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Annals of Economic and Social Measurement, 6/3, 1977

GENERALIZED LEAST SQUARES APPLIED TO TIME
VARYING PARAMETER MODELS

B DONALD T. SANT*

This paper shows the formal equivalence of Kalman filtering and smoothing techniques to
generalized least squares. Smoothing and filtering equations are presented for the case where
some of the parameters are constant. The paper further shows that generalized least squares
will produce consistent estimates of those parameters that are not time varying.

When linear models have been used to model economic problems, it has
been useful many times to allow for parameter variation across observa-
tions. Various statistical procedures have been developed to estimate and
test this hypothesis of nonstable regression coefficients.' Recently, it has
been recognized that a technique known as the Kalman filter has useful
applications in estimating economic models with nonconstant coeffi-
cients.2 The purpose of this paper is to show the formal equivalence of
Kalman filtering and smoothing techniques with generalized least squares,
to derive the Kalman filter and smoother. without assuming all of the
parameters are subject to stochastic variation, and to show that gen-
eralized least squares produces consistent estimates of those parameters
which are not subject to stochastic change. An immediate use of this last
result is in the model of Cooley and Prescott (1973, 1976). In their model
(1973), only the intercept is subject to stochastic change, so generalized
least squares will produce consistent estimates of all the slope coefficients.

The framework for presenting the filtering and smoothing techniques
will be in a linear time-varying parameters model where the regression
parameters follow a simple random walk.3 Suppose the scalar y1 is gen-
erated by the model

(I) yt = x1/31 +

where x1 is a k-dimensional row vector of exogenous variables at time or
observation t. It is also assumed that the k-dimensional column vector
evolves according to the structure

* Helpful comments of Gregory Chow and Roger Gordon are gratefully acknowledged.
See the October 1973 issue of the Annals of Economic and Social Measurement for a

collection of papers describing the different techniques and models that have been analyzed.
2For a description of the algorithm see Athans (1974) and for a use in testing hy-

pothesis see Garbade (1975).
3More complex parameter variation can be analyzed, but it mainly serves to complicate

the mathematics without substantially altering the results.
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where , and u, are unobserved
error terms with mean 0. There are T or-

dered observations on y, and x,, t = I, T and , and u, have variances-
covariances described by

E(e,)
E(u1uJ) = cr2P

E(,u) = 0.where is the Kronecker delta and P is assumed known. The significance
of the filtering and smoothing algorithms is that they give estimates of the
/3, based on certain subsets of the T observations and what the relation-
ships are between the different estimates.If we let /3,(z') be an estimate of/3, using observations I through t' ando2R,(i') be the covariance matrix of Ø,(t'), the Kalman filter is a sequen-tial algorithm for estimating 3,(t) given by

f,(t) 3,(z - I) + K,(y, - x,,(t I))where

K, = R,(t - 1)x;x,R,(t l)x + l]R,(i) = R,(z - I) K,x,R,(i
1) = - I)

R,(t - I) = R,(z I) + P.4

I. EQUIvALENCE
WITH GENERALIZED

LEAST SQUARES.If we stack the observations into a form amenable to the application
of GLS (generalized least squares), the proof of equivalence follows fromapplying certain lemmas on matrix inverses given in the appendix. Let

Y'=

=

4Various algorithms are given in Sage and Melsa (197!).
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(6) ,(t) /3,(t - I) + K,(y, - x,,(t - 1))where

(7) K, = R,(t l)x,'[x,R,(t - 1)x + l]'(8) R,(t) = R,(t - 1) - K,x,R,(z - 1)(9)
fi,(z - 1) = -(t 1)(10) R,(t - 1) = R,_(i - 1) + P.4

