prices, �t

1P
t
0 , times one plus the expected rate of asset

price change, (1 � i t ).19 If we further assume that the expected rate of asset
price change i t is 0, then equation (15) further simplifies to:

(16) ut
0 � [r t � �t

0 ]Pt
0.

Under these assumptions, the user cost of a new asset is equal to the in-
terest rate plus the depreciation rate times the initial purchase price.20 This
is essentially the user cost formula that was obtained by Walras (1954,
pp. 268–69) in 1874.

However, the basic idea that a durable input should be charged a period
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17. This point was first made explicitly by Jorgenson and Griliches (1967, p. 257); see also
Jorgenson and Griliches (1972, pp. 81–87). Much of the above algebra for switching from one
method of representing vintage capital inputs to another was first developed by Christensen
and Jorgenson (1969, pp. 302–5; 1973) for the geometrically declining depreciation model.
The general framework for an internally consistent treatment of capital services and capital
stocks in a set of vintage accounts was set out by Jorgenson (1989) and Hulten (1990, pp. 127–
29; 1996, pp. 152–60).

18. We will provide a more precise definition of a real interest rate later.
19. This formula was obtained by Christensen and Jorgenson (1969, p. 302) for the geo-

metric model of depreciation, but it is valid for any depreciation model. Griliches (1963,
p. 120) also came very close to deriving this formula in words: “In a perfectly competitive
world the annual rent of a machine would equal the marginal product of its services. The rent
itself would be determined by the interest costs on the investment, the deterioration in the fu-
ture productivity of the machine due to current use, and the expected change in the price of
the machine (obsolescence).”

20. Using equations (13) and (14) and the assumption that the asset inflation rate i t � 0, it
can be shown that the user cost of an asset that is n periods old at the start of period t can be
written as u t

n � (r t � �t
n )P t

n, where P t
n is the beginning of period-t secondhand market price

for the asset.



price that is equal to a depreciation term plus a term that would cover the
cost of financial capital goes back to Babbage (1835, p. 287) and others.21

Babbage did not proceed further with the user cost idea. Walras seems
to have been the first economist who formalized the idea of a user cost into
a mathematical formula. However, the early industrial engineering litera-
ture also independently came up with the user cost idea; Church (1901,
pp. 734 and 907–8) in particular gave a very modern exposition of the in-
gredients needed to construct user costs or machine rents.

Church was well aware of the importance of determining the “right” rate
to be charged for the use of a machine in a multiproduct enterprise. This in-
formation is required not only to price products appropriately but to de-
termine whether an enterprise should make or purchase a particular com-
modity. Babbage (1835, p. 203) and Canning (1929, pp. 259–60) were also
aware of the importance of determining the right machine rate charge.22

The above equations relating asset prices by age n, P t
n , beginning-of-

period user costs by age n, f t
n, end-of-period user costs, u t

n , and the (cross-
section) depreciation rates �t

n are the fundamental ones that we will spe-
cialize in subsequent sections in order to measure both wealth capital
stocks and capital services under conditions of inflation. In the following
section, we shall consider several options that could be used in order to de-
termine empirically the interest rates r t and the expected asset rates of price
change i t.

12.4 The Empirical Determination of Interest Rates 
and Rates of Asset Price Change

We consider initially three broad approaches23 to the determination of
the nominal interest rate rt that is to be used to discount future period value
flows by the business units in the aggregate under consideration:
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21. Solomons (1968, pp. 9–17) indicates that interest was regarded as a cost for a durable
input in much of the nineteenth-century accounting literature. The influential book by Garcke
and Fells (1893) changed this.

22. Under moderate inflation, the difficulties with traditional cost accounting based on his-
torical cost, and no proper allowance for the opportunity of capital, the proper pricing of prod-
ucts becomes very difficult. Diewert and Fox (1999, pp. 271–74) argued that this factor con-
tributed to the great productivity slowdown that started around 1973 and persisted to the early
1990s. The traditional method of cost accounting can be traced back to a book first published
in 1887 by the English accountants Garcke and Fells (1893, pp. 70–71). Their rather crude ap-
proach to cost accounting should be compared to the masterful analysis of Church. Garcke
and Fells (pp. 72–73) endorsed the idea that depreciation was an admissible item of cost that
should be allocated in proportion to the prime cost (i.e., labor and materials cost) of manufac-
turing an article but they explicitly ruled out interest as a cost. The aversion of accountants to
including interest as a cost can be traced back to the influence of Garcke and Fells.

23. Other methods for determining the appropriate interest rates that should be inserted
into user cost formulas are discussed by Harper, Berndt, and Wood (1989) and in chapter 5 of
Schreyer (2001). Harper, Berndt, and Wood evaluate empirically five alternative rental price
formulas using geometric depreciation but making different assumptions about the interest



• Use the ex post rate of return that will just make the sum of the user
costs exhaust the gross operating surplus of the production sectors for
the aggregate under consideration.

• Use an aggregate of nominal interest rates that the production sectors
in the aggregate might be facing at the beginning of each period.

• Take a fixed real interest rate and add to it actual ex post consumer
price inflation or anticipated consumer price inflation.

The first approach was used for the entire private production sector of
the economy by Jorgenson and Griliches (1967, p. 267) and for various sec-
tors of the economy by Christensen and Jorgenson (1969, p. 307). It is also
widely used by statistical agencies. It has the advantage that the value of
output for the sector will exactly equal the value of input in a consistent ac-
counting framework. It has the disadvantages that it is subject to measure-
ment error and it is an ex post rate of return, which may not reflect the eco-
nomic conditions facing producers at the beginning of the period. This
approach (incorrectly in our view) transforms pure profits (or losses) into
a change in the opportunity cost of financial capital.

The second approach suffers from aggregation problems. There are
many interest rates in an economy at the beginning of an accounting pe-
riod, and the problem of finding the right aggregate of these rates is not a
trivial one.

The third approach works as follows. Let the consumer price index for
the economy at the beginning of period t be c t, say. Then the ex post gen-
eral consumer inflation rate for period t is �t, defined as

(17) 1 � �t � .

Let the production units under consideration face the real interest rate r∗t.
Then, by the Fisher (1896) effect, the relevant nominal interest rate that the
producers face should be approximately equal to r t, defined as follows:

(18) r t � (1 � r∗ t )(1 � �t ) � 1.

The Australian Bureau of Statistics assumes that producers face a real
interest rate of 4 percent. This is consistent with long-run observed econo-
mywide real rates of return for most Organization for Economic Coopera-
tion and Development (OECD) countries, which fall in the 3 to 5 percent
range. We shall choose this third method for defining nominal interest rates
and choose the real rate of return to be 4 percent per annum; that is, we as-
sume that the nominal rate r t is defined by equation (18) with the real rate
defined by

ct�1

�
ct
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rate and the treatment of asset price change. They show (as we will later) that the choice of
formula matters.



(19) r∗t � .04,

assuming that the accounting period chosen is a year.24

We turn now to the determination of the asset expected rates of price
change,25 the i t, which appear in most of the formulas derived in the pre-
ceding sections of this chapter. There are three broad approaches that can
be used in this context:

• Use actual ex post rates of price change for a new asset over each pe-
riod.

• Assume that each asset rate of price change is equal to the general in-
flation rate for each period.

• Estimate anticipated rates of asset price change for each period.

In what follows, we will compute cross-sectional user costs using Cana-
dian data on investments for two broad classes of assets (nonresidential
construction and machinery and equipment) for four different sets of as-
sumptions about depreciation or the relative efficiency of assets by age. We
will undertake these computations in an inflationary environment and
make each of the three sets of assumptions about the asset inflation rates
listed above for each of the four depreciation models, giving twelve models
in all that will be compared. If the various models give very different re-
sults, this indicates that the statistical agency computing capital stocks and
service flows under inflation must choose its preferred model with some
care.

When we assume that the rate of price change for each asset is equal to
the general inflation rate �t defined by equation (17), the equations pre-
sented earlier simplify. Thus, if we replace 1 � i t with 1 � �t and 1 � r t with
(1 � r∗)(1 � �t ), equations (5), which relate the period-t asset prices by age
nP t

n to the rental prices f t
n , become

(20) Pt
0 � f t

0 � � � f t
1 � � �2

f t
2 � � �3

f t
3 � . . . 

Pt
1 � f t

1 � � � f t
2 � � �2

f t
3 � � �3

f t
4 � . . . 

. . . 

Pt
n � f t

n � � � f t
n�1 � � �2

f t
n�2 � � �3

f t
n�3 � . . . 

Note that only the constant real interest rate r∗ appears in these equations.
If we replace 1 � i t with 1 � �t and 1 � r t with (1 � r∗)(1 � �t), equations

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗

1
�
1 � r∗
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24. If we are in a high-inflation situation so that the accounting period becomes a quarter
or a month, then r∗t must be chosen to be appropriately smaller.

25. These are sometimes called revaluation terms in user cost formulas.



(14), which relate the end-of-period user costs u t
n to the depreciation rates

�t
n , become

(21) ut
0 � (1 � �t)[(1 � r∗) � (1 � �t

0)]Pt
0 � (1 � �t)[r∗ � �t

0 ]Pt
0

ut
1 � (1 � �t)(1 � �t

0 )[(1 � r∗) � (1 � �t
1)]P

t
0

� (1 � �t)(1 � �t
0)[r∗ � �t

1]P
t
0

. . . 

ut
n � (1 � �t)(1 � �t

0) . . . (1 � �t
n�1)[(1 � r∗) � (1 � �t

n )]Pt
0

� (1 � �t)(1 � �t
0) . . . (1 � �t

n�1)[r∗ � �t
n ]Pt

0.

Now use equations (8) and 1 � r t � (1 � r∗)(1 � �t) and substitute into
equations (21) to obtain the following equations, which relate the begin-
ning-of-period user costs f t

n to the depreciation rates �t
n :

(22) f t
0 � (1 � r∗)�1[r∗ � �t

0 ]Pt
0

f t
1 � (1 � r∗)�1(1 � �t

0)[r∗ � �t
1]Pt

0

. . . 

f t
n � (1 � r∗)�1(1 � �t

0) . . . (1 � �t
n�1)[r∗ � �t

n ]Pt
0.

Note that only the constant real interest rate r∗ appears in equations (22),
but equations (21) also have the general inflation rate (1 � �t ) as a multi-
plicative factor.

As mentioned above, in our third class of assumptions about rates of as-
set price change, we want to estimate anticipated rates of asset price change
and use these estimates as our i t in the various formulas we have exhibited.
Unfortunately, there are any number of forecasting methods that could be
used to estimate the anticipated asset rates of price change. We will take a
somewhat different approach than a pure forecasting one: we will simply
smooth the observed ex post new asset rates of price change and use these
smoothed rates as our estimates of anticipated rates.26 A similar forecast-
ing problem arises when we use ex post actual consumer price index infla-
tion rates (recall equations [17] and [18] above) in order to generate antici-
pated general inflation rates. Thus, in our third set of models, we will use
both smoothed asset inflation rates and smoothed general inflation rates as
our estimates for anticipated rates. In our first class of models, we will use
actual ex post rates in both cases.

Before we proceed to consider our four specific depreciation models, we
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26. Unfortunately, different analysts may choose different smoothing methods, so there
may be a problem of a lack of reproducibility in our estimating procedures. Harper, Berndt,
and Wood (1989, p. 351) note that the use of time series techniques to smooth ex post asset in-
flation rates and the use of such estimates as anticipated price change dates back to Epstein
(1977).



briefly consider in the next section a topic of some current interest: namely,
the interaction of (foreseen) obsolescence and depreciation. We also dis-
cuss cross-section versus time series depreciation.

12.5 Obsolescence and Depreciation

We begin this section with a definition of the time series depreciation of
an asset. Define the ex post time series depreciation of an asset that is n pe-
riods old at the beginning of period t, E t

n , to be its secondhand market price
at the beginning of period t, P t

n , less the price of an asset that is one period
older at the beginning of period t � 1, Pt�1

n�1; that is,

(23) Et
n � Pt

n � Pt�1
n�1; n � 0, 1, 2, . . . 

Definition (23) should be contrasted with our earlier definitions in equa-
tion (10), which defined the cross-section amounts of depreciation for the
same assets at the beginning of period t, D t

n � P t
n – P t

n�1.
We can now explain why we preferred to work with the cross-section def-

inition of depreciation, equation (10), over the time series definition, equa-
tion (23). The problem with equation (23) is that time series depreciation
captures the effects of changes in two things: changes in time (this is the
change in t to t � 1)27 and changes in the age of the asset (this is the change
in n to n � 1).28 Thus, time series depreciation aggregates together two
effects: the asset-specific price change that occurred between time t and
time t � 1 (asset revaluation due to general inflation and asset-specific
price change) and the effects of asset aging (depreciation). Thus, the time
series definition of depreciation combines together two distinct effects.

The foregoing definition of ex post time series depreciation is the origi-
nal definition of depreciation, and it extends back to the very early begin-
nings of accounting theory.29

However, what has to be kept in mind that the early authors who used
the concept of time series depreciation were implicitly or explicitly assum-
ing that prices were stable across time, in which case, time series and cross-
section depreciation coincide.

P. Hill (2000, p. 6) and R.J. Hill and Hill (2003, p. 617)30 recently argued
that a form of time series depreciation that included expected obsolescence
was to be preferred over cross-section depreciation for national accounts
purposes. Since the depreciation rates �t

n defined by equation (12) are cross-
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27. This change could be captured by either P t
n – P n

t�1 or P t
n�1 – P t�1

n�1.
28. This change could be captured by either P t

n – P t
n�1 or P n

t�1 – P t�1
n�1.

29. See, for example, Matheson (1910, p. 35) and Hotelling (1925, p. 341).
30. We agree in general with P. Hill (2000) and R. J. Hill and Hill (2003) that expected ob-

solescence should be added to cross-sectional depreciation to form an overall depreciation
charge. However, Hill and Hill assumed that there was no general inflation in their exposition,
so some clarification is needed to deal with this complication.



section depreciation rates and they play a key role in the beginning and end
of period-t user costs f t

n and u t
n defined by equations (14), (21), and (22), it

is necessary to clarify their use in the context of P. Hill’s point that these de-
preciation rates should not be used to measure depreciation in the national
accounts.

Our response to the Hill critique is twofold:

• Cross-section depreciation rates as we have defined them are affected
by anticipated obsolescence in principle, but

• Hill is correct in arguing that cross-section depreciation will not gen-
erally equal ex post time series depreciation or anticipated time series
depreciation.

Before discussing these two points in detail, it is necessary to discuss the
concept of obsolescence in a bit more detail. Wykoff, in his discussion of
this chapter (chap. 12 comment in this volume), takes a narrow “techno-
logical” definition of obsolescence. In his view, an asset can only become
obsolete if a new model of the asset becomes available that can deliver at
least the service flow of the old asset at a lower price. In his view, if there is
no technological change embodied in the new asset, then by definition
there is no obsolescence. However, it is possible to define obsolescence
more broadly and include the effects of changes in the economy that reduce
the demand for the asset’s services to such an extent that its real price
falls.31 In what follows, we will use the second, broader concept of obsoles-
cence. One more point must be considered at this point. If there is techno-
logical obsolescence due to a new and improved model of the asset being
made available, then we assume that the price of the new model has been
(somehow) quality adjusted so that the quality-adjusted price is measured
in quantity units that are comparable to the older models.

Now consider the first bulleted point. Provisionally, we define antici-
pated obsolescence as a situation where the expected new asset rate of price
change (adjusted for quality change) i t is negative.32 For example, everyone
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31. This broader definition goes back to Church (1917) at least: “Even though a machine is
used fairly and uniformly as contemplated when the rate of depreciation was fixed there is an-
other influence that may shorten its period of usefulness in an unexpected way. The progress
of the technical art in which it is employed may develop more efficient machines for doing the
same work, so that it becomes advisable to scrap it long before it is worn out. The machine be-
comes obsolete and the loss of value from this cause is called ‘obsolescence.’ Again, unless the
machine is of a very generalized type, such as an engineer’s lathe, another type of misfortune
may overtake it. If it is a machine that can only be used for certain definite kinds of work or
some special article, as for example many of the machines used in automobile and bicycle
manufacture, it may happen that changes in demand, or in style, make the manufacture of
that special article no longer profitable. In this case, unless the machine can be transformed
for another use, it is a dead loss” (192–93).

32. Paul Schreyer and Peter Hill noted a problem with this provisional definition of antici-
pated obsolescence as a negative value of the expected asset inflation rate: it will not work in
a high-inflation environment. In a high-inflation environment, the nominal asset inflation rate



anticipates that the quality-adjusted price for a new computer next quarter
will be considerably lower than it is this quarter.33 Now turn back to equa-
tions (5), which define the profile of vintage asset prices P t

n at the start of
period t. It is clear that the negative i t plays a role in defining the sequence
of vintage asset prices, as does the sequence of vintage rental prices that is
observed at the beginning of period t, the f t

n . Thus, in this sense, cross-
sectional depreciation rates certainly embody assumptions about antici-
pated obsolescence.

Thus, for an asset that has a finite life, as we move down the rows of equa-
tions (5), the number of discounted rental terms declines, and hence asset
value declines, which is Griliches’s (1963, p. 119) concept of exhaustion. If
the cross-sectional rental prices are monotonically declining (due to their
declining efficiency), then as we move down the rows of equations (5), the
higher rental terms are being dropped one by one so that the asset values
will also decline from this factor, which is Griliches’s concept of deteriora-
tion. Finally, a negative anticipated asset inflation rate will cause all future
period rentals to be discounted more heavily, which could be interpreted as
Griliches’s concept of obsolescence.34 Thus, all of these explanatory factors
are embedded in equations (5).

Now consider the second bulleted point: that cross-section depreciation
is not really adequate to measure time series depreciation in some sense to
be determined.

