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People value leisure time as well as goods, so longevity increase is an im-
portant part of economic growth, broadly defined. Research and develop-
ment (R&D) is the principal source of economic growth, and the pharma-
ceutical industry is the most R&D-intensive sector of the economy. In this
paper we assess the contribution of pharmaceutical R&D to longevity in-
crease (hence to economic growth) by analyzing the relationship between
Food and Drug Administration (FDA) approvals of new molecular en-
tities and changes in the age distribution of deaths from all diseases, using
longitudinal disease-level data.

Until the middle of the twentieth century, analyses of long-run macro-
economic performance were based on an aggregate production function of
the form

(1) Y � F(K, N ),

where Y is real GDP (the market value of goods and services produced), K
is capital input, and N is labor input.

Capital is, of course, a produced means of production, which accumu-
lates according to the perpetual inventory equation Kt�1 � (1 – �)Kt � It ,
where � is the depreciation rate and I denotes investment.

In the last fifty or sixty years, economists have recognized the inadequa-
cies of this production function—its failure to account for important
aspects of observed macroeconomic behavior—and have modified and
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extended it in several ways. The most important modifications have been
expansions of the sets of both inputs and outputs accounted for.

Beginning in the 1950s, economists realized that some, if not most, of the
growth in output could not be accounted for by growth in capital and 
labor. Some output growth was due to total factor productivity (TFP)
growth—growth in output per unit of total input—which is not accounted
for in equation (1). Growth in TFP was hypothesized to be due to techno-
logical progress. The production function could easily be modified to allow
for the existence of technological progress:

(2) Y � AF(K, N ),

where A is an index of the level of technology.
Solow (1956) demonstrated that, in the long run, the growth rate of per

capita output is equal to the rate of technological progress (the growth rate
of A).1 In that paper, Solow assumed that technological progress was ex-
ogenous: it descends upon the economy like “manna from heaven,” auto-
matically and regardless of whatever else is going on in the economy (Jones
1998, pp. 32–33). But subsequent investigators have hypothesized and pro-
vided evidence that productivity growth and technological progress are en-
dogenous—determined by investment in R&D. The dependence of tech-
nical progress on R&D is a key feature of recent theoretical (“endogenous
growth”) models (Romer 1990).

Griliches (1979) proposed the following model to incorporate endoge-
nous (R&D-generated) technical change into the production function:

(3) Y � F(K, N, Z ),

where Z is the stock of “knowledge capital.”
Like physical capital, knowledge capital is a produced means of pro-

duction, which accumulates according to the perpetual inventory equation
Zt�1 � (1 – �Z )Zt � RDt , where �z is the knowledge-capital depreciation
rate and RD denotes R&D investment.

There are two ways in which one can use equation (3) to assess the con-
tribution of knowledge capital to productivity growth. One is to examine
the relationship (e.g., across industries) between TFP growth and the
growth of Z. The other is to examine the relationship between TFP growth
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1. As noted by Jones (1998, pp. 31 and 34), “there is no per capita income growth in the [ba-
sic Solow] model” (i.e., the model with no technological progress); “technological progress is
the source of sustained per capita growth” (emphasis added). Empirical evidence about the
relative contribution of TFP growth to output growth has been mixed. Solow estimated that
about 90 percent of actual output growth was due to TFP growth; in 1967, Jorgenson and
Griliches (1967) estimated that only about 10 percent was due to TFP growth; in 1973, Chris-
tensen and Jorgenson (1973) estimated that about half of actual output growth was due to
TFP growth.



and “R&D intensity” (the ratio of R&D investment to output).2 Under
certain reasonable assumptions, the R&D intensity coefficient in the TFP
regression is an estimate of the marginal product of knowledge capital and
of the rate of return to investment in R&D.3

Numerous empirical studies (e.g., Griliches and Lichtenberg 1984; Lich-
tenberg and Siegel 1991) have provided strong support for the hypothe-
sis that R&D has contributed significantly to growth in the market value 
of goods and services produced. But economists believe that the utility, or
welfare, of individuals and nations depends not only on the goods and
services they consume but also on the amount of (leisure) time they have.
Leisure time as well as goods is an argument of the utility function. Becker
defined an individual’s “full income” as the value of goods consumed 
plus the value of leisure time “consumed.” Let us define

(4) Y∗ � G(Y, L),

where Y∗ is “full income” (or utility) and L is leisure time.
A simple linear approximation of this function is

Y∗ � Y � pLL ,

where pL is the shadow price of leisure time (relative to the price of goods).
Suppose, for simplicity, that pL remains constant over time. Then

�Y∗ � �Y � pL�L.

The change in full income is the change in gross domestic product (GDP)
plus the change in the value of leisure time consumed. During the last cen-
tury, longevity increase has been an important source of increase in the av-
erage person’s leisure time over the course of the life cycle. Nordhaus (2003)
estimated that “to a first approximation, the economic value of increases 
in longevity over the twentieth century is about as large as the value of
measured growth in nonhealth goods and services.” In other words, his esti-
mates imply that �Y � pL�L.

Due to the importance of leisure time in general, and longevity in par-
ticular, to economic well-being, we propose replacing GDP in the produc-
tion function by “full income”:

(5) Y∗ � G(Y, L) � F (K, N, Z ).

We hypothesize that R&D-generated increases in the stock of knowl-
edge capital (Z ) may have a positive impact on both components of full in-
come: leisure time (via longevity) and consumption of goods and services.
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2. The second approach does not require a long history of R&D investment or an estimate
of the initial knowledge-capital stock.

3. Since capital and labor engaged in R&D are already included in K and N—they are
“double counted”—the R&D intensity coefficient is an estimate of the excess return to
R&D—the difference between the return to R&D and the return on ordinary investment.



According to the National Science Foundation (NSF), in 1996 16 percent
of U.S. R&D was associated primarily with the life sciences; this share in-
creased from 12 percent in 1985.

In the next section we discuss the measurement of pharmaceutical
knowledge-capital accumulation. In section 7.2 we postulate an econo-
metric model of the effect of pharmaceutical knowledge-capital accumu-
lation on the age distribution of deaths. Measurement of changes in the age
distribution of deaths, by cause of death, is discussed in section 7.3. Em-
pirical results are reported in section 7.4, and section 7.5 presents a sum-
mary and conclusions.

7.1 Measurement of Pharmaceutical Knowledge-Capital Accumulation

The basic hypothesis we wish to investigate is that pharmaceutical R&D
investment has increased the longevity of Americans, as shown in panel A
of figure 7.1. For a variety of reasons, however, we didn’t think that the best
way to test this hypothesis is to perform an econometric analysis of the re-
lationship between pharmaceutical R&D investment and longevity. There
are two other indicators of pharmaceutical R&D investment that are po-
tentially more fruitful to analyze than pharmaceutical R&D investment it-
self: pharmaceutical patents and FDA new drug approvals. We will argue
that pharmaceutical patents are subject to most of the same econometric
limitations as pharmaceutical R&D investment but that FDA new drug
approval data provide an excellent opportunity to (indirectly) examine the
R&D-longevity relationship.

New drug approvals by the FDA may be interpreted as an “intermediate
good” in the R&D-longevity relationship, as shown in panel B of figure
7.1.4 To explain the relationship between R&D investment and new drug
approvals, and why the latter is a superior indicator for explaining changes
in longevity, it is useful to briefly describe the process of drug development.

The FDA’s depiction of the new drug development timeline is shown in
figure 7.2. There are three main phases of drug development up until the
time of new drug approval. The first phase is preclinical testing and R&D,
including testing in animals. According to the FDA, the average duration
of this phase is eighteen months. In order to proceed to the second stage,
the drug sponsor must submit, and receive FDA approval of, an investiga-
tional new drug (IND) application. Upon approval of the IND, the spon-
sor may begin clinical R&D (human trials).

As table 7.1 indicates, there are three phases of clinical R&D. According
to the FDA, the average duration of the three phases combined is five years.
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4. “FDA estimates that, on average, it takes eight-and-a-half years to study and test a new
drug before the agency can approve it for the general public. That includes early laboratory
and animal testing, as well as later clinical trials using human subjects. Drug companies spend
$359 million, on average, to develop a new drug, according to a 1993 report by the Congres-
sional Office of Technology Assessment” (FDA 1999, p. 15).



After completing clinical R&D, the drug sponsor can submit a new drug
application (NDA) to the FDA. For decades, the regulation and control of
new drugs in the United States has been based on the NDA. Since 1938,
every new drug has been the subject of an approved NDA before U.S. com-
mercialization. The data gathered during the animal studies and human
clinical trials of an IND become part of the NDA. According to the FDA,
the average duration of the NDA review process is two years.