Define the ex ante time series depreciation of an asset that is n periods
old at the beginning of period t, �t

n , to be its secondhand market price at
the beginning of period t, P t

n , less the anticipated price of an asset that is
one period older at the beginning of period t � 1, (1 � i t ) P t

n�1; i.e.,

(24) �t
n � Pt

n � (1 � i t )Pt
n�1; n � 0, 1, 2, . . . 

Thus, anticipated time series depreciation for an asset that is t periods old
at the start of period t, �t

n, differs from the corresponding cross-section de-
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i t will generally be positive, but we will require this nominal rate to be less than general infla-
tion in order to have anticipated obsolescence. Thus, our final definition of anticipated obso-
lescence is that the real asset inflation rate i∗t defined later by equation (28) be negative; see the
discussion immediately preceding equation (30).

33. Our analysis assumes that the various vintages of capital are adjusted for quality change
(if any occurs) as they come on the market. In terms of our Canadian empirical example to
follow, we are assuming that Statistics Canada correctly adjusted the published investment
price deflators for machinery and equipment and nonresidential construction for quality
change. We also need to assume that the form of quality change affects all future efficiency
factors (i.e., the f t

n ) in a proportional manner. This is obviously only a rough approximation
to reality: technical change may increase the durability of a capital input, or it may decrease
the amount of maintenance or fuel that is required to operate the asset. These changes can
lead to nonproportional changes in the f t

n .
34. However, it is more likely that what Griliches had in mind was Hill’s second point: that

time series depreciation will be larger than cross-section depreciation in a situation where i∗t

is negative.



preciation defined by equation (10), Dt
n � P t

n – P t
n�1, in that the anticipated

new asset rate of price change, i t, is missing from D t
n. However, note that the

two forms of depreciation will coincide if the expected asset rate of price
change it is zero.

We can use equations (12) and (13) in order to define the ex ante depre-
ciation amounts �t

n in terms of the cross-section depreciation rates �t
n.

Thus, using definitions (24), we have

(25) �t
n � Pt

n � (1 � i t )Pt
n�1 n � 0, 1, 2, . . . 

� Pt
n � (1 � i t )(1 � �t

n)Pt
n using equation (12)

� [1 � (1 � i t )(1 � �t
n)]Pt

n

� (1 � �t
1)(1 � �t

2) . . . (1 � �t
n�1) using equation (13)

	 [1 � (1 � i t )(1 � �t
n)]Pt

0

� (1 � �t
1)(1 � �t

2 ) . . . (1 � �t
n�1)[�

t
n � i t (1 � �t

n)]Pt
0 .

We can compare the above sequence of ex ante time series depreciation
amounts �t

n with the corresponding sequence of cross-section depreciation
amounts:

(26) Dt
n � Pt

n � Pt
n�1 n � 0, 1, 2, . . . 

� Pt
n � (1 � �t

n)P
t
n using equation (12)

� [1 � (1 � �t
n)]Pt

n

� (1 � �t
1)(1 � �t

2) . . . (1 � �t
n�1)[�

t
n ]Pt

0 using equations (13).

Of course, if the anticipated rate of asset price change i t is zero, then equa-
tions (25) and (26) coincide, and ex ante time series depreciation equals
cross-section depreciation. If we are in the provisional expected obsoles-
cence case with i t negative, then it can be seen comparing equations (25)
and (26) that �t

n 
 D t
n for all n such that D t

n 
 0; that is, if i t is negative (and
0 � �t

n � 1), then ex ante time series depreciation exceeds cross-section de-
preciation over all in-use vintages of the asset. If i t is positive so that the
rental price of each vintage is expected to rise in the future, then ex ante
time series depreciation is less than the corresponding cross-section depre-
ciation for all assets that have a positive price at the end of period t. This
corresponds to the usual result in the vintage user cost literature where cap-
ital gains or an ex post price increase for a new asset leads to a negative
term in the user cost formula (plus a revaluation of the cross-section de-
preciation rate). Here we are restricting ourselves to anticipated capital
gains rather than the actual ex post capital gains, and we are focusing on
depreciation concepts rather than the full user cost.

This is not quite the end of the story in the high-inflation context. Na-
tional income accountants often readjust asset values at either the beginning

Measurement of Capital Services and Asset Price Changes 497



or end of the accounting period to take into account general price level
change. At the same time, they also want to decompose nominal interest
payments into a real interest component and another component that
compensates lenders for general price change.

Recall equation (17), which defined the general period-t inflation rate �t,
and equation (18), which related the period-t nominal interest rate r t to the
real rate r∗t and the inflation rate �t. We rewrite equation (18) as follows:

(27) 1 � r∗t � .

In a similar manner, we define the period-t anticipated rate of real asset
price change i∗t as follows:

(28) 1 � i∗t �

Recall definition (23), which defined the ex ante time series depreciation
of an asset that is n periods old at the beginning of period t, �t

n. The first
term in this definition reflects the price level at the beginning of period t
while the second term in this definition reflects the price level at the end of
period t. We now express the second term in terms of the beginning-of-
period-t price level. Thus, we define the ex ante real time series depreciation
of an asset that is n periods old at the beginning of period t, �t

n , as follows:

(29) �t
n � Pt

n � (1 � i t ) n � 0, 1, 2, . . . 

� Pt
n � (1 � i t )(1 � �t

n ) using equation (12)

� [(1 � �t) � (1 � i∗t)(1 � �t)(1 � �t
n)] using equation (28)

� (1 � �t
0)(1 � �t

1) . . . (1 � �t
n�1)

	 [1 � (1 � i∗t)(1 � �t
n)]P

t
0 using equations (13)

� (1 � �t
0(1 � �t

1) . . . (1 � �t
n�1)[�

t
n � i∗t (1 � �t

n)]Pt
0.

The ex ante real time series depreciation amount �t
n defined by equations

(29) can be compared to its cross-section counterpart D t
n , defined by equa-

tions (25) above. Of course, if the real anticipated asset inflation rate i∗t is
zero, then equations (29) and (25) coincide, and real ex ante time series de-
preciation equals cross-section depreciation.

We are now in a position to provide a more satisfactory definition of ex-
pected obsolescence, particularly in the context of high inflation. We now

Pt
n

�
1 � �t

P t
n

�
1 � �t

P t
n�1

�
1 � �t

1 � i t

�
1 � �t

1 � r t

�
1 � �t
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define expected obsolescence to be the situation where the real rate of asset
price change i∗t is negative. If this real rate is negative, then it can be seen
comparing equations (29) and (26) that

(30) �t
n 
 Dt

n for all n such that Dt
n 
 0;

that is real anticipated time series depreciation exceeds the corresponding
cross-section depreciation provided that i∗t is negative.

Thus, the general user cost formulas that we have developed from the
vintage accounts point of view can be reconciled to reflect the point of view
of national income accountants. We agree with Hill’s point of view that
cross-section depreciation is not really adequate to measure time series de-
preciation as national income accountants have defined it since Pigou
(1935, pp. 240–41).

Pigou in an earlier work (1924) had a more complete discussion of the
obsolescence problem and the problems involved in defining time series
depreciation in an inflationary environment. Pigou first pointed out that
the national dividend or net annual income (or, in modern terms, real net
output) should subtract depreciation or capital consumption (34–35).
Pigou then went on to discuss the roles of obsolescence and general price
change in measuring depreciation (39–41). Pigou was responsible for many
of the conventions of national income accounting that persist down to the
present day. He essentially argued that (unanticipated) capital gains or
losses be excluded from income and that the effects of general price level
change be excluded from estimates of depreciation. He also argued for the
inclusion of (foreseen) obsolescence in depreciation. Unfortunately, he did
not spell out exactly how all of this could be done in the accounts. Our pre-
ceding algebra can be regarded as an attempt to formalize these Pigovian
complications.

It should be noted that the early industrial engineering literature also
stressed that the possibility of obsolescence meant that depreciation allow-
ances should be larger than those implied by mere wear and tear; see Bab-
bage (1835, p. 285), Matheson (1910, pp. 39–40) and Church (1917, pp. 192–
93). Both Matheson and Church noted that obsolescence could arise not
only from new inventions but also from shifts in demand.

We will end this section by pointing out another important use for the
concept of real anticipated time series depreciation. However, before doing
this, it is useful to rewrite equations (5), which define the beginning-of-
period-t asset prices by age n, P t

n , in terms of the beginning-of-period-t
rental prices f t

n , and equations (7), which define the user costs f t
n in terms

of the asset prices P t
n , using definitions (27) and (28), which define the pe-

riod-t real interest rate r∗t and expected asset inflation rate i∗t, respectively,
in terms of the corresponding nominal rates r t and i t and the general infla-
tion rate �t. Substituting equations (27) and (28) into equations (5) yields
the following system of equations:
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(31) Pt
0 � f t

0 � �� �� f t
1 � �� ��2

f t
2 � �� ��3

f t
3 � . . .

Pt
1 � f t

1 � �� �� f t
2 � �� ��2

f t
3 � �� ��3

f t
4 � . . . 

. . . 

Pt
n � f t

n � �� �� f t
n�1 � �� ��2

f t
n�2

� �� ��3

f t
n�3 � . . . 

Similarly, substituting equations (27) and (28) into equations (7) yields the
following system of equations:

(32) f t
0 � Pt

0 � � �Pt
1 � (1 � r∗t)�1[Pt

0(1 � r∗t) � (1 � i∗t)Pt
1 ]

f t
1 � Pt

1 � � �Pt
2 � (1 � r∗t)�1[Pt

1(1 � r∗t) � (1 � i∗t)Pt
2 ]

. . . 

f t
n � Pt

n � � �Pt
n�1 � (1 � r∗t)�1[Pt

n(1 � r∗t) 

� (1 � i∗t) Pt
n�1]; . . . 

Note that the nominal interest and inflation rates have entirely disappeared
from the equations. In particular, the beginning-of-period user costs f t

n can
be defined in terms or real variables using equations (32) if this is desired.
On the other hand, entirely equivalent formulas for the cross-section user
costs can be obtained using the initial set of equations (7), which used only
nominal variables. Which set of equations is used in practice can be left up
to the judgment of the statistical agency or the user.35 The point is that the
careful and consistent use of discounting should eliminate the effects of gen-
eral inflation from our price variables; discounting makes comparable cash
flows received or paid out at different points of time.

Recall definition (29), which defined �t
n as the ex ante real time series de-

preciation of an asset that is n periods old at the beginning of period t. It is
convenient to convert this amount of depreciation into a percentage of the

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

1 � i∗t

�
1 � r∗t

500 W. Erwin Diewert

35. In particular, it is not necessary for the statistical agency to convert all nominal prices
into real prices as a preliminary step before “real” user costs are calculated. The above alge-
bra shows that our nominal user costs f t

n can also be interpreted as real user costs that are ex-
pressed in terms of the value of money prevailing at the beginning of period t.



initial price of the asset at the beginning of period t, P t
n . Thus, we define the

ex ante time series depreciation rate for an asset that is n periods old at the
start of period t, t

n, as follows:36

(33) t
n � ; n � 0, 1, 2, . . . 

� using equations (29)

� using equation (12)

� [1 � (1 � i∗t)(1 � �t
n)] using equation (28).

Now substitute definition (12) for the cross-section depreciation rate �t
n

into the nth equation of equations (32) and we obtain the following ex-
pression for the beginning-of-period-t user cost of an asset that is n periods
old at the start of period t:

(34) f t
n � (1 � r∗t)�1[Pt

n(1 � r∗t) � (1 � i∗t )Pt
n�1] n � 0, 1, 2, . . . 

� (1 � r∗t)�1[Pt
n(1 � r∗t) � (1 � i∗t)(1 � �t

n)Pt
n ] using equation (12)

� (1 � r∗t)�1[(1 � r∗t) � (1 � i∗t)(1 � �t
n )]Pt

n

� (1 � r∗t)�1 [r∗t � t
n ]Pt

n using equations (33).

Thus, the period-t vintage user cost for an asset that is n periods old at
the start of period t, f t

n , can be decomposed into the sum of two terms. Ig-
noring the discount factor, (1 � r∗t )–1, the first term is r∗tP t

n , which repre-
sents the real interest cost of the financial capital that is tied up in the asset,
and the second term is t

n – P t
n � �t

n , which represents a concept of national
accounts depreciation.

The last line of equations (34) is important if at some stage statistical
agencies decide to switch from measures of gross domestic product to mea-
sures of net domestic product. If this change occurs, then the user cost for
each age n of capital, f t

n , must be split up into two terms as in equations
(34). The first term, (1 � r∗t)–1r∗tP t

n times the number of units of that type

Pt
n � (1 � i t )(1 � �t

n)Pt
n /(1 � �t)

����
Pt

n

Pt
n � (1 � i t )Pt

n�1/(1 + �t)
���

Pt
n

�t
n

�
Pt

n
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36. To see that there can be a very large difference between the cross-section depreciation
rate �t

n and the corresponding ex ante time series depreciation rate t
n, consider the case of an

asset whose vintages yield exactly the same service for each period in perpetuity. In this case,
all of the vintage asset prices P t

n would be identical and the cross-section depreciation rates �t
n

would all be zero. Now suppose a marvelous new invention is scheduled to come on the mar-
ket next period that would effectively drive the price of this class of assets down to zero. In this
case, i∗t would be –1 and substituting this expected measure of price change into definitions
(33) shows that the ex ante time series depreciation rates would all equal one; that is, under
these conditions, we would have t

n � 1 and �t
n � 0 for all vintages n.



of capital in use, could remain as a primary input charge, while the second
term, (1 � r∗t)–1t

n P t
n times the number of units of that age of capital in use

(this is real national accounts depreciation), could be treated as an inter-
mediate input charge (similar to the present treatment of imports). The sec-
ond term would be an offset to gross investment.37

This completes our discussion of the obsolescence problem.38 In the next
section, we turn our attention to the problem of aggregating across ages of
the same capital good.

12.6 Aggregation over Vintages of a Capital Good

In previous sections, we have discussed the beginning-of-period-t stock
price P t

n of an asset that is n periods old and the corresponding beginning-
and end-of-period user costs, f t

n and u t
n . The stock prices are relevant for

the construction of real wealth measures of capital, and the user costs are
relevant for the construction of capital services measures. We now address
the problems involved in obtaining quantity series that will match up with
these prices.

Let the period-t – 1 investment in a homogeneous asset for the sector of
the economy under consideration be I t–1. We assume that the starting cap-
ital stock for a new unit of capital stock at the beginning of period t is Kt

0

and this stock is equal to the new investment in the asset in the previous pe-
riod; that is, we assume

(35) Kt
0 � I t�1.

Essentially, we are assuming that the length of the period is short enough
so that we can neglect any contribution of investment to current produc-
tion; a new capital good becomes productive only in the period immedi-
ately following its construction. In a similar manner, we assume that the
capital stock available of an asset that is n periods old at the start of period
t is Kt

n and this stock is equal to the gross investment in this asset class dur-
ing period t – n – 1; that is, we assume

(36) Kt
n � I t�n�1; n � 0, 1, 2, . . . 

Given these definitions, the value of the capital stock in the given asset
class for the sector of the economy under consideration (the wealth capital
stock) at the start of period t is
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37. Using this methodology, we would say that capital is being maintained intact for the
economy if the value of gross investments made during the period (discounted to the begin-
ning of the period) is equal to or greater than the sum of the real national accounts deprecia-
tion terms over all assets. This is a maintenance of financial capital concept as opposed to
Pigou’s (1935, p. 235) maintenance of physical capital concept.

38. It should be noted that our discussion of the obsolescence issue only provides an intro-
duction to the many thorny issues that make this area of inquiry quite controversial. For fur-



(37) Wt � Pt
0Kt

0 � Pt
1K

t
1 � Pt

2Kt
2 � . . . 

� Pt
0I t�1 � Pt

1I t�2 � Pt
2I t�3 � . . . using equation (36).

Turning now to the capital services quantity, we assume that the quan-
tity of services that an asset of a particular age at a point in time is propor-
tional (or more precisely, is equal) to the corresponding stock. Thus, we as-
sume that the quantity of services provided in period t by a unit of the
capital stock that is n periods old at the start of period t is Kt

n defined by
equation (36) above. Given these definitions, the value of capital services
for all vintages of asset in the given asset class for the sector of the economy
under consideration (the productive services capital stock) during period t
using the end-of-period user costs u t

n defined by equations (8) is

(38) St � ut
0Kt

0 � ut
1Kt

1 � ut
2Kt

2 � . . . 

� ut
0I t�1 � ut

1I t�2 � ut
2I t�3 � . . . using equation (36).

Now we are faced with the problem of decomposing the value aggregates
W t and S t defined by equations (37) and (38) into separate price and quan-
tity components. If we assume that each new unit of capital lasts only a
finite number of periods—L, say—then we can solve this value decomposi-
tion problem using normal index number theory. Thus, define the period-t
stock price and quantity vectors, Pt and Kt respectively, as follows:

(39) P t � [Pt
0 , Pt

1, . . . , Pt
L�1]; t � 0, 1, . . . , T;

Kt � [Kt
0, K

t
1, . . . , Kt

L�1] � [I t�1, I t�2, . . . , I t�L�1].

Fixed-base or chain indexes may be used to decompose value ratios into
price change and quantity change components. In the empirical work that
follows, we have used the chain principle.39 Thus, the value of the capital
stock in period t, W t, relative to its value in the preceding period, W t–1, has
the following index number decomposition:

(40) � P(Pt�1, Pt, Kt�1, Kt)Q(Pt�1, Pt, Kt�1, Kt); t � 1, 2, . . . , T,

where P and Q are bilateral price and quantity indexes, respectively.
In a similar manner, we define the period-t end-of-period user cost price

and quantity vectors, ut and Kt, respectively, as follows:

Wt

�
Wt�1
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ther discussion, see Oulton (1995), Scott (1995), and Triplett (1996) and the references in
these papers.

39. Given smoothly trending price and quantity data, the use of chain indexes will tend to
reduce the differences between Paasche and Laspeyres indexes compared to the correspon-
ding fixed-base indexes, and so chain indexes are generally preferred; see Diewert (1978,
p. 895) for a discussion.