The FDA says that of 100 drugs for which IND applications are submit-
ted, about 70 percent will successfully complete phase 1 and go on to phase
2; about 33 percent of the original 100 will complete phase 2 and go to
phase 3; and 25 to 30 of the original 100 will clear phase 3 (and, on average,
about 20 of the original 100 will ultimately be approved for marketing).
This is consistent with 1990–2001 data on the number of commercial5 INDs
received and NDAs received and approved, shown in figure 7.3. The aver-
age annual number of NDAs approved (eighty-five) was 21 percent of the
average annual number of INDs received (403).

As table 7.2 shows, there are seven different kinds of new drug applica-
tions. New molecular entities (NMEs) account for only about a third of all
new drug approvals, but they probably account for the vast majority of
pharmaceutical R&D expenditure,6 and they are the NDAs that are most
likely to increase longevity.7

DiMasi (2001) argues that mean drug development time has increased

Pharmaceutical Knowledge-Capital Accumulation and Longevity 241

5. “Commercial INDs” are applications that are submitted primarily by companies whose
ultimate goal is to obtain marketing approval for a new product. There is another class of fil-
ings broadly known as “noncommercial” INDs. The vast majority of INDs are, in fact, filed
for noncommercial research. These types of INDs include “Investigator INDs,” “Emergency
Use INDs,” and “Treatment INDs.”

6. Cross-sectional firm-level estimates support this hypothesis. When we compute a (“re-
verse”) regression of a firm’s average annual R&D expenditure on its average annual number
of NDA approvals, by type, the number of NMEs is positive and highly significant, and the
number of other NDAs is not significantly different from zero.

7. Forty-two percent of the NMEs approved during 1990–2001 were “priority-review ap-
provals”—that is, considered by the FDA to represent “significant improvement compared to
marketed products, in the treatment, diagnosis, or prevention of a disease.” Only 14 percent
of non-NME NDAs approved were priority-review approvals.

Fig. 7.1 A, Pharmaceutical R&D investment and longevity; B, Pharmaceutical
R&D investment, FDA new drug approvals, and longevity
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Table 7.1 Phases of clinical research

Percent of drugs 
Phase No. of patients Length Purpose successfully tested

1 20–100 Several months Mainly safety 70
2 Up to several hundred Several months Some short-term safety, 33

to 2 years but mainly effectiveness
3 Several hundred 1–4 years Safety, effectiveness, 25–30

to several thousand dosage

Fig. 7.3 Commercial INDs received and NDAs received and approved, 1990–2001

Table 7.2 Types of new drug applications (NDAs), 1990–2001

Percent of 
NDAs approved NDA type

46 New formulation
35 New molecular entity
10 New manufacturer
6 New combination
2 New ester, new salt, or other noncovalent derivative
1 New indicationa

1 Drug already marketed but without an approved NDA

aBeginning in 1994, new indications were tracked as efficacy supplements, not as NDAs.



sharply since the 1960s (see figure 7.4). His figures indicate that, for the last
twenty years, mean drug development time has been 14.2 years, substan-
tially longer than the FDA’s estimate of 8.5 years.

Pharmaceutical Research and Manufacturers of America (PhRMA)
provides statistics, based on its annual survey of pharmaceutical firms, on
the distribution of 1999 pharmaceutical R&D expenditure by function.
These are shown in table 7.3. These figures suggest that as much as 36 per-
cent of R&D expenditure occurs during the preclinical phase of drug de-
velopment, which is, on average (according to DiMasi’s estimates), about
eight years before NDA approval. Another 29 percent of R&D expendi-
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Fig. 7.4 Average number of years for drug development, 1960s to 1990s
Source: DiMasi (2001).

Table 7.3 Distribution of 1999 pharmaceutical R&D expenditure, by function

Percent of 
R&D expenditure Function

10.0 Synthesis and extraction
14.2 Biological screening and pharmacological testing
4.5 Toxicology and safety testing
7.3 Pharmaceutical dosage formulation and stability testing
29.1 Clinical evaluation: Phases I, II, and III
11.7 Clinical evaluation: Phase IV
8.3 Process development for manufacturing and quality control
4.1 Regulatory: IND and NDA
1.8 Bioavailability
9.0 Other



ture occurs during the clinical phase—which is, on average, about five
years—before NDA approval. On average, then, the lag from R&D expen-
diture to new drug approval appears to be quite long and quite variable.

Long and variable lags are but one of the obstacles to a direct examina-
tion of the R&D-longevity relationship. There are several others: appar-
ently inconsistent estimates of pharmaceutical R&D investment, smooth-
ness of the aggregate time series R&D data, and lack of disaggregated data.
We discuss these in turn.

7.1.1 Divergent Estimates

There are two distinct surveys that provide data on the amount of phar-
maceutical industry R&D: the National Science Foundation (NSF) Sur-
vey of Industrial Research and Development,8 and the PhRMA annual
survey of research-based pharmaceutical companies. Figure 7.5 shows es-
timates of aggregate pharmaceutical industry R&D from the two surveys.
Before 1990, the estimates differed by less than 10 percent, but in 1996 and
1997 the estimates differed by about 30 percent.

7.1.2 Smoothness

To identify the effect of pharmaceutical R&D investment on longevity,
significant variability in R&D investment is required. As figure 7.5 suggests,
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Fig. 7.5 Estimates of aggregate pharmaceutical industry R&D from NSF and
PhRMA surveys

8. This survey is administered by the Census Bureau.



aggregate pharmaceutical R&D investment is very closely approximated
by an exponential trend; that is, it exhibits very little variability.9 This is not
surprising: R&D in general is known to be very persistent, especially in
comparison with ordinary investment.

7.1.3 Lack of Disaggregated Data

In principle, variability of R&D investment could be increased via dis-
aggregation—for example, by class of drugs. Unfortunately, the NSF sur-
vey does not provide any disaggregated pharmaceutical R&D investment
data. The PhRMA survey does, but as table 7.4 indicates, the drug classes
are quite broad; 85 percent of investment during 1997–99 was in the largest
four classes.

7.1.4 Are patent data likely to be useful?

R&D and patenting are known to be closely related (Griliches 1984).
Perhaps patent data could supersede most of the limitations of the R&D
data.

The U.S. Patent and Trademark Office (USPTO) publishes data on the
number of patents granted for “drug, bio-affecting and body treating com-
positions” (patent class 514). Figure 7.6 presents annual data on the num-
ber of “drug patents” (patents in class 514) and total patents granted from
1980 to 2000. Drug patents do exhibit somewhat more variability than
R&D expenditure.10 However, drug patents track total patents quite closely.

Disaggregation of drug patents by therapeutic action appears to be in-
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Table 7.4 Distribution of pharmaceutical R&D expenditure, by drug class, 
1997–99 (%)

Drug class 1997 1998 1999 Average

Acting on the central nervous system and 
sense organs 29 30 23 27

Affecting neoplasms, endocrine system, and 
metabolic diseases 24 23 24 23

Acting on infective and parasitic diseases 22 22 14 19
Acting on the cardiovascular system 17 17 15 16
Acting on the respiratory system 6 4 4 5
Other human use 0 0 10 3
Biologicals 0 3 5 3
Acting on the digestive or genitourinary system 0 0 4 1
Diagnostic agents 2 1 0 1
Acting on the skin 0 0 1 0
Vitamins and nutrients 0 0 0 0

9. The R2 of the regression of the PhRMA R&D series on an exponential trend is .9913.
10. The R2 of the regression of the drug patent series on an exponential trend is .8897.



feasible. Although certain subclasses of class 514 pertain to specific dis-
eases (e.g., subclass 866 refers to diabetes, and subclass 883 refers to
Hodgkin’s disease),11 these subclasses are “cross-reference art collections,”
and drug patents are not systematically classified by disease or therapeutic
action.12

It appears that drug patents are often granted fairly early in the drug de-
velopment cycle. According to PhRMA, “the average period of effective
patent life (when a drug can be marketed) for new drugs introduced in the
early to mid-1990s with patent-term restoration has been only 11–12 years.
Innovators in other industries typically receive upwards of 18.5 years of ef-
fective patent life.”13 This suggests that, on average, patents are granted at
least seven years prior to the market introduction of new drugs. Long and
variable lags diminish the likelihood that drug patents can explain fluctua-
tions in longevity.

Data on both pharmaceutical R&D expenditure and pharmaceutical
patents are too aggregated, exhibit too little variability, and are too subject

Pharmaceutical Knowledge-Capital Accumulation and Longevity 247

Fig. 7.6 U.S. drug patents granted and total patents granted, 1980 to 2000

11. See http://www.uspto.gov/go/classification/uspc514/sched514.htm.
12. The seventh (1999) edition of the International Patent Classification system appears to

provide (in class A61P) a systematic classification of chemical compounds and medicinal
preparations by therapeutic activity. For example, subclass 1/00 includes drugs for disorders
of the alimentary tract or the digestive system, and subclass 1/18 covers drugs for pancreatic
disorders (e.g., pancreative enzymes). (See http://www.wipo.int/classifications/fulltext/new
_ipc/index.htm.)

13. See http://www.phrma.org/publications/publications/profile01/chapter8.phtml.



to excessively long lags to serve as a basis for testing our key hypothesis.
But these limitations may be overcome by combining data from two dif-
ferent sources: First DataBank’s National Drug Data File (NDDF)14 and
FDA data on NDA approvals.15 These data sources enable us to compute
the stock of drugs available (i.e., previously approved by the FDA) to treat
a given condition in a given year.

The NDDF consists of a number of modules. One of these is the indica-
tions module, “the goal of [which] is to minimize the risks associated with
drug use. The information in this module is intended to be used as a tool
for assessing the appropriateness of drug therapy” (First DataBank 1998).
We utilize just one part of the clinical module: the Drug Indications Mas-
ter Table. This table links indications (diseases) to drugs (active ingredi-
ents): it lists all of the drugs appropriate for treatment of each indication.
Indications are coded using the International Classification of Diseases,
ninth revision (ICD9; http://www.cdc.gov/nchs/about/major/dvs/icd9des
.htm),16 the same classification system used in the mortality data we will
analyze.17

Sample data from the NDDF Drug Indications Master Table, for two
indications—tuberculosis and hypercholesterolemia—are shown in table
7.5.18 The table lists eleven drugs appropriate for the treatment of tuber-
culosis and fourteen drugs appropriate for the treatment of hypercholes-
terolemia. All of the tuberculosis drugs are designated as “labeled,” but

248 Frank R. Lichtenberg

14. First DataBank, a wholly owned subsidiary of the Hearst Corporation, is a leading
provider of electronic drug information. For more than two decades, it has delivered knowl-
edge bases for various health care applications, including clinical decision support within the
work flow. Its portfolio also includes comprehensive reference products, integrated content
software, and specialty software for physicians and nutritionists. Many of these products help
reduce the incidence of medication errors and adverse drug events, which can result in shorter
hospital stays, lower medical costs, and improved patient care. The NDDF Plus knowledge
base combines the drug information of the National Drug Data File with advanced clinical
decision-support modules, to deliver complete descriptive, pricing, and clinical information
for every drug approved by the FDA. Their staff includes clinicians, software engineers, and
knowledge-base experts. It is found in installations ranging from retail pharmacies to hospi-
tal pharmacies and laboratories; physician and other health care professional practices; and
e-health care companies, managed care organizations, and insurers.

15. Section 505 of the Federal Food, Drug, and Cosmetic Act states that “no person shall
introduce or deliver for introduction into interstate commerce any new drug, unless an ap-
proval of an application . . . is effective with respect to such drug.”

16. The International Classification of Diseases (ICD) is designed for the classification of
Morbidity and Mortality information for statistical purposes, and for the indexing of hospi-
tal records by disease and operations, for data storage and retrieval. The ICD is developed
collaboratively between the World Health Organization (WHO) and ten international cen-
ters, for purposes of ensuring that medical terms reported on death certificates are interna-
tionally comparable and lend themselves to statistical analysis. The ICD has been revised ap-
proximately every ten years since 1900 in order to reflect changes in understanding of disease
mechanisms and in disease terminology.

17. Information about drugs appropriate for treatment of specific indications can be ob-
tained on a piecemeal basis from http://www.medscape.com.

18. The complete Drug Indications Master Table contains almost 7,000 links between in-
dications and drugs.



three of the hypercholesterolemia drugs are designated as “unlabeled.”19

According to the American Medical Association’s Council on Scientific
Affairs,

Unlabeled uses are defined as the use of a drug product for indications
or in patient populations, doses, or routes of administration that are not
included in FDA-approved labeling. The prevalence and clinical impor-
tance of prescribing drugs for unlabeled uses are substantial. Unlabeled
indications are especially common in oncology, rare diseases, and pedi-
atrics. Thus, the prescribing of drugs for unlabeled uses is often neces-
sary for optimal patient care.20
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Table 7.5 Sample data for two indications from National Drug Data File (NDDF)
Drug Indications Master Table, by International Classification of
Diseases, Ninth Revision (ICD9) code

ICD9 Labeled or 
code Indication Drug unlabeled

0119 Tuberculosis Capreomycin L
0119 Tuberculosis Isoniazid L
0119 Tuberculosis Cycloserine L
0119 Tuberculosis Ethambutal L
0119 Tuberculosis Ethionamide L
0119 Tuberculosis Aminosalicyate Sodium L
0119 Tuberculosis Acetylcysteine (INH) L
0119 Tuberculosis Pyrazinamide L
0119 Tuberculosis Rifampin L
0119 Tuberculosis Rifampin and Isoniazid L
0119 Tuberculosis, Pulmonary Rifapentine L

272 Hypercholesterolemia Lovastatin L
272 Hypercholesterolemia Pravastatin L
272 Hypercholesterolemia Simvastatin L
272 Hypercholesterolemia Cholestyramine L
272 Hypercholesterolemia Colestipol L
272 Hypercholesterolemia Probucol L
272 Hypercholesterolemia Fluvastatin L
272 Hypercholesterolemia Atorvastatin L
272 Hypercholesterolemia Niacin (SA-Lipotropic) L
272 Hypercholesterolemia Cerivastatin L
272 Hypercholesterolemia Garlic L
272 Hypercholesterolemia Psyllium, Bran U
272 Hypercholesterolemia Neomycin U
272 Hypercholesterolemia Conj. estrogen, M-Progesterone U

19. About 25 percent of the almost 7,000 entries in the Drug Indications Master Table are
designated “unlabeled.”

20. See http://www.ama-assn.org/ama/pub/article/2036-2420.html. See also Cranston et al.
(1998).



We will construct estimates of the stock of drugs available to treat specific
conditions, both excluding and including unlabeled indications.

The NDDF Drug Indications Master Table lists all of the drugs appro-
priate for treating given conditions that were available in the year 1999.21

We want to determine the number of drugs appropriate for treating given
conditions that were available in each of the years 1979–98 (the years for
which we have mortality data). To determine this, we identified, from pub-
lished and unpublished FDA data, the year in which each of the drugs
listed in the NDDF Drug Indications Master Table was first approved as
an NME by the FDA. The FDA provided us with a list of all 821 NMEs
approved by the FDA during the period 1950–93. We extended this list
through 1998 using another unpublished FDA data file and data posted on
the FDA website. The FDA data on NME approvals are illustrated in table
7.6, which shows NMEs approved in calendar year 2000.

We aggregated the data in the NDDF Drug Indications Master Table up
to the (approximately) two-digit ICD9 level, to be consistent with the Cen-
ters for Disease Control (CDC) Mortality Data (described below). There
is considerable variation across diseases—even diseases in the same broad
disease groups—in the extent and timing of increases in the stock of avail-
able drugs. This is illustrated by figure 7.7, which shows, for two condi-
tions—diseases of the thyroid gland and diseases of other endocrine
glands—the number of drugs available to treat the condition in year t, as a
percent of the number of drugs available to treat the condition in 1979.22

Between 1979 and 1984, the number of drugs available to treat diseases of
the thyroid gland increased 29 percent, while the number of drugs available
to treat diseases of other endocrine glands increased only 13 percent. How-
ever, between 1984 and 1998, the number of drugs available to treat dis-
eases of the thyroid gland did not increase at all, while the number of drugs
available to treat diseases of other endocrine glands increased 33 percent.

The algorithm we adopted is based on the assumption that a drug linked
to a condition in the NDDF Drug Indications Master Table became avail-
able to treat the condition in the year that the drug was first approved as an
NME by the FDA. We know that this assumption is incorrect in at least
some cases, because some of a drug’s indications may be added years after
the drug was first approved as an NME. Table 7.7 provides examples of
New Indication approvals, and the predecessor NME approvals. Amanta-
dine hydrochloride was initially approved as an NME in 1966 and desig-
nated as an antiviral/anti-influenza/systemic drug. Seven years later, a new
indication of the drug was approved by the FDA, and it was also classified
as an anti-Parkinson drug. Unfortunately, although we have complete data
on NME approvals, data on New Indication approvals are incomplete.