(41) ut � [ut
0, u

t
1, . . . , ut

L�1]; t � 0, 1, . . . , T;

Kt � [Kt
0, Kt

1, . . . , Kt
L�1] � [I t�1, I t�2, . . . , I t�L�1].

We ask that the value of capital services in period t, S t, relative to its
value in the preceding period, S t–1, have the following index number de-
composition:

(42) � P(ut�1, ut, Kt�1, Kt)Q(ut�1, ut, Kt�1, Kt); t � 1, 2, . . . , T,

where again P and Q are bilateral price and quantity indexes, respectively.
There is now the problem of choosing the functional form for either the

price index P or the quantity index Q.40 In the empirical work that follows,
we used the Fisher (1922) Ideal price and quantity indexes. These indexes
appear to be best from the axiomatic viewpoint41 and can also be given
strong economic justifications.42

It should be noted that our use of an index number formula to aggregate
both stocks and services by age is more general than the usual aggregation
procedures, which essentially assume that the different vintages of the
same capital good are perfectly substitutable so that linear aggregation
techniques can be used.43 However, as we shall see in subsequent sections,
the more general mode of aggregation suggested here frequently reduces to
the traditional linear method of aggregation provided that the period
prices by age all move in strict proportion over time.

Many researchers and statistical agencies relax the assumption that an
asset lasts only a fixed number of periods (L, say) and make assumptions
about the distribution of retirements around the average service life, L. In
our empirical work that follows, for simplicity, we will stick to the sudden-
death assumption: that all assets in the given asset class are retired at age
L. However, this simultaneous retirement assumption can readily be re-
laxed (at the cost of much additional computational complexity) using a
methodology developed by Hulten (1990, p. 125), where he subdivided a
vintage into subcomponents, each of which had a different expected length
of life.

We now have all of the pieces that are required in order to decompose the
capital stock of an asset class and the corresponding capital services into
price and quantity components. However, in order to construct price and
quantity components for capital services, we need information on the rel-

St

�
St�1
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40. Obviously, given one of these functional forms, we may use equation (40) to determine
the other.

41. See Diewert (1992a, pp. 214–23).
42. See Diewert (1976, pp. 129–34).
43. This more general form of aggregation was first suggested by Diewert and Lawrence

(2000). For descriptions of the more traditional linear method of aggregation, see Jorgenson
(1989, p. 4) or Hulten (1990, pp. 121–27; 1996, pp. 152–65).



ative efficiencies f t
n of the various vintages of the capital input, or, equiva-

lently, we need information on cross-sectional vintage depreciation rates �t
n

in order to use equation (42) above. The problem is that we do not have ac-
curate information on either of these series, so in what follows we will as-
sume a standard asset life L and make additional assumptions on either the
pattern of vintage efficiencies or depreciation rates. Thus, in a sense, we are
following the same somewhat mechanical strategy that was used by the
early cost accountants like Daniels (1933, p. 303).

However, our mechanical strategy is more complex than that used by
early accountants in that we translate assumptions about the pattern of
cross-section depreciation rates into implications for the pattern of cross-
section rental prices and asset prices, taking into account the complica-
tions induced by discounting and expected future asset price changes.

In the following sections, we will consider four different sets of assump-
tions and calculate the resulting aggregate capital stocks and services us-
ing Canadian data. We illustrate how the various depreciation models
differ from each other using annual Canadian data on two broad classes of
asset:44

• machinery and equipment
• nonresidential structures

We use Canadian data on gross investment in these two asset classes (in
current and in constant dollars) because it extends back to 1926 and hence
capital stocks can be formed without making arbitrary starting value as-
sumptions.

Our first problem is to decide on the average age of retirement for each
of these asset classes. One source is the OECD (1993), where average ser-
vice lives for various asset classes were reported for fourteen OECD coun-
tries. For machinery and equipment (excluding vehicles) used in manufac-
turing activities, the average life ranged from eleven years for Japan to
twenty-six years for the United Kingdom. For vehicles, the average service
lives for passenger cars ranged from two years in Sweden to fourteen years
in Iceland, and for road freight vehicles the average life ranged from three
years in Sweden to fourteen years in Iceland. For buildings and structures,
the average service lives ranged from fifteen years (for petroleum and gas
structures in the United States) to eighty years for railway structures in
Sweden. Faced with this wide range of possible lives, we decided to follow
the example of Angus Maddison (1993) and assume an average service life
of fourteen years for machinery and equipment and thirty-nine years for
nonresidential structures. The Canadian data that we used may be found
in Diewert (2004).

We turn now to our first efficiency and depreciation model.
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44. More accurate models would work with more disaggregated investment series.



12.7 The One-Hoss-Shay Model of Efficiency and Depreciation

In section 12.2, we noted that Böhm-Bawerk (1891, p. 342) postulated
that an asset would yield a constant level of services throughout its useful
life of L years and then collapse in a heap to yield no services thereafter.
This has come to be known as the one-hoss-shay or lightbulb model of
depreciation. Hulten (1990, p. 124) noted that this pattern of relative effi-
ciencies has considerable intuitive appeal for many assets.

The basic assumptions of this model are that the period-t efficiencies and
hence cross-sectional rental prices f t

n are all equal to, say, f t for ages n that
are less than L periods old, and for older ages the efficiencies fall to zero.
Thus, we have

(43) f t
n � f t for n � 0, 1, 2, . . . , L �1;

� 0 for n � L, L � 1, L � 2, . . . 

Now substitute equations (43) into the first equation in equations (5) and
get the following formula45 for the rental price f t in terms of the price of a
new asset at the beginning of year t, P t

0.

(44) f t � ,

where the period-t discount factor �t is defined in terms of the period-t
nominal interest rate r t and the period-t expected asset rate of price change
i t as follows:

(45) �t � .

Now that the period-t rental price f t for an unretired asset has been de-
termined, substitute equations (43) into equations (5) and determine the
sequence of period-t asset prices by age n, P t

n .

(46)Pt
n � f t[1 � (�t) � (�t)2 � . . . � (�L)L�1�n] for n � 0, 1, 2, . . . , L �1

�0 for n � L, L � 1, L � 2, . . . 

Finally, use equations (8) to determine the end-of-period-t rental prices,
u t

n, in terms of the corresponding beginning-of-period-t rental prices, f t
n.

(47) ut
n � (1 � r t ) f t

n ; n � 0, 1, 2, . . . 

1 � i t

�
1 � r t

Pt
0

����
1 � (�t) � (�t)2 � . . . � (�L)L�1
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45. This formula simplifies to P t
0[1 – (�t )L] / [1 – �t ] provided that �t is less than 1 in magni-

tude. This last restriction does not hold for our Canadian data since, for some years, i t exceeds
r t. However, equation (44) is still valid under these conditions.



Given the asset prices defined by equations (46), we could use equations
(12) above to determine the corresponding cross-section depreciation rates
�t

n. We will not table these depreciation rates since our focus is on con-
structing measures of the capital stock and of the flow of services that the
stocks yield.

We have data in current and constant dollars for investment in nonresi-
dential structures and for machinery and equipment in Canada for the
years 1926 to 1999 inclusive; see Diewert (2004) for a description of these
data. As was mentioned in the previous section, we follow the example set
by Maddison (1993) and assume an average service life of fourteen years
for machinery and equipment and thirty-nine years for nonresidential
structures. Thus, 1965 is the first year for which we will have data on all
thirty-nine types of nonresidential structures. Now it is a straightforward
matter to use the asset prices by age defined by equations (46) above (where
L equals 39) and apply equation (40) in the previous section to aggregate
over the thirty-nine types of nonresidential capital using the Fisher (1922)
Ideal index number formula and form aggregate price and quantity series
for the nonresidential construction (wealth) capital stock, P t

NR and Kt
NR,

for the years 1965–99. These series, along with their annual average (geo-
metric) growth rates, can be found in Diewert at five-year intervals. Simi-
larly, we use equations (46) above (where L equals 14) and apply equation
(40) in the previous section to aggregate over the fourteen ages of machin-
ery and equipment using the Fisher Ideal index number formula and form
aggregate price and quantity series for the machinery and equipment
(wealth) capital stock, P t

ME and Kt
ME, for the years 1965–99. These series,

along with their annual average (geometric) growth rates, can also be found
in Diewert at five-year intervals. In this first model, we assume that pro-
ducers exactly anticipate the asset rates of price change, i t

NR and i t
ME, for

nonresidential construction and for machinery and equipment respec-
tively; these ex post rates of price change are listed in Diewert. Having con-
structed the aggregate price and quantity of nonresidential capital, P t

NR

and Kt
NR respectively, and the aggregate price and quantity of machinery

and equipment, P t
ME and Kt

ME respectively, we may again use the Fisher
Ideal formula and aggregate these two series into a single aggregate price
and quantity series for the wealth stock, which we denote by P(1)t and
K(1)t, where the 1 indicates that this is our first model in a grand total of
twelve alternative aggregate capital stock models.

Using equations (43), (44), and (47), along with the data tabled in Die-
wert (2004), we can construct the end-of-period user costs for each of our
thirty-nine types of nonresidential construction capital. Now use equation
(38) to construct the service flow aggregate for nonresidential construction
for each year. Then we use equation (42) in the previous section (where L
equals 39) to aggregate over the thirty-nine types of nonresidential capital
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using the Fisher Ideal index number formula and form the aggregate rental
price for nonresidential construction, u t

NR, and the corresponding services
aggregate, kt

NR, for the years 1965–99.46 These series, along with their an-
nual average (geometric) growth rates, can be found in Diewert (2004) at
five-year intervals. Similarly, we use equation (42) above (where L equals
14) and aggregate over the fourteen ages of machinery and equipment us-
ing the Fisher Ideal index number formula and form aggregate capital ser-
vices price and quantity series, u t

ME and kt
ME, for the years 1965–99. These

series, along with their annual average (geometric) growth rates, can also
be found in Diewert at five-year intervals. Having constructed the aggre-
gate price and quantity of nonresidential capital services, u t

NR and kt
NR re-

spectively, and the aggregate price and quantity of machinery and equip-
ment services, u t

ME and kt
ME respectively, we may again use the Fisher Ideal

formula and aggregate these two series into a single aggregate price and
quantity series for capital services, which we denote by u(1)t and k(1)t,
where the 1 again indicates that this is our first model in a grand total of
twelve alternative aggregate capital stock models. The various data series
will be compared graphically in section 12.11 below.

We turn now to our second one-hoss-shay depreciation model. In this
model, instead of assuming that producers correctly anticipate each year’s
ex post asset inflation rates, we assume that producers use the current con-
sumer price index (CPI) inflation rate as estimators of anticipated asset in-
flation rates. This model turns out to be equivalent to the constant real in-
terest rate model that is frequently used by statistical agencies.47 In terms
of computations, we simply replace the two ex post asset inflation rates, i t

NR

and i t
ME, with the CPI inflation rate �t listed in Diewert (2004) and then re-

peat all of the computations made to implement model 1 above.
When we compare the service prices and quantities in model 1, the

perfect-foresight model, with the corresponding service prices and quanti-
ties in model 2, the constant real interest rate model, a number of things
stand out:

• The model 2 user costs are much less volatile (as could be expected).
• The model 1 user costs grow much more quickly.
• The model 2 levels of capital services are much higher.
• The model 1 and 2 average growth rates for capital services are very

similar.
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46. Since all of the vintage rental prices are equal, it turns out that the aggregate rental price
is equal to this common vintage rental price and the service aggregate is equal to the simple
sum over the vintages. This result is an application of Hicks’s (1939, pp. 312–13) aggregation
theorem; that is, if all prices in the aggregate move in strict proportion over time, then any one
of these prices can be taken as the price of the aggregate.

47. The nominal interest rate is still used in forming the end-of-period user costs; otherwise,
only real interest rates are used in this model.



Thus, the two models give very different results overall. The average rate of
price increase for the model 2 capital services aggregate was 3.29 percent
per year, which is much lower than the model 1 estimate of 4.85 percent per
year. On the quantity side, the model 2 flow of nonresidential construction
capital services increased from $2,727 million to $11,564 million (constant
1965) Canadian dollars, for an annual average (geometric) growth rate of
4.34 percent, while the model 2 flow of machinery and equipment capital
services increased from $3,588 million to $34,556 million (constant 1965)
Canadian dollars, for an annual average growth rate of 6.89 percent. The
model 2 capital services aggregate grew at an annual average growth rate
of 5.49 percent compared to the model 1 capital services annual average
growth rate of 5.61 percent.

We turn now to our third one-hoss-shay depreciation model. In this model
(model 3), instead of assuming that producers correctly anticipate each
year’s ex post asset inflation rates, we assume that they can anticipate the
trends in asset inflation rates. In Diewert (2004), we describe in detail how
these trends were determined. In terms of computations, we use exactly the
same program that we used to implement model 1 except that we replace the
rather volatile nominal interest rates r t with the smoothed nominal interest
rates that are listed in Diewert. We also replace the two ex post asset infla-
tion rates, i t

NR and i t
ME, with their smoothed counterparts listed in Diewert.

Comparing the numbers across the three models, there are some small
differences between the capital stocks generated by our three variants of
the one-hoss-shay model of depreciation, but the average growth rates are
virtually identical. There is more variation across the three models in the
movement of the stock prices, with model 1 giving the highest rate of price
growth for the capital aggregate (4.35 percent per year), followed by model
3 (4.17 percent per year) and then model 2 (3.97 percent per year). The
model 1, 2, and 3 aggregate prices, P(1)–P(3), and quantities of capital,
K(1)–K(3) respectively, are graphed in figures 12.1–12.6 in section 12.11.

The tremendous volatility of the model 1 rental prices, u(1), will become
evident from viewing figure 12.7 in section 12.11. Thus, the use of ex post
asset inflation rates as ex ante or anticipated inflation rates leads to user costs
that are extremely volatile. The model 3 aggregate user costs, u(3), while still
more volatile than the constant real interest rate user costs, u(2), are rea-
sonable and smooth out the fluctuations in the u(1) series. The u(2) series
lies below the other two user cost series because the constant real interest
rate user costs make no allowance for the extra depreciation that arises
from the anticipated price declines that are due to obsolescence; that is, the
u(2) series ignores the systematic real price declines in the price of machin-
ery and equipment. Thus, while model 2 is acceptable, we prefer model 3,
since this model includes the effects of anticipated obsolescence, whereas
model 2 does not.
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Examination of figures 12.4–12.6 in section 12.11 will show that all three
one-hoss-shay models give rise to much the same aggregate capital stocks.
The constant real interest rate capital stocks K(2) are the biggest, followed
by the smoothed anticipated inflation stocks K(3), and the fully anticipated
inflation stocks K(1) are the smallest. The aggregate capital services
graphed in figures 12.10–12.12 show much the same pattern but with more
dispersion. The constant real interest rate aggregated capital services k(2)
are the biggest, followed by the smoothed anticipated inflation capital ser-
vices k(3) and the fully anticipated inflation capital services k(1) are the
smallest.

We turn now to our second model of depreciation and efficiency.

12.8 The Straight-Line Depreciation Model

The straight-line method of depreciation is very simple in a world with-
out price change: one simply makes an estimate of the most probable
length of life for a new asset, L periods, say, and then the original purchase
price P t

0 is divided by L to yield an estimate of period-by-period deprecia-
tion for the next L periods. In a way, this is the simplest possible model of
depreciation, just as the one-hoss-shay model was the simplest possible
model of efficiency decline.48 The use of straight-line depreciation dates
back to the 1800s at least; see Matheson (1910, p. 55), Garcke and Fells
(1893, p. 98), and Canning (1929, pp. 265–66).

We now set out the equations that describe the straight-line model of de-
preciation in the general case when the anticipated asset rate of price
change i t is nonzero. Assuming that the asset has a life of L periods and that
the cross-sectional amounts of depreciation D t

n � P t
n – P t

n�1 defined by
equation (10) above are all equal for the assets in use, then it can be seen
that the beginning of period-t vintage asset prices P t

n will decline linearly
for L periods and then remain at zero; that is, the P t

n will satisfy the fol-
lowing restrictions:

(48) Pt
n � Pt

0� � n � 0, 1, 2, . . . , L

� 0 n � L � 1, L � 2, . . . 

Recall definition (12) above, which defined the cross-sectional deprecia-
tion rate for an asset that is n periods old at the beginning of period t, �t

n.
Using equations (48) and the nth equation in equations (13), we have

L � n
�

L
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48. In fact, it can be verified that if the nominal interest rate r t and the nominal asset infla-
tion rate i t are both zero, then the one-hoss-shay efficiency model will be entirely equivalent
to the straight-line depreciation model.



(49) (1 � �t
0)(1 � �t

1) . . . (1 � �t
n�1) � � 1 � for n � 1, 2, . . . , L.

Using equation (49) for n and n � 1, it can be shown that

(50) (1 � �t
n) � n � 0, 1, 2, . . . , L � 1.

Now substitute equations (49) and (50) into the general user cost for-
mula, equations (14), in order to obtain the period-t end-of-period straight-
line user costs, u t

n:
49

(51) ut
n � (1 � �t

0) . . . (1 � �t
n�1)[(1 � r t) 

� (1 � i t)(1 � �t
n )]Pt

0 n � 0, 1, 2, . . . , L � 1

� �1 � ��(1 � r t) � (1 � i t)� ��Pt
0 .