250 Frank R. Lichtenberg

21. Unfortunately, earlier versions of the NDDF Drug Indications Master Table are not
available.

22. In 1979, there were seven drugs for treating diseases of the thyroid gland and thirty-
eight drugs for treating diseases of other endocrine glands.
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Fig. 7.7 Number of drugs available to treat condition in year t, as percentage of
number of drugs available to treat condition in 1979

Table 7.7 Examples of NDA approvals of new indications for existing drugs

Approval 
Ingredient name Chemical type date Therapeutic class

Amantadine New Molecular Entity 18-Oct-66 Antiviral; anti-Influenza; systemic
Hydrochloride New Indication 18-Apr-73 Anti-Parkinson drugs

Clotrimazole New Molecular Entity 3-Feb-75 Fungicides (topical)
New Indication 29-Jul-96 Antifungal (Candidiasis)

Cromolyn Sodium New Molecular Entity 20-Jun-73 Bronchodilator
New Indication 3-Jan-97 Respiratory

Cyclosporine New Molecular Entity 14-Nov-83 Immunomodulators
New Indication 22-May-97 NSAID

Cyproheptadine New Molecular Entity 17-Oct-61 Antihistamine/oral
Hydrochloride New Indication 18-Sep-69 Appetite stimulation

Fluoxetine New Molecular Entity 29-Dec-87 Antidepressants
Hydrochloride New Indication 28-Feb-94 Obsessive Compulsive Disorder

Fluticasone New Molecular Entity 14-Dec-90 Steroids
Propionate New Indication 7-Nov-97 Respiratory

Glycopyrrolate New Molecular Entity 11-Aug-61 Miscellaneous Upper GI drugs
New Indication 6-Feb-75 Anticholinergic agent

Goserelin Acetate New Molecular Entity 29-Dec-89 GNRH agonists
New Indication 18-Dec-95 Antineoplastic hormones

Lansoprazole New Molecular Entity 10-May-95 Proton pump inhibitors
New Indication 17-Jun-97 Systemic antibiotics—

H. Pylori indication
Mebutamate New Molecular Entity 11-Jul-61 Anti-hypertensive agents

New Indication 31-Jan-75 Sedatives and hypnotics



Even if complete data on New Indication approvals by the FDA were avail-
able, in light of extensive unlabeled drug use, it is not clear how they should
be used. A drug approved as an NME might be frequently prescribed for
many years for a condition that is “off-label.”

When the FDA receives an NDA, it assesses the drug’s “therapeutic po-
tential” and classifies it as either a “Priority Review” drug—one that rep-
resents a “significant improvement compared to marketed products, in the
treatment, diagnosis, or prevention of a disease”—or a “Standard Review”
drug—one that “appears to have therapeutic qualities similar to those of
one or more already marketed drugs.”23 Two diseases that have similar in-
creases in the total number of NMEs approved may have quite different in-
creases in the number of priority review NMEs approved. For example,
sixteen drugs for treating syphilis were approved during 1979–98, but only
five (31 percent) of these were priority review drugs. The total number of
drugs approved for treating lymph cancer was lower—fourteen—but ten
(71 percent) of these drugs were priority review drugs. In our empirical
analysis, we will distinguish between the stock of priority review drugs
available to treat a condition and the stock of standard review drugs avail-
able.

7.2 Model

The basic model we will estimate is

(6) MORTit � � DRUG_STOCKit � �i � �t � εit ,

where MORTit is an indicator of mortality (e.g., mean age at death) from
ICD9 disease i (i � 00, 01, . . . , 99)24 in year t (t � 1979, 1980, . . . , 1998)
and DRUG_STOCKit is the stock of drugs available to treat disease i in
year t.

The fixed disease effects (�i s) control for any determinants of mortality
that vary across diseases but do not vary over time. The year effects (�ts)
control for any determinants of mortality that vary over time but do not
vary across diseases. If the estimate of � is positive and significant, that in-
dicates that diseases with above-average increases in the stock of drugs had
above-average changes in the mortality indicator.

We can allow for different effects of priority-review and standard-review
drug approvals by estimating the more general model

(7) MORTit � �PPRI_STOCK it � �SSTD_STOCK it � �i � �t � εit ,
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23. Applications for new indications are also classified by therapeutic potential, and the
therapeutic potential of a new indication may differ from the therapeutic potential of the
NME.

24. The set of 100 diseases is exhaustive.



where PRI_STOCK it is the stock of priority-review drugs available to treat
disease i in year t and STD_STOCK it is the stock of standard-review drugs
available to treat disease i in year t.

We think it is worthwhile to briefly discuss how this model relates to the
literature on endogenous technical change and on embodiment.

7.2.1 Endogenous Technical Change Model

In Romer’s (1990) model of endogenous technological change, labor is
used to produce either output or ideas:

L � LY � LA,

where L is total labor, LY is labor used to produce output, and LA is labor
used to produce ideas.

The production function for output is

Y � K�(ALY )1�� (0 � � � 1),

where Y is output, K is capital, and A is stock of ideas.
The production function for ideas is

�A � A�1 � A � �L	
AA
,

where 0 � 	 � 1 and 
 may be either positive or negative. The
DRUG_STOCK variable corresponds to Romer’s “stock of ideas” vari-
able (A). In the empirical analysis, we count only the “ideas” (NMEs) that
have been approved by the FDA.

While the model we will estimate is consistent with Romer’s embodied
technical change model, there are other ways in which one might specify
the drugs-mortality relationship. New products and ideas do not diffuse in-
stantaneously throughout the economy or health care system. After new
drugs are introduced, some people continue to use old drugs. Hence, mea-
sures of the vintage distribution of drugs used to treat a given disease in a
given year might be preferable to a simple count of the number of drugs
available to treat the disease. In practice, however, measurement of the vin-
tage distribution of drugs used by disease and year is far more difficult than
measurement of the number of drugs available by disease and year. Vintage
data can be constructed from the National Ambulatory Medical Care Sur-
vey (NAMCS), a survey of physician office visits that collects data on pa-
tient diagnoses and drugs prescribed. Unfortunately, prior to 1989, it was
conducted in only three years: 1980, 1981, and 1985.25 The NAMCS is an
approximately 1-in-10,000 survey of office visits, so it is subject to consid-
erable sampling error. More than one diagnosis is recorded in a significant
number of visits; in these cases it is difficult to allocate or assign drugs to
diseases. Drug vintages are subject to left-censoring: the vintages of drugs
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25. It has been conducted annually since 1989.



that existed prior to the creation of the FDA in 1939 can’t be determined.
Finally, interpretation of the coefficient on the number of drugs available is
perhaps more straightforward than interpretation of the coefficient on the
mean age of drugs used.

7.2.2 Embodiment

Implicit in this specification is the hypothesis that the technical progress
generated by pharmaceutical R&D is embodied in new drugs. Solow and
other economists have recognized since the late 1950s that there are two
kinds of technical progress: disembodied and embodied. Suppose that agent
i in the economy (e.g., a firm or government agency) engages in R&D. If
technical progress is disembodied, another agent ( j) can benefit from agent
i’s R&D whether or not he purchases agent i’s products. But if technical
progress is embodied, agent j benefits from agent i’s R&D only if he pur-
chases agent i’s products. Solow conjectured that most technical progress
was embodied. In one paper (Solow 1962, p. 76), he assumed that “all tech-
nological progress needs to be ‘embodied’ in newly produced capital goods
before there can be any effect on output.”

A number of econometric studies have investigated the hypothesis that
capital equipment employed by U.S. manufacturing firms embodies tech-
nological change—that is, that “each successive vintage of investment is
more productive than the last” (Bahk and Gort 1993, p. 566). Equipment
is expected to embody significant technical progress due to the relatively
high R&D intensity of equipment manufacturers. According to the NSF,
the R&D intensity of machinery and equipment manufacturing is about 50
percent higher than the R&D intensity of manufacturing in general, and
78 percent higher than the R&D intensity of all industries.

One method that has been used to test the equipment-embodied techni-
cal change hypothesis is to estimate manufacturing production functions,
including (mean) vintage of equipment as well as quantities of capital and
labor. Bahk and Gort (1993) argued that “we can take due account of the ef-
fect of vintage by measuring the average vintage of the stock” (p. 565). Simi-
larly, Sakellaris and Wilson (2001) stated that “a standard production func-
tion estimation (in logs) provides an estimate of embodied technical change
by dividing the coefficient on average age [of equipment] by the coefficient
on capital stock” (capital’s share in total cost; p. 11).

These studies have concluded that technical progress embodied in
equipment is a major source of manufacturing productivity growth. Hul-
ten (1992) found that as much as 20 percent (and perhaps more) of the
Bureau of Labor Statistics (BLS) total factor productivity change (in man-
ufacturing) can be directly associated with embodiment—the higher
productivity of new capital than old capital. For equipment used in U.S.
manufacturing, best-practice technology may be as much as 23 percent
above the average level of technical efficiency.
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Bahk and Gort (1993) concluded that “Industrywide learning appears
to be uniquely related to embodied technical change of physical capital.
Once due account is taken of the latter variable, residual industrywide
learning [disembodied technical change] disappears as a significant ex-
planatory variable” (p. 579). And Sakellaris and Wilson (2001) estimate
that “each vintage is about 12 percent more productive than the previous
year’s vintage (in the preferred specification)” (p. 2) and that equipment-
embodied technical change accounted for about two-thirds of U.S. manu-
facturing productivity growth between 1972 and 1996.

Estimation of equations (6) and (7) enables us to test the pharmaceutical-
embodied technical progress hypothesis—the hypothesis that newer drugs
increase longevity—and to estimate the contribution of new drugs to
longevity increase.

One might be concerned that estimation of these equations could result
in overestimation of the average longevity impact of pharmaceutical inno-
vation. Suppose that the expected effect of a new drug on mean age at death
is higher for some diseases than for others: instead of a single � in equation
(6), there is a distribution of �i s. One might hypothesize that pharmaceu-
tical companies would devote most of their research budgets to diseases
where the expected effect of a new drug on mean age at death is highest,
and therefore that most new drugs would be developed for such diseases.
However a more rational investment strategy would be to invest heavily in
diseases where the total (as opposed to average) expected increase in life-
years is greatest. Suppose that the expected effect of a new drug on mean
age at death from disease A is six months and that the expected effect of a
new drug on mean age at death from disease B is one month. If ten times
as many people suffer from disease B as from disease A, then the social
(and presumably private) benefits to investment in disease B is higher, even
though the benefit per patient is lower. Since firms will not necessarily in-
vest more in diseases with high benefits per patient,26 it is not obvious that
the estimate of � will be an overestimate of the (weighted) mean of the �i s
(weighted by number of new drugs).

7.2.3 Other Medical Innovations

New drugs are not the only type of medical innovation that might be hy-
pothesized to contribute to longevity increase. Another important kind of
innovation, and one that is also regulated by the FDA, is medical devices.
If a company seeks to market a medical device, FDA approval of a pre-
market approval application (PMA) is required. Premarket approval by
the FDA is the required process of scientific review to ensure the safety and
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26. In 1983, Congress passed the Orphan Drug Act, in an attempt to encourage firms to de-
velop drugs for the treatment of rare diseases (diseases borne by fewer than 200,000 Ameri-
cans). See Lichtenberg and Waldfogel (2003).



effectiveness of all devices classified as class III devices. The FDA main-
tains a PMA database (http://www.fda.gov/cdrh/pmapage.html). From
this database, one can construct estimates of the number of PMA ap-
provals, by various characteristics. Figure 7.8 shows the number of origi-
nal PMAs reviewed by the FDA during the period 1981–2001. One char-
acteristic is the identity of the advisory committee that has jurisdiction
over the device. As table 7.8 indicates, there are nineteen advisory commit-
tees, but two committees account for more than half of all original PMAs.27

Moreover, it would be difficult to construct a “mapping” from PMAs clas-
sified by advisory committee to mortality data classified by ICD9 code.
PMAs are also classified by “product code,” but the number of distinct
product codes is extremely large (almost as large as the number of PMAs—
over 5,000), they do not appear to be hierarchically organized, and it would
be difficult to construct a mapping from product codes to ICD9 codes.
(Unfortunately, neither First DataBank nor anyone else produces a Device
Indications Master Table.)28
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Fig. 7.8 Number of original medical device PMAs reviewed by the FDA, 
1981–2001

27. Over 90 percent of PMAs are “supplemental” PMAs: applications to modify the de-
sign, manufacturing, or other aspects of original PMAs.

28. The PMA database includes “device description/indications” information, but disease
coding of this information would be challenging and costly. Here is sample information about
PMA Number P010054, Approval for the Elecsys Anti-HBs Immunoassay and Elecsys Pre-
ciControl Anti-HBs: “The Elecsys Anti-HBs Immunoassay is indicated for: The qualitative
determination of total antibodies to the hepatitis B surface antigen (HBsAg) in human serum
and plasma (EDTA). The electrochemilumin-escence immunoassay ‘ECLIA’ is intended for
use on the Roche Elecsys 2010 immunoassay analyzer. Assay results may be used as an aid in



Hence, due to data limitations, the models we will estimate will include
measures of only one type of medical innovation: new drugs. Suppose that,
in reality, mean age at death depends on both new drugs and other medical
innovations, but the model we estimate includes only the first variable. If
the rates of pharmaceutical and other medical innovation are positively
correlated across diseases—diseases with high rates of new drug introduc-
tion also have high rates of other medical innovations—then the drug
coefficient will overstate the effect of new drugs per se. It is not clear that
there is a positive correlation: new drugs and other medical innovations
may be substitutes, rather than complements.29 But, for the sake of argu-
ment, suppose that the correlation is positive. Indeed, suppose that there is
a perfect positive correlation and that the estimated regression coefficients
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Table 7.8 Distribution of medical device PMAs reviewed by the FDA, 1981–2001

No. of Cumulative percentage Advisory 
original PMAs of all original PMAs committee

338 38 Ophthalmic
168 57 Cardiovascular
74 65 Microbiology
56 71 General and plastic surgery
45 76 Immunology
32 80 Gastroenterology and urology
28 83 Orthopedic
23 86 Radiology
22 88 Obstetrics/Gynecology
18 90 General hospital
17 92 Clinical chemistry
15 94 Anesthesiology
12 95 Ear, nose, and throat
12 97 Dental
10 98 Physical medicine
8 99 Neurology
6 99 Hematology
6 100 Clinical toxicology
1 100 Pathology

the determination of susceptibility to hepatitis B virus (HBV) infection for individuals prior
to or following HBV vaccination, or where vaccination status is unknown. Assay results may
be used with other HBV serological markers for the laboratory diagnosis of HBV disease as-
sociated with HBV infection. A reactive assay result will allow a differential diagnosis in in-
dividuals displaying signs and symptoms of hepatitis in whom etiology is unknown. The de-
tection of anti-HBs is indicative of laboratory diagnosis of seroconversion from hepatitis B
virus (HBV) infection. The Elecsys PreciControl Anti-HBs is indicated for: The preciControl
Anti-HBs is used for quality control of the Elecsys Anti-HBs immunoassay on the Elecsys
2010 immunoassay analyzer. The performance of the PreciControl Anti-HBs has not been es-
tablished with any other Anti-HBs assay.”

29. If the correlation is negative, we would underestimate the benefit of new drugs per se.



capture the effect of medical innovation in general, not just new drugs. Un-
der certain reasonable assumptions, we can still identify the contribution
of new drugs per se to ability to work.

Suppose that the marginal health benefit of $1 million of pharmaceut-
ical R&D is equal to the marginal health benefit of $1 million of other
biomedical R&D. Then the fraction of the overall health benefits of bio-
medical research attributable to new drugs is equal to the ratio of pharma-
ceutical R&D expenditure to total biomedical R&D expenditure. Accord-
ing to the Global Forum for Health Research (2002), the pharmaceutical
industry accounted for 42 percent of global health R&D funded by ad-
vanced and transition countries in 1998. If only 42 percent of the estimated
effect of new drug approvals on mean age at death is attributable to new
drugs (and the remaining 58 percent is attributable to other medical inno-
vations), then we should multiply the benefit estimates we obtain by 42 per-
cent. We will therefore calculate the social (internal) rate of return to new
drug development under two alternative assumptions: (a) new drugs ac-
count for 100 percent of the estimated impact on mortality, and (b) new
drugs account for 42 percent of the estimated impact on mortality.

7.3 Measurement of Changes in the Age Distribution of Deaths, 
by Cause of Death

We used the Compressed Mortality File (CMF) to measure changes in
the age distribution of deaths, by cause of death. The CMF is a county-
level national mortality and population data base spanning the years
1968–99, produced by the Office of Analysis and Epidemiology, National
Center for Health Statistics, Centers for Disease Control and Prevention.
The mortality database of the CMF is derived from the U.S. records of
deaths that occurred in 1979–99.