Equations (48) give us the sequence of asset prices by age that are re-
quired to calculate the wealth capital stock, while equations (51) give us the
user costs by age that are required to calculate capital services for the as-
set. It should be noted that if the anticipated asset inflation rate i t is large
enough compared to the nominal interest rate r t, then the user cost u t

n can
be negative. This means that the corresponding asset becomes an output
rather than an input for period t.50

At this point, we can proceed in much the same manner as in the previ-
ous section. We use the asset prices defined by equations (48) above (where
L equals 39) and apply equation (40) in section 12.7 to aggregate over the
thirty-nine types of nonresidential capital using the Fisher Ideal index
number formula, and we form aggregate price and quantity series for the
nonresidential construction (wealth) capital stock, P t

NR and Kt
NR, for the

years 1965–99. These series, along with their annual average (geometric)
growth rates, can be found in Diewert (2004) at five-year intervals. Simi-
larly, we use equations (48) above (where L equals 14) and apply equation
(40) to aggregate over the fourteen types of machinery and equipment us-
ing the Fisher Ideal index number formula, and we form aggregate price
and quantity series for the machinery and equipment (wealth) capital
stock, Pt

ME and Kt
ME, for the years 1965–99. These series, along with their an-

nual average (geometric) growth rates, can also be found in Diewert at five-
year intervals. In this fourth model, we assume that producers exactly antici-
pate the ex post asset rates of price change, i t

NR and i t
ME, for nonresidential

construction and for machinery and equipment, respectively. Having

L � (n � 1)
��

L � n

n
�
L

L � (n � 1)
��

L � n

n
�
L

Pt
n

�
Pt

0
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49. The user costs for n � L, L � 1, L � 2, . . . are all zero.
50. However, one is led to wonder if the model is reasonable if some vintages of the asset

have negative user costs while other vintages have positive ones.



constructed the aggregate price and quantity of nonresidential capital,
P t

NR and Kt
NR respectively, and the aggregate price and quantity of machin-

ery and equipment, P t
ME and Kt

ME respectively, we may again use the Fisher
Ideal formula and aggregate these two series into a single aggregate price
and quantity series for the wealth stock, which we denote by P (4)t and
K(4)t.

Using equations (51) along with the data tabled in Diewert (2004), we
can construct the end-of-period user costs for each of our thirty-nine types
of nonresidential construction capital. Now use equation (38) to construct
the service flow aggregate for nonresidential construction for each year.
Then we use equation (42) in the previous section (where L equals 39) to
aggregate over the thirty-nine types of nonresidential capital using the
Fisher Ideal index number formula and form the aggregate rental price for
nonresidential construction, u t

NR, and the corresponding services aggre-
gate, kt

NR, for the years 1965–99.51 These series, along with their annual av-
erage (geometric) growth rates, can be found in Diewert at five-year inter-
vals. Similarly, we use (42) above (where L equals 14) and aggregate over
the fourteen types of machinery and equipment using the Fisher Ideal in-
dex number formula, and we form aggregate capital services price and
quantity series, u t

ME and kt
ME, for the years 1965–99. These series, along

with their annual average (geometric) growth rates, can also be found in
Diewert at five-year intervals. Having constructed the aggregate price and
quantity of nonresidential capital services, u t

NR and kt
NR respectively, and

the aggregate price and quantity of machinery and equipment services, 
u t

ME and kt
ME respectively, we may again use the Fisher Ideal formula and

aggregate these two series into a single aggregate price and quantity series
for capital services, which we denote by u (4)t and k(4)t.

We turn now to our second straight-line depreciation model. In this model
5, instead of assuming that producers correctly anticipate each year’s ex
post asset inflation rates, we assume that producers use the current CPI in-
flation rate as estimators of anticipated asset rates of price change. In terms
of computations, we simply replace the two ex post asset rates of price
change, i t

NR and i t
ME , by the CPI inflation rate �t listed in Diewert (2004)

and then repeat all of the computations made to implement model 4 above.
It turns out that the model 5 constant real interest rate capital stocks

(and prices) are exactly equal to their model 4 counterparts. This follows
from equations (48), which describe the pattern of asset prices by age: in
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51. It turned out that some of our rental prices were negative. This may not be a major the-
oretical problem since in this case the corresponding capital input becomes a net output.
However, the computations were carried out using the econometrics computer program
SHAZAM, and the index number option fails when any price is negative. In this case, it was
necessary to write up a subroutine that would compute the Fisher indexes when some prices
were negative. The four inner products that are building blocks into the Fisher indexes must
all be positive in order to take the positive square root. This condition was satisfied by the data
in all cases.



both models 4 and 5 (and model 6, to be considered shortly), these asset
prices do not depend on r t or i t, and hence the resulting asset prices and
capital stocks will be identical. Hence, there is no need to table the capital
stocks and prices for model 5. However, the model 5 user costs and capital
service flows by age (listed in Diewert 2004 at five-year intervals) are very
different from their model 4 counterparts.

We turn now to our third straight-line depreciation model, which we call
model 6. In this model, instead of assuming that producers correctly an-
ticipate each year’s ex post asset inflation rates, we assume that they can an-
ticipate the trends in asset rates of price change. In terms of computations,
we use exactly the same program that we used to implement model 4 except
that we replace the rather volatile nominal interest rate r t that is listed in
Diewert (2004) with the smoothed nominal interest rate that is listed in
Diewert. We also replace the two ex post asset inflation rates, i t

NR and i t
ME ,

with their smoothed counterparts, also listed in Diewert.
As mentioned earlier, the model 6 constant real interest rate capital

stocks (and prices) are exactly equal to their model 4 counterparts in table
12.7. Hence, there is no need to table the capital stocks and prices for
model 6. However, the model 6 vintage user costs and capital service flows
are very different from their model 4 and 5 counterparts.

On the quantity side, model 6 gives much the same results as the other
two straight-line depreciation models, models 4 and 5; see figures 12.10–
12.12 in section 12.11 for graphs of k(4)–k(6). In particular, the average an-
nual (geometric) rate of growth of aggregate capital services for models 4,
5, and 6 was 5.30 percent, 5.08 percent, and 5.24 percent per year, respec-
tively. However, on the user cost side, the three models give very different
results. The perfect-foresight model, model 4, gave the highest annual av-
erage growth rate for the aggregate price of capital services, 4.96 percent
per year, while the constant real interest rate model, model 5, gave the low-
est average growth rate, 3.61 percent per year. The smoothed anticipated
prices model, model 6, gave an intermediate growth rate for the price of
capital services, 4.31 percent per year. As will be seen from figures 12.7–
12.9, the model 5 and 6 aggregate user costs were much smoother than the
volatile model 4 user costs.

We turn now to our third class of depreciation and efficiency models.

12.9 The Declining Balance or Geometric Depreciation Model

The declining balance method of depreciation dates back to Matheson
(1910, p. 55) at least.52 In terms of the algebra presented in section 12.3, the
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52. Matheson (1910, p. 91) used the term “diminishing value” to describe the method.
Hotelling (1925, p. 350) used the term “the reducing balance method,” while Canning (1929,
p. 276) used the term the “declining balance formula.”



method is very simple: all of the cross-sectional vintage depreciation rates
�t

n defined by equation (12) are assumed to be equal to the same rate �,
where � is a positive number less than one; that is, we have for all time pe-
riods t

(52) �t
n � � n 0, 1, 2, . . . . 

Substitution of equation (52) into equations (14) leads to the following for-
mula for the sequence of period-t vintage user costs:

(53) ut
n � (1 � �)n�1 [(1 � r t) � (1 � i t)(1 � �)]Pt

0 n � 0, 1, 2, . . . 

� (1 � �)n�1ut
0 n � 1, 2, . . . . 

The second set of equations in equations (53) says that all of the vintage
user costs are proportional to the user cost for a new asset. This proportion-
ality means that we do not have to use an index number formula to aggre-
gate over vintages to form a capital services aggregate. To see this, using
(53), the period-t services aggregate S t defined earlier by equations (38) can
be rewritten as follows:

(54) St � ut
0Kt

0 � ut
2Kt

2 � . . . 

� ut
0 [Kt

0 � (1 � �)Kt
1 � (1 � �)2Kt

2 � . . .]

� ut
0Kt

A

where the period t capital aggregate K t
A is defined as

(55) Kt
A � Kt

0 � (1 � �)Kt
1 � (1 � �)2Kt

2 � . . . 

If the depreciation rate � and the vintage capital stocks are known, then
K t

A can readily be calculated using (55). Then using the last line of equa-
tions (54), we see that the value of capital services (summed over all ages),
S t, decomposes into the price term u t

0 times the quantity term K t
A. Hence,

it is not necessary to use an index number formula to aggregate over ages
of the asset using this depreciation model.

A similar simplification occurs when calculating the wealth stock using
this depreciation model. Substitution of equation (52) into equations (13)
leads to the following formula for the sequence of period-t asset prices by
age n:

(56) Pt
n � (1 � �)n�1Pt

0 n � 1, 2, . . . . 

Equations (56) say that all of the period-t asset prices are proportional to
the price of a new asset. This proportionality means that, again, we do not
have to use an index number formula to aggregate over vintages to form a
capital stock aggregate. To see this, using equations (56), the period-t
wealth aggregate W t defined earlier by equations (37) can be rewritten as
follows:
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(57) Wt � Pt
0Kt

0 � Pt
1Kt

1 � Pt
2Kt

2 � . . . 

� Pt
0 [Kt

0 � (1 � �)Kt
1 � (1 � �)2Kt

2 � . . .]

� Pt
0Kt

A

where K t
A was defined by equation (55). Thus, K t

A can serve as either a cap-
ital stock aggregate or a flow-of-services aggregate, which is a major ad-
vantage of this model.53

There is a further simplification of the model that is useful in applica-
tions. If we compare equation (55) for period t � 1 and period t, we see that
the following formula results using definitions (39):

(58) KA
t�1 � K 0

t�1 � (1 � �)Kt
A.

Thus, the period-t � 1 aggregate capital stock, K A
t�1, is equal to the in-

vestment in new assets that took place in period t, which is K 0
t�1, plus 1 – �

times the period-t aggregate capital stock, K t
A. This means that, given a

starting value for the capital stock, we can readily update it just using 
the depreciation rate � and the new investment in the asset during the prior
period.

We now need to address the problem of determining the depreciation
rate � for a particular asset class. Matheson (1910, pp. 69–91) was perhaps
the first engineer to address this problem. On the basis of his experience, he
simply postulated some approximate rates that could be applied, ranging
from 3 to 20 percent.

The algebra corresponding to Matheson’s method for determining � was
explicitly described by the accountant Canning (1929, p. 276). Let the ini-
tial value of the asset be V0 , and let its scrap value n years later be Vn. Then
V0, Vn, and the depreciation rate � are related by the following equation:

(59) Vn � (1 � �)nV0 .

Canning goes on to explain that 1 – � may be determined by solving the fol-
lowing equation:

(60) log(1 � �) � .

It is clear that Matheson used this framework to determine depreciation
rates even though he did not lay out formally the above straightforward al-
gebra.

However, Canning (1929, p. 276) pointed out that the scrap value, Vn ,
which is not determined very accurately from an a priori point of view, is

log Vn � log V0
��

n

Measurement of Capital Services and Asset Price Changes 515

53. This advantage of the model has been pointed out by Jorgenson (1996b, 1989) and his
coworkers. Its early application dates back to Jorgenson and Griliches (1967) and Christensen
and Jorgenson (1969, 1973).



the tail that is wagging the dog; that is, this poorly determined value plays
a crucial role in the determination of the depreciation rate.

An effective response to Canning’s (1929) criticism of the declining bal-
ance method of depreciation did not emerge until relatively recently, when
Hall (1971), Beidelman (1973, 1976), and Hulten and Wykoff (1981a,b)
used an entire array of used asset prices at point in time in order to deter-
mine the geometric depreciation rate that best matched up with the data.54

Another theoretical possibility would be to use information on rental
prices by age of asset in order to deduce the depreciation rate.55

This brings us to our next problem: how should we convert our estimated
asset lives of thirty-nine years for structures and fourteen years for ma-
chinery and equipment into comparable geometric rates?

One possible method for converting an average asset life—L periods,
say—into a comparable geometric depreciation rate is to argue as follows.
Suppose that we believe that the straight-line model of depreciation is the
correct one and the asset under consideration has a useful life of L periods.
Suppose further that investment in this type of asset is constant over time
at one unit per period and asset prices are constant over time. Under these
conditions, the long-run equilibrium capital stock for this asset would be56

(61) 1 � � � . . . � � � � .

Under the same conditions, the long-run equilibrium geometric depre-
ciation capital stock would be equal to the following sum:

(62) 1 � (1 � �) � (1 � �)2 � . . . � � .

Now find the depreciation rate � that will make the two capital stocks
equal; that is, equate equation (61) to equation (62) and solve for �. The re-
sulting � is

(63) � � .

Obviously, there are a number of problematical assumptions that were
made in order to derive the depreciation rate � that corresponds to the

2
�
L � 1

1
�
�

1
��
1 � (1 � �)

L � 1
�

2

L(L � 1)
��

2L

1
�
L

2
�
L

L � 2
�

L

L � 1
�

L
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54. Jorgenson (1996a) has a nice review of most of the empirical studies of depreciation. It
should be noted that Beidelman (1973, 1976) and Hulten and Wykoff (1981a, 1996, p. 22)
showed that equation (59) must be adjusted to correct for the early retirement of assets. The
accountant Schmalenbach (1959, p. 91; first German edition published in 1919) also noticed
this problem.

55. This possibility is mentioned by Hulten and Wykoff (1996, p. 15).
56. Recall equations (48), which imply that the vintage asset prices are proportional. Hence,

Hicks’s Aggregation Theorem will imply that the capital aggregate will be the simple sum on
the left-hand side of equation (61).



length of life L,57 but equation (63) gives us at least a definite method of
conversion from one model to the other.

Since we assumed that the average length of life for nonresidential con-
struction was L equal to thirty-nine years, applying the conversion formula
given by equation (63) implies that �NR equals .05; that is, we assume that
the declining balance or geometric depreciation rate for nonresidential
construction in Canada is 5 percent. Similarly, our assumed life of fourteen
years for machinery and equipment translates into a �ME equal to a 131⁄3

percent geometric depreciation rate for this asset class.
There is one remaining problem to deal with, and then we can proceed

to table the results for three geometric depreciation models for Canada.
The problem is this: before 1926, we do not have reliable investment data,
but the effects of investments made prior to 1926 live on forever in the infi-
nite-lived geometric depreciation model that we considered in equations
(54) to (58) above. In the case of machinery and equipment investments
made before 1926, by the time we get to 1965, what is left of the original in-
vestments is negligible. However, in the case of a $1,000 investment in non-
residential structures made in 1925, $128.50 of it would still be available as
a productive input in 1965, assuming a 5 percent geometric depreciation
rate. Hence, we need a method for estimating the geometric capital stock
that is available at the start of 1926 in order to not bias downward our es-
timates of the geometric capital stock for nonresidential construction for
the period 1965–99. We decided to assume that nonresidential investment
for the period prior to 1926 grew at the same rate that it grew during the
years 1926–99.58 Thus, for the years 1927 to 1999, we took investment in
nonresidential construction during the current year divided by the corre-
sponding investment in the prior year (both in constant dollars) as our de-
pendent variable and regressed this variable on a constant. The estimated
constant turned out to be 1.0509. Hence, for the period prior to 1926, we
assumed that investments in nonresidential construction grew at the rate g
� .05 (i.e., a 5 percent growth rate). Thus if INR

1926 was the investment in 1926,
we assumed that the investments in prior years were
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57. The two assumptions that are the least justified are (a) the assumption that the straight-
line depreciation model is the correct model to do the conversion and (b) the assumption that
investment has been constant back to minus infinity. Hulten and Wykoff (1996, p. 16) made
the following suggestions for converting an L into a �: “Information is available on the aver-
age service life, L, from several sources. The rate of depreciation for non-marketed assets can
be estimated using a two step procedure based on the ‘declining balance’ formula � � X/L.
Under the ‘double declining balance’ formula, X � 2. The value of X can be estimated using
the formula X � �L for those assets for which these estimates are available. In the Hulten-
Wykoff studies, the average value of X for producer’s durable equipment was found to be 1.65
(later revised to 1.86). For nonresidential structures, X was found to be 0.91. Once X is fixed,
� follows for other assets whose average service life is available.”

58. This method for obtaining a starting value for the geometric capital stock is due to
Kohli (1982); see also Fox and Kohli (1998).



(64) , , , . . . . 

Using assumption (64), we can calculate an estimate of the starting cap-
ital stock for nonresidential construction at the start of 1927 as

(65) KNR
1927 � INR

1926�1 � � � � � �2

� � �3

� . . .�
� INR

1926� �
� INR

1926� �,

where g � .05 and � � .05. Now we can use formula (58), starting at the
year t � 1927, to build up the capital stock for each of our two asset classes.
For nonresidential construction, our starting 1927 capital stock was de-
fined by equations (65), and for machinery and equipment, it was simply
the 1926 investment in machinery and equipment—I ME

1926, say.
At this point, we can proceed in much the same manner as in the previ-

ous section. We have already explained how we can use equations (58) to
form the aggregate capital stocks for nonresidential construction and ma-
chinery and equipment. From equations (57), it can be seen that the corre-
sponding capital stock price is P t

0, the price of a new vintage at the begin-
ning of year t. These series, along with their annual average (geometric)
growth rates, can be found in table 11 of Diewert (2004) at five-year inter-
vals. In this seventh model, having constructed the aggregate price and
quantity of nonresidential capital, P t

NR and K t
NR respectively, and the ag-

gregate price and quantity of machinery and equipment, P t
ME and K t

ME re-
spectively, we may again use the Fisher Ideal formula and aggregate these
two series into a single aggregate price and quantity series for the wealth
stock, which we denote by P (7)t and K (7)t.