Deaths are classified by (a single) underlying cause in the CMF, as well 
as in other mortality databases, such as the World Health Organization’s
Global Mortality Database.30 The person completing the death certificate
is instructed to report, according to his or her best medical opinion, “the
chain of events leading directly to death, proceeding from the immediate
cause of death (the final disease, injury, or complication directly causing
death) to the underlying cause of death (the disease or injury that initiated
the chain of morbid events which led directly to death).”31 For example,
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30. See http://www3.who.int/whosis/menu.cfm?path�whosis.mort&language�english.
Misallocation of deaths by cause would result in measurement error in the dependent vari-
able. This would increase the standard error of � but would not necessarily result in any bias.
Since multiple cause-of-death data files are available for the United States (see http://www
.cdc.gov/nchs/products/elec_prods/subject/mortmcd.htm#description1), this issue may be
explored in future research.

31. See the CDC’s “Instructions for completing the cause-of-death section of the death cer-
tificate,” http://www.cdc.gov/nchs/data/dvs/cod.pdf.



part I of the cause-of-death section of the certificate might be completed as
in table 7.9.

The system used to classify deaths changed in 1979 and again in 1999.
The three classification schemes are different enough to make direct com-
parisons of cause of death difficult, so our analysis is confined to the period
1979–98.32

Counts and rates of death can be obtained by place of residence (U.S.
state and county), age, race (white, black, and other), gender, year, and
underlying cause of death (four-digit ICD code or group of codes). There
are seventeen age groups: under 1 day, 1–6 days, 7–27 days, 28–364 days, 1–
4 years, 5–9 years, 10–14 years, 15–19 years, 20–24 years, 25–34 years, 35–
44 years, 45–54 years, 55–64 years, 65–74 years, 75–84 years, over 85 years,
and unknown. We excluded infant deaths (age less than one year) and
deaths at unknown ages. For each approximately two-digit ICD9 code and
year, we calculated two statistics: mean age at death,33 and the fraction of
deaths that occurred before age sixty-five.

Data on the number of deaths, population, and the crude death rate, by
age group for 1979 and 1998 are presented in table 7.10. The crude death
rate declined in every age group except the highest (over eighty-five years).
Despite this, the crude death rate for the entire population increased, due
to aging of the population. The fraction of deaths occurring before age
sixty-five decreased from 32 percent in 1979 to 24 percent in 1998.

Figure 7.9 shows a comparison of mean age at death (from all causes) to
life expectancy at birth over the period 1979–97 (Anderson 1999).34 Life ex-
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Table 7.9 Sample cause-of-death section of death certificate

Approximate interval 
between onset and death

Rupture of myocardium minutes
(immediate cause)

Due to (or as a consequence of ): Acute myocardial infarction 6 days
Due to (or as a consequence of ): Chronic ischemic heart disease 5 years

(underlying cause)

32. Data for 1979–99 are available at the website http://wonder.cdc.gov/mortsql.html.
33. We assumed that deaths in a given age interval occurred at the mean of the lower and

upper ages of the interval; for example, deaths at ages 1–4 occurred at age 2.5. We assumed
that deaths at ages greater than 85 occurred at age 89.5.

34. Life expectancy (ex)—the average number of years of life remaining for persons who
have attained a given age (x)—is the most frequently used life table statistic. Calculation of
the complete life table is derived from the probability of death (qx), which depends on the
number of deaths (Dx ) and the midyear population (Ps ) for each single year of age (x) observed
during the calendar year of interest. There are two types of life tables: the generation or co-
hort life table and the current life table. The current life table (upon which these life ex-
pectancy figures are based) does not represent the mortality experience of an actual cohort.
Rather, the current life table considers a hypothetical cohort and assumes that it is subject to



pectancy at birth is higher than mean age at death. For example, in 1997
life expectancy at birth was 76.5 years and mean age at death was 71.9
years. However, the 1979–97 increase in mean age at death (4.0 years) was
greater than the increase in life expectancy at birth (2.6 years).

7.4 Empirical Results

Estimates of equations (6) and (7) are presented in table 7.11. All equa-
tions are estimated via weighted least squares, where the weight is equal to
the number of deaths.35 In the first column, the dependent variable is mean
age at death, drugs not labeled for a given indication are excluded, and we
do not distinguish between priority-review and standard-review drugs.
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Table 7.10 Number of deaths, population, and crude death rate, by age group, 1979 and 1998

1979 1998

No. of deaths No. of deaths 
Death per 100,000 Death per 100,000 

Age group count Population population count Population population

1–4 years 8,108 12,637,000 64 5,251 15,189,749 35
5–9 years 5,278 16,947,000 31 3,530 19,920,862 18
10–14 years 5,868 18,445,000 32 4,261 19,241,808 22
15–19 years 21,085 21,348,000 99 13,788 19,539,327 71
20–24 years 27,634 21,096,000 131 16,839 17,674,134 95
25–34 years 47,941 36,038,000 133 42,516 38,774,410 110
35–44 years 57,723 25,114,000 230 88,866 44,519,859 200
45–54 years 135,265 22,935,000 590 146,479 34,584,884 424
55–64 years 286,966 21,448,000 1,338 233,724 22,675,970 1,031
65–74 years 449,255 15,338,000 2,929 458,982 18,395,293 2,495
75–84 years 493,676 7,598,000 6,497 681,663 11,952,189 5,703
Over 85 years 328,725 2,197,000 14,962 612,575 4,053,650 15,112

Total 1,867,524 221,141,000 844 2,308,474 266,522,135 866

Source: CDC Compressed Mortality File.

the age-specific death rates observed for an actual population during a particular period.
Thus, for example, a current life table for 1997 assumes a hypothetical cohort subject through-
out its lifetime to the age-specific death rates prevailing for the actual population in 1997. The
current life table may thus be characterized as rendering a “snapshot” of current mortality ex-
perience and shows the long-range implications of a set of age-specific death rates that pre-
vailed in a given year.

35. Let Nit represent the number of deaths from disease i in year t and Ni represent the av-
erage annual number of deaths from disease i during 1979–98. The estimates obtained when
the weight is Ni are very similar to the estimates obtained when the weight is Nit. This reflects
stability over time in the relative number of deaths caused by different diseases. About 81 per-
cent of the increase in mean age at death during the period was within-disease increase; only
19 percent was between-disease increase (attributable to a changing mix of diseases).



The coefficient on the total stock of drugs is positive but only marginally
significant ( p-value � .11). The second column is the same, except that un-
labeled drugs listed in the NDDF Drug Indications Master Table are in-
cluded. This has a modest positive effect on the point estimate of � but re-
duces its standard error, so that the estimate is now highly significant
( p-value � .02). This is consistent with the American Medical Association
Council on Scientific Affairs’ observation that “the prevalence and clinical
importance of prescribing drugs for unlabeled uses are substantial” and
with the hypothesis that increases in the stock of (labeled and unlabeled)
drugs to treat a condition increase the mean age at which people die from
that condition.

In the equations reported in columns (3) and (4), the dependent variable
is an alternative statistic of the age distribution of deaths: the fraction of
deaths that occur before the age of sixty-five. These estimates seem to con-
firm the estimates in the first two columns: when unlabeled indications are
excluded, � is insignificantly different from zero, but when they are in-
cluded, � is negative and highly significant, indicating that increases in the
stock of drugs reduce the probability of dying before the age of sixty-five.

In columns (5) and (6), the dependent variable is again mean age at
death, but the stock of drugs is classified by therapeutic potential (i.e. dis-
aggregated into priority-review and standard-review drugs). Whether or
not unlabeled indications are included, �P (the coefficient on the stock of
priority-review drugs) is positive and highly significant, and �S (the coeffi-
cient on the stock of standard-review drugs) is insignificantly different
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Fig. 7.9 Mean age at death versus life expectancy at birth, 1979–97
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from zero. This is not surprising, since, as discussed earlier, priority-review
drugs are those that represent a “significant improvement compared to
marketed products, in the treatment, diagnosis, or prevention of a disease,”
while standard-review drugs are those that “appear to have therapeutic
qualities similar to those of one or more already marketed drugs.” Once
again, the estimate of �P is larger and more significant when unlabeled in-
dications are included than it is when they are excluded.

Columns (7) and (8) report analogous regressions, in which the depend-
ent variable is the fraction of deaths that occur before the age of sixty-five.
Once again, we cannot reject the null hypothesis that the stock of standard-
review drugs has no effect on mortality, but the hypothesis that the stock of
priority-review drugs has no effect on mortality can be rejected, especially
when unlabeled indications are included.

Since �S is not significant in any equation in columns (5)–(8), in columns
(9)–(12) we estimate models that include only the stock of priority-review
drugs. The estimates of �P in columns (9)–(12) are fairly similar to their
counterparts in columns (5)–(8). We will use the estimate of �P in column
(10) to evaluate the contribution of pharmaceutical knowledge-capital
accumulation to the increase in the mean age at death during the period
1979–98.

Sample mean36 values of the dependent and independent variable in
1979 and 1998 are shown in table 7.12. Mean age at death increased by 3.8
years from 1979 to 1998: �AGE_DEATH � 3.8 years. The mean stock of
priority-review drugs increased by 6.0 drugs: �PRI_STOCK � 6.0 drugs.
The estimated contribution of the increase in the stock of priority-review
drugs to the increase in mean age at death is �P � �PRI_STOCK � .065 �
6.0 � 0.39 years. The increase in the stock of priority-review drugs is esti-
mated to have increased mean age at death by 0.39 years (4.7 months) dur-
ing this period. Hence, about 10 percent of the total increase in mean age
at death is due to the increase in the stock of priority-review drugs.37

Now we will attempt to compare the value of the longevity benefit of
pharmaceutical knowledge-capital accumulation to its cost. During the
period 1979–98, 508 NMEs (about 25 per year) were approved by the
FDA. The Office of Technology Assessment estimated that the average
cost of an NME approval is $359 million.38 More recently, DiMasi, Han-
sen, and Grabowski (2003) examined the research and development cost 
of sixty-eight randomly selected new drugs by conducting a survey of ten
pharmaceutical firms. These data were used to estimate the average pre-
tax cost of new drug development. The costs of compounds abandoned
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36. These are weighted means, weighted by the number of deaths.
37. This estimate may be conservative, because it includes only the within-disease increase

in mean age at death.
38. This is the cost of all NMEs approved—both priority-review and standard-review.

About 40 percent of NMEs are priority-review NMEs.



during testing were linked to the costs of compounds that obtained mar-
keting approval. The estimated average out-of-pocket cost per new drug
was $403 million (in 2000 dollars). They estimated that, on average, $121
million was spent during the preclinical phase and that $282 million was
spent during the clinical phase. As figure 7.4 indicates, during the 1980s
and 1990s the average duration of each phase was about six years, and the
clinical phase was followed by an approval phase that lasted about two
years. We will assume that annual expenditures were constant within each
of the three phases: the industry spent about $20 million per drug in each
of the first six years of drug development, $47 million per drug in each of
the next six years (years 7–12) of drug development, and nothing during
the approval phase (years 13–14). Hence, total expenditure on all 508
NMEs was $10.2 billion during each of the first six years of drug develop-
ment, and $23.9 billion during each of the next six years (years 7–12) of
drug development.

The increase in the stock of priority-review drugs is estimated to have in-
creased mean age at death by 0.39 years during this period. There are about
2 million deaths per year, so the total number of life-years gained per year
is 0.39 � 2 million � 800,000 life-years per year. To compute the social rate
of return to new drug development, one must assign a value to a statistical
life year (VSLY). Cost-effectiveness guidelines issued by the National
Institute of Health (NIH) are based on a VSLY in the $50,000–$100,000
range.39 Murphy and Topel (2003) argue that $150,000 is a more appropri-
ate figure for the VSLY. I will calculate the social (internal) rate of return
using alternative assumed values of a statistical life-year, ranging from
$25,000 to $150,000. However, if we suppose, for concreteness, that the
VSLY is $50,000, then the value of the annual gain in life-years is 800,000
� $50,000 � $40 billion. Presumably, knowledge capital does not depreci-
ate (although it can be rendered obsolete by future knowledge capital ac-
cumulation), so even if no new drugs were approved after 1998, people
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Table 7.12 Sample mean values of the dependent and independent variables in 1979
and 1998

Year Mean age at death Stock of priority-review drugs

1979 69.6 4.6
1998 73.4 10.6

Change 3.8 6.0

Note: Means are weighted by the number of deaths.

39. According to these guidelines, a medical procedure is cost effective if the associated cost
per life-year gained is below $50,000 and is not cost effective if the associated cost per life-year
gained is above $100,000. If the associated cost per life-year gained is in the range $50,000–
$100,000, cost-effectiveness is indeterminate.



would continue to experience the 0.39-year higher life expectancy in all fu-
ture years. In other words, the $40 billion may be viewed as an annuity,
which the American public would start to receive fifteen years after the be-
ginning of drug development.

Social (internal) rates of return to new drug development are shown in
figure 7.10. The upper line shows the internal rate of return (IRR) for
different assumed VSLY values, also assuming that 100 percent of the esti-
mated longevity increase is due to new drugs per se (not to other medical
innovations). For the range of VSLY values underlying the NIH cost-
effectiveness guidelines, the IRR is in the 10–15 percent range. A VSLY of
$150,000 implies an 18 percent IRR.

The lower line shows the IRR for different assumed VSLY values, as-
suming that only 42 percent of the estimated longevity increase is due to
new drugs per se. As noted above, R&D investment by pharmaceutical
firms is estimated to account for 42 percent of all (public and private) bio-
medical R&D investment. The IRR for a VSLY of $25,000 is not defined
(i.e., it is negative). However, $25,000 is far below the range of VSLY values
underlying the NIH cost-effectiveness guidelines. In this range ($50,000–
$100,000), the IRR is in the 6–9 percent range. A VSLY of $150,000 implies
a 12 percent IRR.

For several reasons, these IRR estimates are likely to be conservative.
The estimates along the lower line assume that pharmaceutical innovation
is perfectly correlated across diseases with other medical innovation. In re-
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Fig. 7.10 Social rate of return to new drug development under 
alternative assumptions
Note: When new drugs are assumed to account for 42 percent of the estimated longevity
increase, and the value of a statistical life-year is assumed to be $25,000, the internal rate of
return is not defined (i.e., it is negative).



ality, new drugs and other medical innovations are less than perfectly com-
plementary; they may sometimes even be substitutes. None of the estimates
account for the existence of benefits other than increased longevity, in-
cluding reduced hospital expenditure and reduced limitations on work and
other activities (see Lichtenberg 2001, 2005). Moreover, these rates of re-
turn reflect only the value of increased longevity among Americans, who
consume only about 5 percent of the world’s drugs, by volume.

7.5 Summary and Conclusions

People value leisure time as well as goods, so longevity increase is an im-
portant part of economic growth, broadly defined. R&D is the principal
source of economic growth, and the pharmaceutical industry is the most
R&D-intensive sector of the economy. In this paper we have assessed the
contribution of pharmaceutical R&D to longevity increase (hence to eco-
nomic growth) by analyzing the relationship between FDA approvals of
NMEs and changes in the age distribution of deaths, using longitudinal
disease-level data on all diseases.

We computed the stock of drugs available (i.e., previously approved by
the FDA) to treat a given condition in a given year by combining FDA data
with data from First DataBank’s National Drug Data File. We used the
CDC’s Compressed Mortality File to measure changes in the age distribu-
tion of deaths, by cause of death.

The estimates indicated that approval of standard-review drugs—drugs
whose therapeutic qualities the FDA considers to be similar to those of al-
ready marketed drugs—has no effect on longevity, but that approval of pri-
ority-review drugs—those considered by the FDA to offer significant im-
provements in the treatment, diagnosis, or prevention of a disease—has a
significant positive impact on longevity. Increases in the stock of (labeled
and unlabeled) drugs to treat a condition increase the mean age at which
people die from that condition, and reduce the probability of dying before
the age of sixty-five.

The increase in the stock of priority-review drugs is estimated to have in-
creased mean age at death by 0.39 years (4.7 months) during the period
1979–98. Ten percent of the total increase in mean age at death was due to
the increase in the stock of priority-review drugs. The social rate of return
to new drug development appears to have been quite high during the pe-
riod 1979–98.