Comparing the capital stock prices for model 7 with those of model 4,
we find that these numbers are exactly the same. This is because in both the
straight-line depreciation model and the geometric model, the price of a
new asset acts as the aggregate stock price over all vintages. However, when
we use the Fisher formula to aggregate the two types of capital prices to-
gether to get either P (4) or P (7), we get slightly different numbers because
the aggregate quantities of the two types of asset differ in the two models.
The Fisher Ideal aggregate price for these two capital stock components in-
creased from 1 to 3.6243 over this period. The price of a unit of nonresi-
dential construction capital increased by 5.08 percent per year, and the
price of a unit of machinery and equipment capital increased by only 1.37
percent per year on average for model 7. The average rate of price increase

1 � g
�
g � �

1
���
1 � [(1 � �) /(1 � g)

1 � �
�
1 � g

1 � �
�
1 � g

1 � �
�
1 � g

INR
1926

�
(1 � g)3

INR
1926

�
(1 � g)2

INR
1926

�
1 � g
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for the model 7 capital aggregate was 3.86 percent per year. This should be
compared to the average rate of price increase for the one-hoss-shay capi-
tal aggregate, which was much higher at 4.35 percent per year. On the
quantity side, the stock of nonresidential construction capital increased
from $32.8 billion to $115.9 billion (constant 1965) Canadian dollars, for
an annual average (geometric) growth rate of 3.78 percent (3.85 percent for
the straight-line model), while the stock of machinery and equipment cap-
ital increased from $19.1 billion to $199.7 billion (constant 1965) Cana-
dian dollars, for an annual average growth rate of 7.15 percent (7.19 per-
cent for the straight-line model). The model 7 declining balance capital
aggregate grew at an annual average growth rate of 4.85 percent. The cor-
responding aggregate growth rates for the one-hoss-shay and straight-line
models were 4.95 percent and 4.88 percent per year, respectively.

We turn now to the service flow part of our seventh model, where we as-
sume that producers exactly anticipate the asset rates of price change, i t

NR

and i t
ME, for nonresidential construction and for machinery and equip-

ment, respectively; these ex post rates are listed in table A2 of Diewert
(2004). The user cost for a new asset at the start of period t, u t

0, is defined in
equations (53). Equations (54) show that this user cost matches up with the
corresponding aggregated over ages capital stock so the computations are
simplified in this model. Denote these user costs by u t

NR and u t
ME for our

two assets and denote the corresponding service aggregates by kt
NR and

kt
ME, respectively. We renormalize these series so that both user costs are

unity in 1965.59 These series, along with their annual average (geometric)
growth rates, can be found in table 12 of Diewert at five-year intervals.
Having constructed the aggregate price and quantity of nonresidential
capital services, u t

NR and kt
NR respectively, and the aggregate price and

quantity of machinery and equipment services, u t
ME and kt

ME respectively,
we may again use the Fisher Ideal formula and aggregate these two series
into a single aggregate price and quantity series for capital services, which
we denote by u (7)t and k(7)t.60

Comparison of the declining balance growth rates with the correspon-
ding straight-line growth rates shows that there are some substantial differ-
ences. For example, the average annual geometric rate of growth for the
user cost of machinery and equipment was 3.40 percent per year for the
straight-line model versus 2.75 percent per year for the geometric model.
The geometric model rate of capital services price growth of 4.51 percent
per year should be compared to the straight-line model rate of capital ser-
vices price growth of 4.96 percent per year, which in turn can be compared
to the average rate of price increase for the one-hoss-shay capital services
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59. Before normalization, the service flow aggregates k t
NR and k t

ME are exactly equal to the
corresponding stock aggregates. Thus the rates of growth of the corresponding stock and flow
variables will be the same.

60. These series are plotted in figures 12.7 and 12.10 in section 12.11.



aggregate, which was somewhat higher at 4.85 percent per year. The use of
ex post asset inflation rates again leads to user costs that are extremely
volatile; see figure 12.7 below. On the quantity side, the model 7 flow of
nonresidential construction capital services increased from $1,916 million
to $6,764 million (constant 1965) Canadian dollars, for an annual average
(geometric) growth rate of 3.78 percent, while the flow of machinery and
equipment capital services increased from $3,069 million to $32,069 mil-
lion (constant 1965) Canadian dollars, for an annual average growth rate
of 7.15 percent. The capital services aggregate grew at an annual average
growth rate of 5.55 percent, compared to the 4.85 percent annual average
growth rate for the aggregate capital stock. The geometric model average
rate of capital services growth rate of 5.55 percent per year can be com-
pared to the straight-line growth rate of capital services of 5.30 percent per
year and to the average rate of growth for the one-hoss-shay capital ser-
vices aggregate of 5.61 percent per year.

We turn now to our second geometric depreciation model, which will elim-
inate the volatility problem mentioned in the last paragraph. In this model
8, instead of assuming that producers correctly anticipate each year’s ex
post asset rates of price change, it is assumed that producers use the cur-
rent CPI inflation rate as estimators of anticipated asset price change. In
terms of computations, we simply replace the two ex post asset rates of
price change, i t

NR and i t
ME, with the CPI inflation rate �t listed in table A2 of

Diewert (2004) and then repeat all of the computations made to implement
model 7 above.

It turns out that the model 8 constant real interest rate capital stocks
(and prices) are exactly equal to their model 7 counterparts in table 11 of
Diewert (2004). This follows from equations (57), which show that the ag-
gregate (over ages) stock price is equal to the price of a new asset, which in
turn does not depend on our assumptions about interest rates or expected
asset inflation rates. Hence, there is no need to table the capital stocks and
prices for model 8 (or model 9 below). However, the model 8 vintage user
costs and capital service flows are very different from their model 2 coun-
terparts and slightly different from their model 5 counterparts. Table 13 in
Diewert (2004) lists the model 8 rental prices and flows of capital services
for the geometric depreciation (constant real interest rate) Canadian capi-
tal stocks at five-year intervals over the period 1965–99.

The overall annual rate of growth for capital services for the straight-line
model was 5.08 percent per year, compared to 5.37 percent per year for the
geometric model, where both models assumed constant real interest rates.
This is not a large difference. In figures 12.7 and 12.8 in section 12.11, it can
be seen that the user costs that correspond to the geometric model with
constant real interest rates, u (8), is much less volatile than the correspon-
ding geometric model that assumes perfect foresight, u (7).

We turn now to our third geometric depreciation model, which we call
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model 9. In this model, instead of assuming that producers correctly an-
ticipate each year’s ex post asset rates of price change, we assume that they
can anticipate the trends in these rates. In terms of computations, we use
exactly the same program that we used to implement model 7 except that
we replace the rather volatile nominal interest rate r t that was listed in table
A2 of Diewert (2004) with the smoothed nominal interest rate that is listed
in table A3 of Diewert. We also replace the two ex post asset rates of price
change, i t

NR and i t
ME, with their smoothed counterparts listed in table A3 of

Diewert.
As mentioned earlier, the model 9 constant real interest rate capital

stocks (and prices) are exactly equal to their model 7 counterparts in table
7 in Diewert (2004). Hence, there is no need to table the capital stocks and
prices for model 9. However, the model 9 vintage user costs are somewhat
different from their model 7 and 8 counterparts. Table 14 in Diewert lists
the model 9 rental prices and flows of capital services for the Canadian
capital stock at five-year intervals over the period 1965–99.

When we compare the two capital services, kt
NR and kt

ME, across the three
declining balance models, they turn out to be identical; hence, so are their
growth rates. Hence, when we aggregate across these two assets to form the
model 7, 8, and 9 capital services aggregates, we find that the average an-
nual geometric growth rates are quite similar: 5.55 percent, 5.37 percent,
and 5.52 percent, respectively. However, the corresponding rental price se-
ries for each type of asset, u t

NR and u t
ME, are no longer identical across the

two models. The geometric aggregate rental price grew at an annual geo-
metric rate of 3.88 percent per year, while the straight-line aggregate rental
price grew at a 4.31 percent per year rate. In figures 12.7 and 12.9 in sec-
tion 12.11, it can be seen that the user cost that corresponds to the geo-
metric model with smoothed asset inflation rates, u (9), is much less volatile
than the corresponding geometric model that assumes perfect foresight, u
(7), but the trend in each series is similar.

We turn now to our fourth and final class of depreciation and relative
efficiency models.

12.10 The Linear Efficiency Decline Model

Recall that our first class of models (the one-hoss-shay models) assumed
that the efficiency (or cross-section user cost) of the asset remained con-
stant over the useful life of the asset. In our second class of models (the
straight-line depreciation models), we assumed that the cross-section de-
preciation of the asset declined at a linear rate. In our third class of models
(the geometric depreciation models), we assumed that cross-section depre-
ciation declined at a geometric rate. Comparing the third class with the sec-
ond class of models, it can be seen that geometric depreciation is more ac-
celerated than straight-line depreciation; that is, depreciation is relatively
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large for new vintages compared to older ones. In this section, we will con-
sider another class of models that gives rise to an accelerated pattern of de-
preciation: the class of models that exhibit a linear decline in efficiency.61

It is relatively easy to develop the mathematics of this model. Let f t
0 be

the period-t rental price for an asset that is new at the beginning of period
t. If the useful life of the asset is L years and the efficiency decline is linear,
then the sequence of period-t cross-sectional user costs f t

n is defined as fol-
lows:

(66) f t
n � f t

0 � � n � 0, 1, 2, . . . , L � 1;

� 0 n � L, L �1, L � 2, . . . . 

Now substitute equations (66) into the first equation in equations (5) and
get the following formula for the rental price f t

0 in terms of the price of a
new asset at the beginning of year t, P t

0:

(67) f t
0 � ,

where the period-t discount factor � t is defined in terms of the period-t
nominal interest rate r t and the period-t expected asset rate of price change
i t in the usual way:

(68) �t � .

Now that f t
0 has been determined, substitute equation (67) into equations

(66), substitute the resulting equations into equations (5), and determine
the sequence of period-t asset prices by age n, P t

n:

(69) Pt
n � Pt

0� �
for n � 0, 1, 2, . . . , L � 1

� 0 for n � L, L � 1, L � 2, . . . . 

Finally, use equations (8) to determine the end-of-period-t rental prices,
u t

n, in terms of the corresponding beginning-of-period-t rental prices, f t
n:

(70) ut
n � (1 � r t) f t

n n � 0, 1, 2, . . . 

Given the asset prices by age n defined by equations (69), we could use
equations (12) above to determine the corresponding cross-section depre-

(L � n) � (L � n � 1)(�t) � . . . � 1(�t)L�1�n

�����
L � (L � 1)(�t) � . . . � 1(�t)L�1

1 � i t

�
1 � r t

LPt
0

������
L � (L � 1)(�t ) � (L � 2)(�t )2 � . . . � 1(�t )L�1

L � n
�

L
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61. Diewert (2004) showed how linear efficiency decline models can be derived from one-
hoss-shay models where maintenance expenditures are expected to increase linearly over
time.



ciation rates �t
n. We will not table these depreciation rates, since our focus

is on constructing measures of the capital stock and of the flow of services
that the stocks yield. However, we will note that if we recall definition (10)
for the period-t cross-section depreciation of an asset of vintage n, D t

n �
P t

n – P t
n�1, and assume that the nominal interest rate r t and the nominal as-

set rate of price change i t are both zero, then using equations (69), it can be
shown that

(71) Dt
n � Pt

n � Pt
n�1 � Pt

0� � for n � 0, 1, 2, . . . , L;

that is, when r t � i t � 0, depreciation declines at a linear rate for the linear
efficiency decline model. When depreciation declines at a linear rate, the re-
sulting formula for depreciation is called the sum of the year digits for-
mula.62 Thus, just as the one-hoss-shay and straight-line depreciation mod-
els coincide when r t � i t � 0, so too do the linear efficiency decline and sum
of the year digits depreciation models.

In our tenth model, we assume that producers exactly anticipate the as-
set rates of price change, i t

NR and i t
ME, for nonresidential construction and

for machinery and equipment, respectively. We use the Fisher Ideal index
to aggregate over ages using formula (69) above for the asset prices by age.
Having constructed the aggregate price and quantity of nonresidential
capital, P t

NR and K t
NR respectively, and the aggregate price and quantity of

machinery and equipment, P t
ME and K t

ME respectively, we may again use the
Fisher Ideal formula and aggregate these two series into a single aggregate
price and quantity series for the wealth stock, which we denote by P (10)t

and K (10)t. The average rate of price increase for the linear efficiency de-
cline capital stock aggregate was 4.13 percent per year, which is lower than
the corresponding rate of aggregate price increase for the one-hoss-shay
aggregate of 4.35 percent per year; see table 15 in Diewert (2004). On the
quantity side, the stock of nonresidential construction capital increased
from $29.6 billion to $98.5 billion (constant 1965) Canadian dollars, for an
annual average (geometric) growth rate of 3.60 percent, while the stock of
machinery and equipment capital increased from $15.0 billion to $166.6
billion (constant 1965) Canadian dollars, for an annual average growth
rate of 7.33 percent. Of course, the levels of the capital aggregate are only
about two-thirds to three-quarters of the corresponding one-hoss-shay lev-
els due to the accelerated form of depreciation for the former model. The
linearly declining efficiency capital aggregate grew at an annual average
growth rate of 4.74 percent, which is lower than the corresponding rate of
growth for the one-hoss-shay aggregate of 4.95 percent.

Using equations (66), (67), and (70) along with the data tabled in tables

L � n
��
L(L � 1)/2
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62. Canning (1929, 277) describes the method in some detail, so it was already in common
use by that time.



A1 and A2 of Diewert (2004), we can construct the end-of-period user
costs for each of our thirty-nine types of nonresidential construction cap-
ital. As usual, use equation (38) to construct the service flow aggregate for
nonresidential construction for each year. Then we use equation (42),
where L equals 39, to aggregate over the thirty-nine types of nonresiden-
tial capital using the Fisher Ideal index number formula and form the ag-
gregate rental price for nonresidential construction, u t

NR, and the corre-
sponding services aggregate, k t

NR, for the years 1965–99.63 These series,
along with their annual average (geometric) growth rates, can be found in
table 16 of Diewert at five-year intervals. Similarly, we use equation (42),
where L equals 14, and aggregate over the fourteen types of machinery and
equipment using the Fisher Ideal index number formula and form aggre-
gate capital services price and quantity series, u t

ME and k t
ME, for the years

1965–99. These series, along with their annual average (geometric) growth
rates, can also be found in table 16 of Diewert at five-year intervals. Hav-
ing constructed the aggregate price and quantity of nonresidential capital
services, u t

NR and k t
NR respectively, and the aggregate price and quantity of

machinery and equipment services, u t
ME and k t

ME respectively, we may
again use the Fisher Ideal formula and aggregate these two series into a
single aggregate price and quantity series for capital services, which we de-
note by u (10)t and k(10)t.64

Table 16 in Diewert (2004) shows that the price of a unit of nonresiden-
tial construction capital services increased by 6.32 percent per year and the
price of a unit of machinery and equipment capital services increased by
2.54 percent per year on average. The average rate of price increase for the
linearly declining efficiency capital services aggregate was 4.32 percent per
year, which is much less than the corresponding rate of price increase for
the one-hoss-shay aggregate capital services price, which was 4.85 percent
per year. On the quantity side, the flow of nonresidential construction cap-
ital services increased from $2,066 million to $7,467 million (constant
1965) Canadian dollars, for an annual average (geometric) growth rate of
3.85 percent, while the flow of machinery and equipment capital services
increased from $3,162 million to $33,554 million (constant 1965) Cana-
dian dollars, for an annual average growth rate of 7.19 percent. The capi-
tal services aggregate grew at an annual average growth rate of 5.56 per-
cent, compared to the 5.61 percent annual average growth rate for the
corresponding one-hoss-shay capital services. As usual, the linear effi-
ciency decline user costs u (10) that are based on the assumption of perfect
foresight are very volatile; see figure 12.7 in section 12.11.

We turn now to our second linear efficiency decline model, which will

524 W. Erwin Diewert

63. Since all of the rental prices by age of asset are proportional to each other, again Hicks’s
(1939, p. 312–13) aggregation theorem implies that all of the usual indexes are equal to each
other.

64. These series are plotted in figures 12.7 and 12.10.



eliminate the volatility problem mentioned in the last paragraph. In this
model 11, instead of assuming that producers correctly anticipate each
year’s ex post asset rates of price change, it is assumed that producers use
the current CPI inflation rate as estimators of these rates. This model turns
out to be equivalent to the constant real interest rate model. As usual, in
terms of computations, we simply replace the two ex post asset rates of
price change, i t

NR and i t
ME, with the CPI inflation rate �t listed in table A2 of

Diewert (2004) and then repeat all of the computations made to implement
model 10 above.

The model 11 capital stock quantities are very similar to the model 10
quantities. The overall average growth rate for the price of the aggregate
stock is a bit higher for model 10 (4.13 percent per year) than for model 11
(3.94 percent per year).

The one-hoss-shay capital services aggregate that assumes constant real
interest rates, k(2), is quite close to the linear efficiency decline capital ser-
vices aggregate that assumes constant real interest rates, k(11), and their
average annual geometric growth rates are also close: 5.49 percent for k(2)
versus 5.43 percent for k(11). However, k(11) is 15 to 20 percent bigger in
levels than the first linear efficiency decline capital services aggregate
k(10), which assumed that anticipated asset inflation rates were equal to ex
post rates. The average annual geometric growth rate for k(10) was some-
what higher, at 5.56 percent per year.

We turn now to our third linear efficiency decline model. In this model
(model 12), instead of assuming that producers correctly anticipate each
year’s ex post asset rates of price change, we assume that they can antici-
pate the trends in these rates. In terms of computations, we use exactly the
same program that we used to implement model 10 except that we replace
the rather volatile nominal interest rates r t that are listed in table A2 of
Diewert (2004) with the smoothed nominal interest rates that are listed in
table A3 of Diewert. We also replace the two ex post asset inflation rates,
it
NR and it

ME, with their smoothed counterparts listed in table A3 of Diew-
ert. It turns out that there are some small differences between the capital
stocks generated by our three variants of the linear efficiency decline
model, but the average growth rates are virtually identical. There is more
variation across the three models in the movement of the stock prices, with
model 10 giving the highest rate of price growth for the capital aggregate
(4.13 percent per year), followed by model 12 (4.04 percent per year) and
then model 11 (3.94 percent per year). However, there are large differences
in the levels and small differences in the growth rates for capital services
generated by the three models: the average annual geometric growth rates
for k(10), k(11), and k(12) are 5.56 percent, 5.43 percent, and 5.55 percent
per year. The average annual geometric growth rates for K (10), K (11), and
K (12) are 4.74 percent, 4.72 percent, and 4.74 percent per year, respec-
tively. However, there is much more variation across the three models in the

Measurement of Capital Services and Asset Price Changes 525



movement of the service prices, with model 10 giving the highest rate of
price growth for the capital services aggregate (4.32 percent per year), fol-
lowed by model 12 (3.78 percent per year) and then model 11 (3.27 percent
per year).