But the average annual number of priority-review drugs approved by the
FDA during the period 2000–2003 (8) is only 60 percent as great as the av-
erage annual number of priority-review drugs approved by the FDA dur-
ing 1990–99 (13.4).40 Hence, there has recently been a 40 percent decline in
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40. See http://www.fda.gov/cder/rdmt/pstable.htm.



the average annual contribution of pharmaceutical innovation to longevity
increase. Hopefully this decline will soon be reversed.
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Comment Eric J. Bartelsman

The main contribution of this paper is to provide estimates of the longevity
impact of pharmaceutical R&D and estimates of the rate of return to this
R&D. The bottom line of the paper is that pharmaceutical R&D investment
provides a (monetized) return to U.S. residents of 18 percent through the
effect of new and improved drugs on longevity. Further, 10 percent of the
increase in longevity between 1979 and 1999 can be attributed to drug use.
The study is important for a couple of reasons. The estimates may help guide
policy to reduce the wedge between social and private returns to R&D, such
as policy regarding intellectual property rights, patents, subsidies to R&D,
and funding to the National Science Foundation, to name a few. Next, the
paper contributes directly to the topic of this volume—namely, national ac-
counting for intangible investment—by addressing questions such as these:
what is the service flow generated by the unobserved stock of knowledge
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built up by past research expenditures? How does R&D add to our wealth?
How does the accumulation over time work its way into GDP figures?

In Lichtenberg’s research, detailed information is drawn from a wide va-
riety of sources, linked together, and aggregated to construct a data set
with variation in the dimensions needed to identify the effect to be esti-
mated. The choice of estimation strategy and the data-handling proce-
dures were to a large extent predicated on the characteristics of the avail-
able raw data, and to a lesser extent on a theory describing the effect of
pharmaceutical R&D on welfare of the nation.

The theory says that the stock of pharmaceutical knowledge is an input
into the production function for “extended income,” a welfare measure
that includes leisure time and traditional GDP. The theory further states
that net additions to the stock of knowledge are the output of an innova-
tion function that has R&D performance as an input, alongside spillovers
from the existing stock, as well as depreciation and obsolescence. The the-
ory is the canonical endogenous growth model, with an innovation func-
tion and an output production function.

The empirical work requires molding the theory to fit the possibilities al-
lowed by the available data. The rate of return on R&D calculation done in
the paper is effectively simple. To start, a measure of real output is needed.
To avoid the difficult issues of deflation and quality adjustment, a real in-
dicator is defined—namely, the increase in longevity. Some possible refine-
ments could include different weights for increases in longevity for differ-
ent age groups or for increases in longevity for individuals in other
drug-using countries (these are set to zero in the output measure consid-
ered here).

On the other side of the production function, there is a real input mea-
sure. As proxy for the productive flow from a stock pharmaceutical knowl-
edge, the paper uses a count of the number of approved drugs that are
available on the market each year to deal with each disease. The mean age
of death or the percentage of people under age sixty-five is regressed on the
number of approved drugs, with variation by disease over time, and fixed
effects.

While the method is straightforward, the data collection and organiza-
tion turn out to be of crucial importance. Figure 7C.1 shows how the
sources of data were used. The output indicator derives from a CDC data
file on deaths per year by disease. The data used in the paper are aggregated
by discreet age groups, while supposedly the collection of the data was by
actual age. Because the lengthening of age through drugs may take place at
the high tail of the distribution, the concern is that the top-coding of the
discrete age categories may create bias in the estimates.

The other place where categorization and aggregation may cause diffi-
culties is in the definition of disease. At the highest level of the disease clas-
sification is the case where you get sick and then die. Lower down in the
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hierarchy, you get a sniffle from some specific virus and then you die. The
question is this: at what level of aggregation do you have the proper varia-
tion in your X and Y variables to get the best result? And how can you de-
cide upon the proper level in the disease hierarchy to match up the infor-
mation on drugs and death? Unfortunately, the manner in which the data
are collected and published limits the ability of the researcher to define the
appropriate match.

Other issues involved in calculating the rate of return are methods for
valuing life-years. A considerable literature exists on this topic, and the
paper uses standard estimates. More interesting for the calculation is the
choice to use a stock of knowledge as the source for flow benefits to
longevity. The direct approach would be to acknowledge that the R&D is
embodied in the drugs and that the increase in person years actually comes
from getting the prescription for the drugs. Without merged data on indi-
vidual drug use and cause of death, the paper needs to work with the
knowledge stock.

The knowledge stock is proxied by a very simple measure: number of ap-
proved drugs available each year for each disease. However, it is difficult to
assess whether it’s really the appropriate measure. A nice check on the va-
lidity, giving some more confidence in the measure, is to separately con-
sider priority-review drugs.

The stock measure was compiled by merging a file on drugs by disease
with a file on drug approvals by year, as shown in figure 7C.1. Now, the only
file available of drugs by disease is from 1999. That may be a bit of a prob-
lem. If certain drugs were on a similar file in earlier years but got dropped
subsequently, there may be an upward bias in the stock increase.

As an alternative, since the pharmaceutical knowledge is actually
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embodied in the drugs, data on actual prescriptions by drug, by vintage of
the approval date, provide a better measure of flows from the stock. The re-
gression coefficient on impact could then be allowed to vary by vintage and
would allow some estimate of the rate of obsolescence. That seems like a
difficult data collection problem, but it is precisely the type of economic
data that the Census Bureau is mandated to collect: sales of goods by prod-
uct class. Scanner data from pharmacies would do the trick. If the nomen-
clature of the products sales data from the census matched those from the
drug approval process, the proposed method would be a snap.

Besides data issues, real life-and-death problems make the estimation
difficult. The interactions between diseases, cures, and causes of death re-
quire attention. The cause of death noted in the data file is the underlying
cause precipitating the need for care, not the immediate cause of death. If
certain drugs delay the onset of the immediate cause, this will not be mea-
sured. For this, a framework is needed with disease histories by person and
transition matrixes by state. The empirics would gauge the effect of drugs
on transitions from wellness to disease to another disease to the absorbing
state of death.

As a suggestion for more feasible future work, I would like to see an ex-
plicit statement of the knowledge production function. This would link the
R&D expenditures to additions to the stock, and the available flow from
the stock would relate to the real output. In this framework longevity is a
function of drug prescriptions, and the knowledge production function
shows the arrival rate of the new drugs as a function of the R&D inputs.
Some recent work on simultaneous models of production and innovation
may guide further research.

This additional work would bring out the need to look at obsolescence
of complementary inputs. Which wealth stocks related to health are writ-
ten off owing to new drugs? Lichtenberg mentioned medical devices as be-
ing a possible reason why longevity could increase. I worry about the in-
teraction between the various stocks on adding to the production of real
output. For measuring asset stocks, it thus may not suffice for statistical
agencies to do a study on depreciation rates once every few decades.

Finally, I think the paper misses closure. The paper never provides an es-
timate for private returns to R&D, so I can’t evaluate the policy related to
the wedge between social and private returns. Nor does the paper explicitly
make a statement about the valuation of the current stock of intangible
wealth from pharmaceutical knowledge. Having a ballpark guess of how
large the intangible wealth of the sector is relative to its tangible wealth
would be useful.

My closing remarks are not directly related to the paper but are sugges-
tions for intangible investments that statistical agencies could make to im-
prove the ability of researchers to undertake projects of the type we have
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just discussed. Figure 7C.1 shows a schematic of the research approach
that was used in the paper. The research was feasible because data from
different sources were made conformable and put into a database where the
endogenous and exogenous variables were defined over the same units, in
this case disease and year. The difficulty and time involved in this study lie
in lining up the classifications to match. If the underlying data are collected
using classifications that are orthogonal, no useful matching could have
been done. For example, data on drug sales, or R&D expenditures by field
of endeavor, could not easily be matched to the disease categories used in
the study.

The basic strategy of statistical agencies is to line up data from various
sources into so-called satellite accounts, at fairly high levels of aggrega-
tions. For this paper, satellite health accounts with dimensional detail that
allowed linking of the various data sources would have helped.

A statistical system for the new economy would allow researchers access
to data in a manner that allows complicated studies at relatively low cost in
time. The statistical agencies would then not only invest in primary data
collection and tabulation of results into static tables. They would collabo-
rate on definitions of classifications and hierarchies needed to related data
collected from disparate sources. Figure 7C.2 presents a view of such a sta-
tistical system. The intangible investments needed for this are similar to the
expenditures being made at present in the business sector, as other papers
in this conference have discussed. Firms harness information technology
to change structure within their organization and the way they transact
with other organizations. This is done by investing in data dictionaries that
describe in as few dimensions as possible, but in a very detailed manner,
everything about the products that they are buying and selling.

The collection agencies should do their best to listen to an integrating
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organization—a bureau of standards—to decide on the classification
schemes to use. The agencies should review all their separate little data-
bases and build the metadata necessary so that a researcher or policymaker
with a question can remotely design a research protocol and write the pro-
gram code. The program code would get passed through the metadata and
be translated to generate research outcomes from the underlying data
sources. I think that the investments in this direction by statistical agencies
would build a stock of data that would greatly enhance the ability to un-
dertake the type of projects as presented by Lichtenberg.
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