When we view figures 12.7–12.9 in section 12.11, the aggregate linear
efficiency decline user cost series u (10), which assumes that anticipated as-
set inflation rates are equal to the actual ex post rates, is the highest very
volatile curve. Smoothing these volatile asset inflation rates leads to the
u (12) curve, which is much smoother and captures the trend in u (10). The
constant real interest rate user cost series, u (11), lies far below the other
two aggregate user cost series for much of the sample period.

Figures 12.10–12.12 in section 12.11 plot the three linear efficiency de-
cline aggregate capital services series, k(10)–k(12). Each of these series is
reasonably smooth, but note that they are spread out much more than the
corresponding aggregate capital stock series, K (10)–K (12), that are plot-
ted in figures 12.4–12.6. Thus, the different assumptions on anticipated asset
price movements generate substantially different measures of capital services
for these linear efficiency decline models. The constant real interest rate se-
ries, k(11), is the top curve, followed by the smoothed asset inflation rates
model, k(12), and the ex post asset inflation rates model, k(10), is the low-
est curve.

In the following section, we make some graphical comparisons across
our twelve models.

12.11 A Comparison of the Twelve Models

In this section, we will compare stock prices and user costs across our
four types of model that are based on alternative assumptions about the
structure of depreciation or asset efficiency, holding constant our assump-
tions about nominal interest rates and anticipated asset price movements.
We will also compare capital stocks and service flows across depreciation
and relative efficiency models, holding constant our assumptions about
nominal interest rates and anticipated asset price movements.

Figure 12.1 plots the aggregate capital stock prices generated by our four
depreciation and efficiency models, assuming that ex post asset price move-
ments are perfectly anticipated. Note the volatility of these series. The one-
hoss-shay stock prices P (1) are the highest, followed by the linear efficiency
decline prices P (10). The straight-line and geometric depreciation prices,
P (4) and P (7), are the lowest and are very close to each other.

Figure 12.2 plots the aggregate capital stock prices generated by our four
depreciation and efficiency models, assuming that ex post asset price
changes are equal to changes in the CPI. This model assumes a constant
real interest rate of 4 percent. These stock prices are much smoother than
those exhibited in figure 12.1, and they are also much closer to each other.
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The one-hoss-shay and linear efficiency decline prices, P (2) and P (11), are
virtually indistinguishable on the top, followed by the straight-line depre-
ciation prices P (5) and then followed very closely by the geometric stock
prices P (8).

Figure 12.3 plots the aggregate capital stock prices generated by our four
depreciation and efficiency models, assuming that anticipated asset price
changes are equal to smoothed ex post asset price changes. These stock
price series smooth out considerably the much rougher series exhibited in
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Fig. 12.1 Capital stock prices using ex post price changes

Fig. 12.2 Alternative stock prices with constant real interest rates



figure 12.1. The one-hoss-shay stock prices P (3) are the highest, followed
by the linear efficiency decline prices P (12). The straight-line and geomet-
ric depreciation prices, P (6) and P (9), are the lowest and are very close to
each other.

Figure 12.4 plots the aggregate capital stocks that correspond to the per-
fectly anticipated asset prices assumption for the four depreciation mod-
els. The one-hoss-shay capital stock curve K (1) is the highest, followed by
the straight-line depreciation curve K (4), which in turn is followed by the
geometric depreciation curve K (7). The linear efficiency decline stock K
(10) is the lowest curve. These results are intuitively plausible: the one-
hoss-shay model has the least accelerated form of depreciation, followed
by the straight-line model, followed by the geometric depreciation model,
and the linear efficiency decline model generates the most accelerated form
of depreciation. In an economy where investment is growing over time, the
capital stocks corresponding to the least accelerated form of depreciation
will grow the quickest, followed by the more accelerated forms, and the
capital stock corresponding to the most accelerated form of depreciation
will grow the slowest. Figures 12.5 and 12.6 plot the aggregate capital
stocks that correspond to the constant real interest rate and the smoothed
asset price models: the results are much the same as those exhibited in fig-
ure 12.4.

Figure 12.7 plots the aggregate user costs generated by our four classes
of depreciation and efficiency models, assuming that ex post asset price
movements are perfectly anticipated. Note that the user cost series in fig-
ure 12.7 are even more volatile than the capital stock prices charted in fig-
ure 12.1. The one-hoss-shay and straight-line depreciation user costs, u (1)
and u (4), are the highest, followed by the geometric depreciation and lin-
ear efficiency decline user costs, u (7) and u (10).

Figure 12.8 plots the aggregate user costs generated by our four classes
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Fig. 12.3 Alternative stock prices using smoothed asset price changes



Fig. 12.4 Alternative capital stocks using ex post price changes

Fig. 12.5 Alternative capital stocks using constant real rates

Fig. 12.6 Alternative capital stocks using smoothed asset price changes



of depreciation and efficiency models, assuming that ex post asset price
changes are equal to changes in the consumer price index. This model as-
sumes a constant real interest rate of 4 percent. These user costs are much
smoother than those exhibited in figure 12.7, and they are also much closer
to each other. The straight-line depreciation user costs u (5) are on top, fol-
lowed by the one-hoss-shay, geometric, and linear efficiency decline user
costs, u (2), u (8), and u (11), which are too close to each other to be distin-
guished visually.

Figure 12.9 plots the aggregate user costs generated by our four classes
of depreciation and efficiency models, assuming that anticipated asset
price changes are equal to smoothed ex post asset price changes. These user
cost series smooth out considerably the much rougher series exhibited in
figure 12.7. The straight-line and one-hoss-shay user costs, u (6) and u (3),
are very close to each other on top; but near the end of our sample period,
the one-hoss-shay user costs u (3) dip below the straight-line depreciation
user costs u (6). The geometric depreciation and linear efficiency decline
user costs, u (9) and u (12), are fairly close to each other on the bottom.
These two models represent the most accelerated forms of depreciation.

Figures 12.10 and 12.11 plot the aggregate capital services that corre-
spond to the perfectly anticipated asset price change and the constant real
interest rate models. The aggregate services using ex post asset price
changes plotted in figure 12.10 are more volatile and more widely dispersed
than the aggregate services plotted in figures 12.11 and 12.12, as one might
expect. The linear efficiency decline services are the top curve k(10), fol-
lowed by the geometric depreciation services k(7), followed by the one-
hoss-shay services k(1), and the straight-line depreciation capital services
k(4) are the bottom curve. The aggregate services using constant real
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Fig. 12.7 Alternative user costs using ex post asset price changes



Fig. 12.8 Alternative user costs using constant real interest rates

Fig. 12.9 Alternative user costs using smoothed asset price changes

Fig. 12.10 Alternative capital services using ex post price changes



interest rates plotted in figure 12.11 are fairly similar to the smoothed cap-
ital services exhibited in figure 12.12. For the constant real interest rate
services in figure 12.11, the one-hoss-shay and linear efficiency decline ser-
vices, k(2) and k(11), are at the top, followed very closely by the geometric
depreciation services k(8), and the straight-line depreciation capital ser-
vices k(5) are the bottom curve. Figure 12.12 plots the aggregate capital
services that correspond to the smoothed asset price change model; that is,
figure 12.12 is the quantity counterpart to figure 12.9. The linear efficiency
decline capital services curve k(12) is the highest, followed closely by the
geometric depreciation and one-hoss-shay curves, k(9) and k(3), which are
very close to each other. The straight-line depreciation curve k(6) is the
lowest curve and is well below the other three curves. Thus, overall, three
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Fig. 12.11 Alternative capital services using constant real rates

Fig. 12.12 Alternative capital services using smoothed asset price changes



of our four depreciation and efficiency models give rise to much the same
measures of capital services, holding constant the assumptions about asset
price changes and the reference interest rate. However, the straight-line de-
preciation capital services seem to be consistently below the corresponding
services generated by the other three classes of models.

Our conclusion at this point is that both the form of depreciation that is
assumed (lightbulb, straight line, geometric, or linear efficiency decline)
and the assumptions on interest rates and price expectations (perfect fore-
sight, constant real rate, or anticipated capital gains) matter. This means it
will be necessary for statistical agencies to introduce surveys to determine
when assets are retired or sold, and it will be necessary for economists to
decide what is the best set of assumptions concerning the nominal oppor-
tunity cost of capital and anticipated asset price changes.

12.12 The Treatment of Intangible Assets

Since this volume is primarily concerned with the treatment of intangi-
ble assets, we devote this section to indicating how the above treatment of
tangible assets can be modified to deal with intangible assets.

Examples of expenditures on intangible assets are advertising and mar-
keting expenses and research and development expenditures. Both of these
categories of expenditures have the character that the present-period out-
lays will create incremental revenues in the future for the firm that under-
takes them. These current-period expenditures on intangible assets have a
different character from expenditures on tangible durable inputs, which
can be used for a number of periods and then sold to other users.65 The
problem in this section is to determine how to allocate the cost outlays on
intangible investments over future periods. Thus, the accounting problems
in the present section have a different character from that of the previous
sections, where a straightforward opportunity cost approach was used. In
the present section, the approach taken is one of matching current costs
with future expected revenues.66

To fix ideas, suppose that in period t, a firm has made expenditures on
creating an intangible asset, which are equal to C t:

(72) Ct � ∑
M

m�1

Pt
mQt

m,

where P t
m is the period-t price for the mth type of input that is used to cre-

ate the intangible asset and Q t
m is the corresponding quantity purchased.
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65. In many cases, the stream of future revenues created by an intangible investment can be
sold on the marketplace (e.g., patents, trademarks, and franchises), but this still does not solve
the problem of how to distribute the intangible investment costs over future periods.

66. Paton and Littleton (1940, 123) argued that the primary purpose of accounting is to
match costs and revenues. For an excellent early discussion on the importance of matching
costs to future revenues, see Church (1917, p. 193).



These expenditures in period t are expected to generate a future stream of
incremental revenues for the firm. Let R t

0 denote the immediate period-t in-
cremental revenues (which could be zero), and let R t

n denote the incremen-
tal revenues that the period-t expenditures C t are expected to generate n
periods from the present period t, for n � 1, 2, . . . . Let r t be the (nominal)
period-t opportunity cost of financial capital.67 Then the discounted value
of these expected incremental revenues is

(73) Rt � Rt
0 � � � � . . . . 

The problem is to allocate the current-period cost C t over future periods.
Thus, let C t

n be the allocation of C t to the accounting period that is n peri-
ods after period t for n � 0, 1, 2, . . . . At first sight, it seems reasonable that
these future cost allocations C t

n should sum to C t. However, this turns out
not to be so reasonable: costs that are postponed to future periods must be
escalated by the (nominal) interest rate r t, so that the present value of dis-
counted future costs is equal to the actual period-t costs C t. Thus, the in-
tertemporal cost allocations Ct

n should satisfy the following equation:

(74) Ct � Ct
0 � � � � . . . . 

To see why discounting is necessary, consider the following simple ex-
ample where we invest C t during the present period and anticipate the rev-
enue R t

2 two periods from now. The expected discounted profits that this
investment will generate are

(75) � � �Ct � .

The period-by-period cash flows for this project are –C t, 0, R t
2. We want

to match the period t cost C t with the period-t � 2 revenue flows. Thus, we
want to convert the cash flow stream –C t, 0, R t

2 into an equivalent cash flow
stream 0, 0, –C t

2 � R t
2. If we choose

(76) Ct
2 � Ct (1 � r t ) 2,

then it can be seen that these two cash flow streams have the same present
value and C t

2 is the “right” period-t � 2 cost allocation. Put another way,
if we simply carried forward the period-t costs C t and set C t

2 equal to C t,
we would be neglecting the fact that the costs took place in period t while
the return on the investment was deferred until period t � 2; hence, we need
to charge the opportunity cost of financial capital for two periods on the
initial investment (for two periods) until it is expensed in period t � 2.

How should the intertemporal cost allocations C t
n be chosen? It is natu-

Rt
2

�
(1 � r t)2

Ct
3

�
(1 � r t)3

Ct
2

�
(1 � r t)2

Ct
1

�
1 � r t

Rt
3

�
(1 � r t)3

Rt
2

�
(1 � r t)2

Rt
1

�
1 � r t
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67. Thus, for simplicity, we are making assumption (4) in section 12.2.



ral to make these cost allocations proportional to the corresponding pe-
riod anticipated revenues. Thus, choose the number � so that the following
equation is satisfied:

(77) Ct � �Rt.

Thus we set the observed period-t cost associated with the intangible in-
vestment C t equal to the constant � times the discounted value of the an-
ticipated incremental revenue stream R t that the investment is expected to
yield.68

Typically, � will be equal to or less than one, since otherwise the period-
t intangible investment expenditures C t should not be undertaken. If � is
less than one, then there will be an expected profit above the opportunity
cost of capital, which could be some form of monopoly profit or a reward
for risk taking.

Once � has been determined by solving equation (77), then the inter-
temporal cost allocations C t

n can be defined to be proportional to the cor-
responding anticipated incremental revenues Rt

n for future periods:

(78) Ct
n � �Rt

n n � 0, 1, 2, . . . . 

At this point, it is possible to use the algebra developed in sections 12.2
and 12.3 above with some slight modifications. We can convert the nomi-
nal cost allocation factors C t

n into constant- (period-t) dollar cost alloca-
tions f t

n as follows:

(79) f t
n � n � 0, 1, 2, . . . 

�

where �t is the period-t consumer price inflation rate, which is expected to
persist into the future.69 The f t

ns defined by equations (79) are the counter-
parts to the period-t cross-sectional rental prices that were defined in sec-
tion 12.2. Once these intertemporal constant-dollar cost allocation factors
f t

n have been defined by equations (79), we can use equations (5) in section
12.2 to define the sequence of constant-dollar asset values,70 P t

0, P t
1,

P t
2 , . . . , except that the period-t expected rate of asset price change i t in

equations (5) is replaced by the CPI inflation rate �t. If we then make use of
equation (18), which expresses the nominal interest rate r t in terms of the

�Rt
n

�
(1 � �t)n

Ct
n

�
(1 � �t)n
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68. Of course, the practical problem that the national income accountant will face is how
to estimate the future stream of incremental revenues.

69. This expectational assumption could be relaxed at the cost of more notational com-
plexity.

70. Note that P t
0 is equal to C t.



real rate r∗t and the CPI inflation rate �t, so that 1 � r t � (1 � �t)(1 � r∗t),
then equations (5) simplify to the following equations:

(80) Ct � Pt
0 � f t

0 � � � . . . 

Pt
1 � f t

1 � � � . . . 

Pt
2 � f t

2 � � � . . . 

The sequence of constant-dollar “asset” values C t � P t
0, P

t
1, P

t
1, . . .

shows how the period-t intangible investment can be written down over
time in constant period-t dollars, and equations (10) and (12) in section
12.3 show how a sequence of constant-dollar depreciation rates �t

n for the
intangible investment can be obtained from the sequence of constant-
dollar “asset” values, P t

n .71 These depreciation rates �t
n can also be applied

to the investment components Q t
m to form estimated constant-dollar input

stocks for the intangible investments.72 Thus, the assumptions made about
the shape of the anticipated future period incremental revenues generated
by the intangible investment,73 along with the matching of costs to revenues
methodology, determine the pattern of depreciation that can be used to
write down these costs associated with the intangible investment over
time.74

The period-t beginning-of-period and end-of-period user cost charges,
f t

0 and u t
0 respectively, for the intangible investment have the following

forms:

(81) f t
0 � Pt

0 � � �Pt
1

� Pt
0 �

� ,
Pt

0r∗t � Dt
0

��
1 � r∗t

P t
1

�
1 � r∗t

1 � �t

�
1 � r t

f t
3

��
(1 � r∗t)3

f t
2

��
(1 � r∗t)2

f t
3

��
(1 � r∗t)3

f t
2

��
(1 � r∗t)2

f t
3

��
(1 � r∗t)3

f t
2

��
(1 � r∗t)2
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71. If the assumptions on the anticipated (real) incremental revenues are such that the f t
n de-

cline at the geometric depreciation rate �, then this rate will carry over to P t
n; that is, we will

have pt
n � (1 – �) nC t for n � 0, 1, 2, . . . if f t

n � (1 – �)n f t
0 for n � 1, 2, . . . 

72. It is not necessary for the statistical agency to do this, but some users will be interested
in the resulting M asset stocks that form capital stock aggregates of the Q t

m. Normal index
number theory can be used to aggregate these M stock components into an overall capital
stock aggregate using the period-t flow prices P t

m as price weights.
73. Thus the specific depreciation models presented in sections 12.7–12.10 can be adapted

to the present context.
74. It should be noted that the obsolescence problems discussed in section 12.5 do not oc-

cur in the present context because the asset inflation rate and the CPI inflation rate coincide.



(82) ut
0 � Pt

0(1 � r t ) � (1 � �t )Pt
1

� (1 � �t)[Pt
0r∗t � Dt

1 ]

These two formulas show that the period-t “user costs” for the intangi-
ble investment do not consist solely of a depreciation charge, D t

0 : there are
also real interest rate charges that must be added to the depreciation term.

It should be noted that the cost allocation model outlined above can be
applied to other forms of “assets”; namely, deferred charges, prepaid ex-
penses,75 and transfer fees when a reproducible asset is acquired. The one-
hoss-shay form of revenue matching is probably the preferred method for
dealing with this type of “asset.”

12.13 Conclusion

We have considered the problems involved in constructing price and
quantity measures for both the capital stock and the flow of services
yielded by the stock in an inflationary environment. In order to accomplish
these tasks, the statistician will have to make decisions in a number of di-
mensions:

• What length of life L best describes the asset?
• What form of depreciation or asset efficiency is appropriate?
• What assumptions should be made about the reference interest rate

and the treatment of anticipated asset price change?

In this paper, we focused on the last two questions. We considered four
classes of depreciation or efficiency and three types of assumption on the
nominal interest rate r t and on the anticipated asset rate of price change, i t,
giving twelve models in all. We evaluated these twelve models using aggre-
gate Canadian data on two asset classes over the period 1926–99. We found
that the assumptions on the form of depreciation or asset efficiency by age
were less important than the assumptions made about the reference inter-
est rate and the treatment of anticipated asset price changes.76

We consider the third question first. In order to answer this question, it
is necessary to ask about the purpose for which the capital data will be
used. For some purposes, it may be useful to use ex post asset price changes
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However, obsolescence problems can still occur when technical progress causes expectations
about future incremental revenues to be revised downward.

75. Hatfield (1927, p. 16) gives several examples of this type of asset, including insurance
payments that apply to multiple accounting periods, the stripping away of surface rock for a
strip mine, and prepaid expenses. Hatfield (p. 18) notes that this type of asset is different from
the usual sort of tangible asset since this type of asset cannot readily be converted into cash;
i.e., it has no opportunity cost value.

76. Harper, Berndt and Wood (1989) also found that differing assumptions on r t and i t

made a big difference empirically using U.S. data. However, they considered only geometric
depreciation. Our paper can be viewed as an extension of their work to consider also varia-
tions in the form of depreciation.



as anticipated price changes. For example, this approach may be useful in
constructing estimates of taxable business income if capital gains are tax-
able. It may also be useful if we want to evaluate the ex post efficiency of a
firm, industry, or economy. However, for most other uses, assuming that
anticipated price changes are equal to actual ex post price changes is very
unsatisfactory since it is unlikely that producers could anticipate all of the
random noise that seems to be inherent in series of actual ex post asset
price changes. Moreover, this approach generates tremendous volatility in
user costs, and statistical agencies would face credibility questions if this
approach were used.

Thus, we restrict our attention to the choice between assuming a con-
stant real interest rate or using smoothed ex post asset price changes as es-
timates of anticipated asset price changes. The assumption of constant real
interest rates has a number of advantages:

• The resulting price and quantity series tend to be very smooth.
• The estimates are reproducible; that is, any statistician given the same

basic price and quantity data along with an assumed real interest rate
will be able to come up with the same aggregate price and quantity
measures.

However, the use of smoothed ex post asset price changes as measures of
anticipated asset price changes has some advantages as well:

• Longer-run trends in relative asset prices can be accommodated.
• The anticipated obsolescence phenomenon can be captured.

Each individual statistical agency will have to weigh the costs and bene-
fits of the two approaches in order to decide which approach to use. I think
that for most assets, it would be quite acceptable to use the constant real in-
terest rate model, and this would maximize reproducibility. However, with
assets that have experienced rapid technical progress, I would prefer to use
the smoothed expectations model, since this model will better capture ob-
solescence effects. I would also use the smoothed expectations model for
land, since over long periods land prices tend to appreciate faster than the
general price level.

We now discuss which of our four sets of assumptions on the form of de-
preciation or vintage asset efficiency decline is best.

The one-hoss-shay model of efficiency decline, while seemingly a priori
attractive, does not seem to work well empirically; that is, vintage depreci-
ation rates tend to be much more accelerated than the rates implied by the
one-hoss-shay model. If maintenance costs are linearly rising over time, a
“gross” one-hoss-shay model gives rise to a linearly declining efficiency
model,77 which of course is a model that exhibits very accelerated depreci-
ation.
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77. See Diewert (2004).



The straight-line depreciation model, while not as inconsistent with the
data as the one-hoss-shay model, also does not generate the pattern of ac-
celerated depreciation that seems to characterize many used asset markets.
However, given the simplicity of this model (to explain to the public), it
could be used by statistical agencies.

The geometric depreciation model seems to be most consistent with the
empirical studies on used assets of the four simple classes of model that we
considered.78 Of course, geometric depreciation has the disadvantage that
it will never exhaust the full value of the asset.79

Finally, a good alternative to the geometric depreciation model is the lin-
ear efficiency decline model. However, this model may have a pattern of
“overaccelerated” depreciation relative to the geometric model. What is re-
quired is more empirical work so that the actual pattern of depreciation
can be determined. In particular, statistical agencies need to consider es-
tablishing capital asset surveys, which would ask firms not only what assets
they purchased during the reference period but also what assets they sold
or scrapped during the reference period.80

We conclude by noting some limitations of the analysis presented in this
paper:

• We have not dealt in great detail with the problems posed by unique as-
sets, although the model presented in the previous section could be
used.

• We have not dealt with the problems posed by assets that depreciate by
use rather than by age.81

• We have neglected property taxes, income taxes, and insurance pre-
miums as additional components of user costs.

• We have neglected the problems posed by indirect commodity taxes on
investment goods; this complication can lead to differences between
investment prices and asset stock prices.

• We have neglected many forms of capital in our empirical work in-
cluding inventories, land, knowledge capital (except for our brief dis-
cussion in the previous section), resource stocks, and infrastructure
capital.

• We have not discussed the many complexities involved in making qual-
ity adjustments for new types of capital.

• We have not discussed the problems posed by establishment deaths on
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78. See Hulten and Wykoff (1981a,b) and Jorgenson (1996a).
79. Some statistical agencies solve this problem by “scrapping” the depreciated value of the

asset when it reaches a certain age. This solves one problem but it introduces two additional
problems: (a) the truncation age has to be decided upon and (b) the theoretical simplicity of
the model is lost.

80. The survey should also ask for information on what the age and initial purchase prices
of the sold or scrapped assets was.

81. Our reason for neglecting use is simple: usually, the national statistician will not have
data on the use of machines available.



asset lives and depreciation rates. We would expect asset lives to de-
crease during recessions, but we have not spelled out exactly how to
adjust for this factor.

However, we have provided a fairly comprehensive review of most of the is-
sues surrounding the measurement of capital, including a method for
forming intangible capital stocks.
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Comment Frank C. Wykoff

Introduction

Capital measurement continues to confound us. Official national in-
come accountants from around the world are in 2004 trying to develop a
consistent and coherent set of procedures for measuring capital accounts.
This paper by Diewert is a major marker in progress toward this end. This
was no doubt in Diewert’s thinking as he wrote the paper,1 and it should be
read with this in mind, because portions are responses to specific analysts
involved in the international accounting effort.

542 W. Erwin Diewert

Frank C. Wykoff is the Eldon Smith Professor of Economics at Pomona College.
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ence on Research in Income and Wealth conference, revisions were ongoing in 2004.



Roadmap to the Diewert Paper

Diewert constructs specific steps that statisticians and national income
accountants can follow in generating capital accounts. His model is based
on capital theory accounting and on index number theory. He does not im-
pose any one set of values, asset lives, depreciation patterns, discount rate,
or expected inflation on accountants. Instead, Diewert illustrates, with
Canadian data, the consequences of twelve different sets of parameter and
form assumptions for each capital aggregate. Diewert assesses the relative
importance of different assumptions by comparing his results. This will as-
sist national income accountants to allocate scarce research resources.

The paper has two parts. The first part develops an internally consistent
model for measuring aggregate capital stock quantity and price indexes
and indexes for flow measures of capital services (quantities) and user costs
(shadow costs or service prices) from historical data on investment flows.
Diewert provides a specific solution for the problem that accountants must
solve in order to produce capital accounts, because data on capital aggre-
gates are rarely available; only historical data on investment flows are.
Diewert assumes that investment deflators are available so that investment
expenditures can be decomposed into price and quantity components, and
that these deflators and quantities are for “constant quality assets.” The as-
sumption of a preexisting quality change correction is a strong one.

The Diewert model seems to derive from the Hall and Jorgenson (1967),
Hall (1968, 1971), Jorgenson (1974), and Hulten (1990) neoclassical model
of capital.2 The Diewert model is different in some important respects,
though. I will comment on the differences in some detail.

Diewert provides a recipe for constructing capital aggregates. This con-
tribution alone means that every national income accountant in the world
should have this paper at their fingertips as they design their accounts.
While the final capital accounting model that world national income ac-
countants adopt may differ from the Diewert model, it should be close
enough to make this paper a guidepost.

Diewert explains the algebraic relationships between asset prices, user
costs, real and nominal rates of return, depreciation, revaluation, and in-
flation required in a coherent economic model of capital. He shows exactly
how to use these relationships to construct capital aggregates from invest-
ment flow data. He also uses the model to critique several alternative ap-
proaches to capital accounting.

Second, Diewert applies his model to Canadian investment expendi-
tures on two asset classes, machinery and equipment, and nonresidential
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2. In this paper I am giving my interpretation of the HJH model. Hall, Jorgenson, and Hul-
ten may have different understandings than mine, so any errors in presenting the model are
mine, not theirs. I may be doing a disservice to Diewert and to Hall, Jorgenson, and Hulten
pitting my view of HJH against Diewert. Still, I find this a useful deus ex machina.



structures, from 1926 to 1999. With these data he is able to construct capi-
tal aggregates for 1965 to 1999. He assesses the consequences for each cap-
ital aggregate of the twelve different sets of assumptions.

The twelve assumptions are illustrated in the 4 � 3 array, figure 12C.1.
Each row is one of four depreciation patterns—the one-hoss-shay effi-
ciency function, linear depreciation pattern, geometric depreciation pat-
tern, and linear-declining efficiency function.3 Each of the three columns is
one of three expected asset-specific price changes and rates of return—
perfect foresight, constant real rate of 4 percent, and an expected asset-
specific price change equal to a smoothed ex post rate of asset-specific
price change.4 The result is twelve pairs of different assumptions about two
unknowns for which he produces each of the four capital aggregates. He
then compares the different aggregate values and the stability over time of
the aggregates. While both depreciation patterns and interest/expected in-
flation rates matter, differences associated with the latter are bigger. Fi-
nally, Diewert provides his own preferred pair of assumptions.

The Hall-Jorgenson-Hulten Model

To understand the Diewert model it helps to show how it differs from the
Hall-Jorgenson-Hulten (HJH) model. Start with an age-time asset-price
tableau in figure 12C.2. Each cell contains the acquisition price of an as-
set.5 The age of the asset is indexed from top to bottom starting with a new
asset age 0, down to ages 1, 2, 3, ... . The year in which the asset is priced 
is indexed along the top left to right from year 1998 to 1999, 2000, 2001,
... . If we track the prices down a diagonal, we track the history or life ex-
perience of a particular asset. Down the principal diagonal we trace the life
experience of a new, 1998 asset, q(0, 1998), q(1, 1999), q(2, 2000), ... . 
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3. The difference between depreciation patterns and efficiency function patterns is ex-
plained by Diewert and by Hulten (1990). See also Wykoff (2002).

4. Diewert assesses several other assumptions but ends up comparing these twelve.
5. While I use the term “asset” here, when applied to actual data, each cell of the tableau

will contain the average price of a cohort (given age and time) of assets. The capital theory
model is virtually never applied to data on a single asset. It is ordinarily used to decompose
expenditures on a cohort of heterogeneous assets. This has important implications for as-
sessing different depreciation patterns for empirical work.
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While the phrase “acquisition price” allows us to abstract in principle
from whether the asset is actually marketed or not, the price is the equiva-
lent of an explicit purchase price in a competitive market that one would
pay to acquire one unit of the asset. To allow for the fact that most assets
are not marketed once they are put into productive use, we may refer to this
as the “shadow” or “acquisition” price. In any case, the four-row 2002-
column cell contains the (shadow) market price of “purchasing” one unit
of a four-year-old asset in 2002.

The price tableau suggests one can disentangle forces operating on mar-
kets that cause changes in an asset’s price as it moves down a diagonal over
the course of its life. In a world without any changes in technology, perhaps
Egypt for 3,000 years, this may be a relatively easy task. Hall (1968, 1971),
however, wanted to analyze the implications of technological change on as-
set prices. Clearly, today technological change has been occurring in a lot
of asset classes, and these changes influence the prices in figure 12C.2, so
learning about technological change and capital is clearly an important
goal.

A major insight of Hall’s (1968) analysis was to recognize an identifica-
tion impossibility. Let s index age and let t index time, so that q(s, t) is the
price of an age-s asset in year t. Hall defines vintage to be the difference be-
tween time and age:

(1) v � t � s.

Three types of effects influence the price of an asset throughout its his-
tory—vintage effects, age effects, and time effects. Equation (1) means that
once we specify two of the three effects, the third is well defined by equa-
tion (1). In other words, 2 degrees of freedom do not allow identification of
three unknowns. Hall’s Impossibility Theorem is that an analyst can only
identify two of the three terms from a price tableau. This theorem implies
an important econometric constraint.

By definition, assume all forces influencing an asset’s price throughout
its life fall into one of the three categories: age, vintage, and time. Any effect
on price is either age specific, vintage specific, or time specific. Because
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Age ↓ Year →

1998 1999 2000 2001 2002

0 q(0,1998) q(0,1999) q(0,2000) q(0,2001) q(0,2002)

1 q(1,1998) q(1,1999) q(1,2000) q(1,2001)

2 q(2,1998) q(2,1999) q(2,2000) q(2,2001)

3 q(3,1998) q(3,2001)

4 q(4,1998) q(4,2002)

Fig. 12C.2 Age-year price tableau



these are subtle distinctions often muddled in the literature, we explore
each effect below.

Age Effects

We want to compare older to newer assets while holding vintage and
time fixed. Assume away all vintage effects and compare assets of different
ages at the same time. For example, suppose the asset is a 1-liter Egyptian
water pot whose design never changes. In any time period, pots of different
ages coexist.6 Some are new, some are a year old, and some are 100 years
old. Would all pots have the same price? If not, what, in a competitive mar-
ket, would cause their prices to differ?

Unless these pots are perpetuities, like the biblical widow’s cruse, they
are eventually going to stop holding liquids. Their lives are finite. An old
pot, having delivered services for a long time, is closer to the end of life, so
a market will price it below a newer pot.7 The old one simply retains less
productive capacity. Triplett (1996), Griliches (cited in Triplett 1996), and
Feldstein and Rothschild (1974) call this effect “exhaustion.”

It is also possible that the in-use efficiency of the asset, even a simple pot,
declines with age and use during its life. It may slowly wear out and thin
out, so that water in a ten-year-old pot may evaporate more quickly, or the
pot may spring a hairline fracture that leaks a bit, or it may become dis-
colored and less attractive. Decline of in-use productive efficiency, which
means a decline in marginal product, is called “decay.” Note that decay and
exhaustion are physical concepts. Obviously a lot of assets decay—old cars
have lost some of their get-up-and-go, old computers become sluggish.
When old, a machine may break down and need repairs—a pot might be
patched up. This too is decay—the probability of breakdown rises, the like-
lihood of downtime increases, more frequent repairs are costly, and re-
placement parts become scarcer. Because of exhaustion and physical de-
cay, old machines have lower prices than new machines. This price effect is
called “deterioration.”

Vintage Effects

Vintage effects cannot be illustrated with identical Egyptian pots. Con-
sider instead French wines. Each specific year that a new wine is extracted
from French grapes is a “vintage.” Vintage does not just refer to year t but
to a specific date—2001. People do not pay vastly different prices for five-
versus six-year-old wines, but they do pay very different prices for superb
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6. I use discrete time in this analysis. Hall (1968) worked in continuous time. Discrete time
avoids the calculus but can result in (relatively uninteresting) complexities like beginning or
end of the period and lumpy versus marginal changes.

7. This effect obviously is related to intensity of use. Rental agency cars are used up a lot
faster than the car driven by the little old lady in Pasadena. The model can easily allow for
this. In fact, age is really only a proxy here for intensity of use. Applying this distinction to
data is harder.



versus poor vintages. It is not that the wine is sold in a particular year. It is
the specific vintage when the grapes ripened on the vines that matters to
wine connoisseurs.8 The key is that each vintage is inherently unique—
quality is embodied in the vintage wine. Furthermore, the quality of a su-
perior vintage cannot be added on, embedded in, or retrofitted to a poorer
vintage. Like wine, different vintages of machine can be different, and these
differences may be embodied in the new machine and not available to the
old. I define vintage effects so that they can only occur if technological
change is embodied in new capital. There are several tricky points in trans-
ferring the vintage concept from wines to machines.

First, a vintage effect is different from a passage-of-time effect. A vintage
effect is a difference between two assets; a time effect is a change in assets
between two periods. While for wines vintage differences occur coinciden-
tally with changes in time, this is not true for machines. In any given year
or date, different kinds of a particular machine can be produced at the
same time. This is not possible with wines, because the vintners define all
wines produced in year v to be vintage-v wine. With capital, however, some
new machines may embody new technologies and some may not.

Automobile producers, for instance, gradually adopt new technologies:
automatic shift, power steering, air conditioning, safety air bags, radial tires,
and navigation systems are all technological innovations that were at first
embodied in a few top-of-the-line models of new cars. Eventually, success-
ful innovations become standard equipment embodied in almost all cars.
Consequently, while this is not true of wines, machines are often produced
in any given year with a variety of the new technologies embodied in them—
these are different “models.” For this reason, the very concept of “vintage”
capital becomes ambiguous compared to vintage wine. Most stocks of new
assets are heterogeneous, creating conceptual and practical measurement
difficulties, but heterogeneity also offers research opportunities.

Heterogeneity complicates the model in which a well-defined asset is be-
ing priced in the age-time tableau. How much and what types of hetero-
geneity do we allow in such a tableau? At first one might restrict the anal-
ysis to a homogeneous good, like the Egyptian pot or a single 75-watt light
bulb, but this rules out technological change and vintage effects de facto.
In theory we can imagine investment flows reflecting acquisition of only
new vintages each year, but in applying the model to data we will have to
contend with the reality that new assets in each year are heterogeneous.9

Do we apply the HJH model only to one simple 60-watt light bulb? Do
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8. Exactly why this is true is controversial. Wine judges talk about mystical forces, like a
vintner’s wife having a new baby or lightning striking some oak trees, but different quality vin-
tages more likely reflect weather conditions, especially timely rainfall and sunlight. See
Ashenfelter, Ashman, and LaLonde (1995).

9. Heterogeneity of new production raises another difficult issue—heterogeneity of con-
sumers and sorting could create serious identification problems with hedonic methods. This
problem challenges the representative consumer model.



we apply the model to only four-door sedan Chevrolets with standard fea-
tures that never change? Do we apply the model to all laptop computers?
When a new innovation comes on the scene, do we treat it as a new vintage
even if many new assets do not embody the new innovation? More research
is needed to answer these questions, and some problems only become evi-
dent when one applies the model to data.

I would make several points, though. First, unless we allow for hetero-
geneity of new assets when technological change occurs, we cannot, as Hall
has shown, ever hope to identify vintage, age, and time effects. For ex-
ample, price hedonic techniques, a widely used procedure in this literature,
can only help us dig deeper into identification if new assets at a point in
time are heterogeneous.10 Second, we must have heterogeneity in a price
tableau if we want to estimate the consequences of embodied technologi-
cal change. Third, once we allow for differences in technology embedded
in different assets, we encounter the problem that our tableau is somehow
defined for an arbitrarily defined set of assets. A closely related problem
here is the definition of one unit of the asset. Consider the simplest example
of a quality change—what does it mean to say we are pricing one box of
crackers if a new box contains twice the crackers of an old box? How do we
define one computer if a new one has twice the capacity along every di-
mension?

One way out of this conundrum would be to assume that assets, even
with different technologies, are the same good if they are producing the
same output, as long as we adjust for changes in productive capacity. We
can identify asset quantities in equivalency units based on the output mea-
sure of each machine. A box with twice the crackers is equivalent to two 
of the smaller boxes. Even here we encounter problems, because some
changes embodied in new goods permit qualitatively different kinds of out-
put. For example, a four-wheel-drive SUV is still an SUV, but it can drive
in off-road places where a two-wheel-drive SUV cannot. Furthermore, an
SUV is still a car, even if it differs in some dimensions from other cars. A
cell phone embodied with a computer or digital camera is still a cell phone,
but it also allows one to take and view pictures. In principle the HJH model
provides a coherent method for specifying units in terms of “vintage-
equivalents.” Still, the model does not clearly draw the line between old
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10. Hedonics encounters another problem from heterogeneity and identification of new
technologies or “better” vintages. Faster processors in computers ordinarily are better
processors, and faster processors are developed over time. For complex assets, though, some
features are traded off in design. For example, heavier cars are safer cars, implying that weight
increases improve quality. Lighter cars are more fuel efficient, lowering operating costs. This
implies that weight reduces quality. This creates ambiguity in assessing the contribution of
weight to “vintage” changes among periods. The example of changing prices of gasoline in-
fluencing the vintage effects raises complicated questions about capital aggregation. Many
characteristics may be traded off, so that a change over time may be an embodied technolog-
ical improvement in one period and yet be a lower quality effect in another.



goods (cell phones and cameras) and an entirely new good (a cell phone
with camera) or quality change of the old good (a cell phone with camera).

The idea of vintage machines here is that if two assets that are the same
age in the same time period can embody different technologies, then they
are different vintages. We could think of new, 2004 computers, with differ-
ent RAM, different processors, different pixels per square inch, and so on.
If we insist on asserting that all of these are just different assets instead of
different vintages of the same asset, then we cannot proceed to analyze vin-
tage effects for a class of assets. Vintages of processors are well defined—a
Pentium I, II, III, and IV, for example. Vintages of RAM may be harder to
specify, but the idea of “more” is still there.

Acknowledging practical ambiguities and problems, the key to vintage
effects in this model is that new technology is embodied in a new vintage
that remains unavailable to older vintages. For convenience I am going to
assume that new vintages are superior to old. (This is obviously wrong for
wines and may be wrong for some assets as well. For example, suppose crit-
ical components or resources, like black walnut, become unavailable. New
furniture may not be as good as old.)11

What are the consequences of technological innovations in superior vin-
tages for other new assets that do not have the superior features? The older
vintages, while not aged by definition and with unchanged marginal prod-
ucts, will in a competitive market suffer a price decline. In the HJH model
this price decline is “obsolescence.” This definition of obsolescence de-
pends only on vintage differences and does not result, strictly speaking,
from the passage of time. I will explain that Diewert approaches many of
these problems differently from HJH.

Time Effects

Now consider time effects. Time effects are all effects that occur between
periods that do not reflect aging and are not specific to vintage. Following
HJH, time effects result in “capital gains (losses).” One might ask, why iso-
late vintage from time effects? After all, as a general rule, new vintages of
capital are adopted over time. Isn’t isolation of vintage effects arbitrary?
The answer has to do with the purpose for these models in the first place.
An important issue in economics concerns specification of the capital in-
put in production and the effects of technological change on the produc-
tion function. For example, Solow (1970) modeled the vintage production
function to show how growth models could account for embodied techno-
logical change. Isolation of vintage effects in this model and identifying
“obsolescence” as resulting from vintage effects allows us to study the con-
sequences of embodied technological change.

In any case, time change generates many effects besides aging and vin-
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11. See also caveats in notes 8 and 9.



tage. Excluding age and vintage effects, it seems immediately clear that
there are two very distinct types of price changes that occur between peri-
ods. First is a change in the value of the numeraire (the unit of account—
the dollar, yen, or euro). This effect is “inflation.” By definition, inflation is
a change in the unit of account that leaves relative prices unchanged.

Most economists would acknowledge that the classical dichotomy—
changes in output and other real variables are independent of the price
level and other nominal variables—applies in the long run. Thus, defining
velocity, V, as PQ/M where P is the price level, Q is real output, and M is
the quantity of money, most economists would agree that in the long run

(2) dM � � �  � dQ,

where dM is the time rate of change in the nominal money supply, � is a
constant (reflecting secular trend changes in velocity),  is the rate of in-
flation, and dQ is the change in output. Holding Q constant, then, equa-
tion (2) implies

(3) dm � dM �  � �.

The change in the real money supply equals the rate of change in veloc-
ity. If velocity is a constant, then in the static long run, no change in out-
put, inflation equals the growth rate of the money supply so that the real
money supply is constant. This model implies that the sole cause of infla-
tion is growth in the nominal money supply. Even if this is not the case, in-
flation is a monetary phenomenon, unrelated intellectually to relative
changes in prices. As such, inflation is a distinct phenomenon.

The second set of forces in the capital gains (losses) term is relative price
changes that reflect changes in either demand for or supply of the capital
good, excluding vintage and age effects. Capital goods are inputs, and so
their demands are derived demands. For example, suppose a new substi-
tute for gasoline comes on line. Oil tankers are a capital input to gasoline
production, and oil tanker prices, ceteris paribus, will fall. The vintage of
the oil tanker is not relevant, unless a new vintage embodies unique tech-
nology that accommodates the new energy substitute. All oil tankers will
fall in price. This effect, in the absence of embodied technological differ-
ences, would leave asset prices relative to age or vintage unchanged.

Changes in prices or technology of complements can have complicated
effects over time on capital goods. Consider a laptop computer. Software
is a complement in production to a laptop computer. Suppose new soft-
ware is introduced for which old laptops are ill suited. This is a change in
technology, not of the computer but of the software complement to the
computer. Such a change in HJH results in obsolescence of earlier vintages
of software, because the change is embodied in the new software. If no
change has been embodied in the new computer, then the new software will
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have the same effect on new and old capital. It will not, however, make the
old asset obsolete relative to the new vintage.

For new software to render an old computer worth less relative to a new
one—that is, to have nonproportional effects on different vintages of cap-
ital—the new software must be accompanied by some innovation embod-
ied in the new computer.12 If new computers are different, then this effect is
captured by our definition of obsolescence, because it is vintage specific. If
new technology is not embodied in a new asset, demand for the old asset
relative to the new asset will not change its relative price.13 This means that
software innovations are not changes in computer depreciation per se.

We have now defined age, vintage, and time effects on productive capac-
ity of assets. We define deterioration, obsolescence, and capital gain (loss)
as the price changes that result from each of these respective physical
effects. We are now prepared to see, using figure 12C.2, how these combine
to influence the price during the life of an asset. In figure 12C.2 in one year
the price of an asset moves down the diagonal one cell. The total price
change is

(4) �q(s, t) � [q(s � 1, t � 1) � q(s, t)].

The figure suggests we can decompose this total price change into two
steps: (a) a vertical move down one column, (q[s, t] – q[s � 1, t]), and (b) a
horizontal move across one row from left to right, (q[s � 1, t � 1] – q[s � 1,
t]).

“Depreciation,” as defined in the HJH model, is the vertical move down
a column of an age-time tableau. “Revaluation” is the horizontal move
from left to right across a row. The total price change is depreciation minus
revaluation:

(5) �q(s, t) � [q(s, t) � q(s � 1, t)] � [q(s � 1, t � 1) � q(s � 1, t)].

Decomposing the diagonal move into two steps, depreciation and revalua-
tion, is not enough to identify three effects, age, vintage, and time. Depre-
ciation is

(6) �t�0 � [q(s � 1, t) � q(s, t)].

Equation (6) advances the age index while holding the time index con-
stant, so by equation (1) the vintage index is also advanced. The price

�q
�
�s
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12. Feenstra and Knittel (2004) develop an innovative model in which expectations can
cause consumers to purchase more computer capacity than they need in anticipation of fu-
ture software developments. Analyzing synergies among software, hardware, and expecta-
tions by Feenstra and Knittel suggests an important area of new research.

13. I argue below that this distinction has important implications for the definition of de-
preciation.



change we track down the vertical involves a one-year-old asset that is a
one-year-earlier vintage. Depreciation is the sum of deterioration resulting
from age (exhaustion and decay) plus obsolescence resulting from vintage
effects (embodied technological change).
Revaluation is

(7) �s�0 � [q(s � 1, t � 1) � q(s � 1, t)].

By this definition, revaluation advances the time index and not the age
index, so by equation (1) the price change we track from left to right is to
an asset one year later and a one-year-newer vintage. Revaluation is the
sum of obsolescence (embodied technological change) plus capital gain or
loss (inflation and shifts in supply and demand). Both depreciation and
revaluation are polluted by vintage effects.14

Analysis of the Diewert Model

The HJH model helps to clarify the Diewert model. First, the prices in
figure 12C.2 are not the prices Diewert uses. Figure 12C.2 prices are mar-
ket “shadow” prices, without adjustments, of one unit of an asset in the rel-
evant cell. Diewert assumes that the prices in the tableau have already been
modified by statisticians to remove quality differences, so a Diewert cell
would contain prices of a “constant-quality” asset. A statistical agency is
assumed to have already solved the problem of extracting price changes
due to quality change from market prices to produce a series of prices (or
a price index) of a constant-quality capital good. For example, the Diew-
ert tableau prices Egyptian pots or computers that, like Egyptian pots, are
identical. This strikes me as a strong assumption for a model intended to
estimate depreciation. In particular, if capital goods’ prices are corrected
for quality change, then vintage effects are assumed away, but it seems to
me that vintage effects have to drop from the analysis and are not known a
priori.

Nonetheless, making such corrections to investment flow data is com-
mon practice in statistical agencies. Diewert, who works with statistical
agencies worldwide, is making an assumption that his principal target au-
dience, statistical agency economists, finds natural. The advantage to the
assumption is that Diewert can later define an explicit term, i∗, for changes
in asset prices between periods to capture effects that drive used asset
prices down. Diewert calls this effect “obsolescence.” This differs from my
definition of obsolescence as a pure vintage effect.

�q
�
�t
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14. Hall (1971) shows how to use hedonics to isolate obsolescence. I apply Hall’s model in
Wykoff (2002) to show how to extract the obsolescence component of depreciation from the
revaluation term.



Next Diewert defines two possible concepts of depreciation. Neither one
is the definition from the HJH model. Diewert defines “cross-section de-
preciation” to be the changes in prices moving down a vertical in a Diew-
ert price tableau. Because he has assumed away vintage effects, his “cross-
section depreciation” corresponds to “deterioration” in the HJH model.
Recall that deterioration was the decline in price from aging, holding both
the vintage and time indexes constant, leaving two forces that change asset
quantities: exhaustion and in-use decay.15 Diewert defines “time series de-
preciation” to be movements along the diagonal in his quality-corrected
price tableau.16

It turns out that Diewert pits his two definitions of depreciation against
one another, arguing that time series depreciation is vitiated by two types
of time effects—inflation and “asset-specific price changes.” He points out
that one must strip inflation out of time series depreciation. Diewert also
distinguishes ex ante from ex post time series depreciation. While this at
first struck me as an unnecessary complication, it turns out that Diewert
makes it because some accountants, using time series depreciation, think
only ex ante asset-specific price changes should be included with deterio-
ration in capital measures. This is why it is important to realize that this pa-
per is addressing national and international agency accountants at this
time. Ultimately his position on these two concepts of depreciation is that
the correct concept should consist of “cross-section depreciation” plus ex
ante asset-specific price increases, corrected for inflation expectations, that
imply a fall in used asset prices relative to new ones. He calls this asset-
specific intertemporal effect excluding deterioration “obsolescence.”

Diewert argues that his concept of obsolescence is broader than the HJH
concept, because i∗ allows for asset-specific, real price effects between pe-
riods in addition to vintage effects. That is, Diewert argues that his concept
of obsolescence is broader than price changes caused by capital-embodied
technological changes. In the language of the HJH model, Diewert defines
depreciation to allow for deterioration, obsolescence, and inflation-
corrected capital gain (loss). Recall that capital gain (loss) consists of real
time effects on asset-specific prices apart from vintage effects.
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15. In contrast to Diewert here, Dunn et al. (2004) in estimating depreciation of personal
computers rule out in-use decay a priori, so if they were to use quality-adjusted prices their
depreciation would only allow for exhaustion. They report very large estimated obsolescence
effects.

16. Things tend to get very cloudy here, in part because Diewert is so thorough, perhaps to
a fault. He allows in his model for interest rates to vary, for differences between beginning-
and end-of-period user costs, nominal asset-specific inflation, and real asset-specific infla-
tion. He also allows for ex ante and ex post time series depreciation. He may know that some
readers need these concepts spelled out, but I find they clutter the analysis. Diewert can work
through the thicket himself, but I think some simplification by ignoring a few issues like be-
ginning- and end-of-period user costs, varying interest rates with term structures, and so forth
would clarify the exposition. However, in the context of the debate in 2004 among world na-
tional income accountants, Diewert obviously felt these details were necessary.



Evidently, Diewert’s distinction between ex ante and ex post obsoles-
cence is the difference between expected and realized inflation. If one is
going to distinguish ex ante from ex post inflation, why not distinguish ex
ante from ex post technological change?17

I am not sure depreciation deductions should cover real asset-specific
time effects. I think depreciation should consist only of deterioration plus
obsolescence as defined in HJH. The reason for this is subtle but worth dis-
cussion. In addition to deterioration, only vintage-specific changes cause
prices of old assets to fall relative to new ones. All other time changes in
supply of or demand for assets will influence new and old assets propor-
tionally and leave depreciation rates unchanged.

This point is arguable. My view is this: capital goods are inputs, and thus
their demands are derived from production processes. A shock to the mar-
ket for a capital input only alters the relative prices of different versions of
the inputs, if different vintages embody different technologies. A new soft-
ware “killer application” changes old relative to new asset prices (depreci-
ation) only if the new computer embodies a technological innovation that
can exploit the killer application.18 This capital-embodied innovation is a
pure vintage effect captured by the “narrow” definition of obsolescence.

There is one more important difference between Diewert and HJH. The
conversion of historical investment flows into capital aggregates is usually
thought of as a problem of choosing weights, �i , in the following equation:

(8) Kt � ∑
i�L

i�1

�i It�i .

K is capital, I investment corrected for inflation, and L the life of the old-
est asset. The HJH analysis produces estimates of weights, �i , of past in-
vestment flows in determining the period-t capital aggregates like equation
(8) for the stock of capital. The quantity weights are relative productive ca-
pacities (estimated from relative asset prices based on duality) in mea-
suring the capital stock and relative efficiencies (estimated from relative
user costs based on duality) for capital services.

Diewert says that equation (8) arbitrarily imposes linear aggregation. He
assumes, after constructing individual price and quantity indexes, that he
still has the problem of decomposing capital aggregates into price and
quantity components. He assumes that nominal capital aggregates in each
period—say, Nt for the nominal capital stock—are some function, or in-
dex, of his price and quantity indexes, so that
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17. Admittedly, this would be much more complex and require more than an inflation-
forecasting model. It would require a formal expectations-generating model, such as rational
expectations, of both economics and technological change.

18. The working paper by White et al. (2004) is an excellent illustration of the complexities
involved in constructing price indexes from hedonics when synergies are occurring between
capital innovations, software innovations, and marketing innovations.



(9) Nt � P [ p1, p2, . . . , pL ]Q [q1, q2, . . . , qL ].

Diewert uses index number theory to construct aggregate price, quan-
tity, user costs, and services indexes. Diewert appears to be basing this
analysis of designing capital accounts in part on utility theory. This may
help explain why his model differs from HJH, which is based on neoclassi-
cal capital theory.

Conclusion

Diewert has designed a solution to an important problem now con-
fronting world national income accountants—how to construct capital ac-
counts from historical investment flow data. While unique in some re-
spects, Diewert’s model is built on solid economic theory and provides a
defensible solution to virtually all practical problems the accountants will
encounter. Diewert has identified the information required to construct
capital accounts. Some aspects of the model will be contentious; nonethe-
less, this is a major advance in clarifying the issues, providing a guide, and
setting a future research agenda.
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