'-I
/3, = /3- + U,where and u, are unobserved error terms with mean 0. There are T or-dered observations on y, and x,, t = I, T and , and u, have variances-

covariances described by

E(11) =

E(u1uJ) = &cr2P
E(,U) 0.where 5 is the Kronecker delta and P is assumed known. The significance

of the filtering and smoothing algorithms is that they give estimates of the
/, based on certain subsets of the T observations and what the relation-
ships are between the different estimates.If we let,(t') be an estimate of3, using observations 1 through t ando2R,(t') be the covariance matrix of 9,(z'), the Kalman filter is a sequen-tial algorithm for estimating 3,(t) given by



with
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o x2

o o3
A1 =

0 0

The relationship of the first t observations is now given by
(II) YI=XI3I+E1_AU
The covariance matrix of the error terms in equation II is
(12) E(E1 - A1U1)(E1 - A1U1)' + A1(111 ® P)A)]5 =
Applying GLS to equation II gives us

If one is estimating recursively, i.e., for the appropriate stacking proce-dure

(15) = X111_1 + E11 - A11U11
a GLS estimate of91_ using the first t - I observations is

- I) =

R1_(t - I) =

The presentation of the proof is to show that one can obtain the relation-ships given by equations 6 through 10 from the relationships given byequations 13 through 17.
Let G1 be the (t - I) >< t dimensional matrix, G1 = [I_0], whichremoves the last row of a >< ,f matrix, so that

G1Y1 = + G1E1 - G1A1U1

= X131 + E11 - G1A1U1.
GLS applied to 18 gives us

31(t - I) = (X1(G11G)-'x1 )'X (G11G)-1 Y1.

5The notation 'k will mean the identity matrix of dimension k.

=
and

R1(t) =
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O x2 x2
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Using the definition of given in 12
GI1G = G1G + G,A,(I®P)AG

= G1G + (AX11)(I®P)
= l + A1(I,_2®P)A; + X,_PX_1
= + X1PX.

Using lemma 3 in the Appendix, equation 19 can be written as- 1) = (R1(t - 1) + P)X1ffl + X1IPX1) Y= (R1(t - 1) + P)
(X1I21 Y,_ - (R(t - 1) + P)PX_ Y1_)= f,1(t 1)

where lemma 1 in the Appendix has been used for + XPX_)*This along with lemma 3 demonstrates equations 9 and 10 of the Kalman
filter. For the rest of the derivation consider rewriting equation 11 as

(22) /G, Y\ /G, x,\
I1 +\yj \x,/

/GE1\ /G,A1U,

\ I 0Then it follows that equation 13 is equivalent to
(23) 131(t) = (X 1(Gc1G)X, + xx)'(X ,(G7I2,G) Y + xy1),Using lemma 4, equation 23 becomes

- 1) + x,R1(t - l)x)R1(t - l)xxtRe(t _ 1)(X_(G,21G)' + xy,) = 3,(t - 1) - K1x,/'3,(t - 1)+ (1 + xR1(t - l)x)Ky, - Kx1R,(t - l)xy,
= (t - 1) + K(y - x113,(t - 1)).This completes the derivation of equation 6 through 10 since equation 8 isjust lemma 4.

To point out the major differences between this derivation and Dun-
can and Horn (1972) one should observe that it was not required for P tobe nonsingular to derive the filtering equations so it permits some of theparameters to be constant. Further, a proper prior distribution for is

not necessary to get estimating
equations since the filter can be initialized
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at observation k + I by applying GLS to the first k observation and ob-taining the estimate 13k(k)

II. SMOOThING
The filtering algorithm does not use all the information available in Tobservations to estimate the parameters /9k, t = 1, T. Smoothing algo-rithms re available which, when given estimates of the form j31(t) andobservations taken at times ( + 1, T, use all the relevant sample informa-tion in estimating each /9 If we call estimates of , using all observations1, Tf,(T), and o2R,(T) the covariance matrix of ,(T), an algorithm forrelating all smoothed estimates would be of the form

(3(T) = 9(t) + -
H, = R1(t){R(i) + P}

R1 (T) = R,(t) + H, [R, 1(T) -
These estimating equations are equivalent to GLS applied to all the ob-serv atio n S.

If we let

Y(+I,T =(

Yr /
=

/

=
X2 0 0

U1+IT =

we can relate future observations to 1, as
(27) Y,+1r = X1,f3 + E$+l,T + A,+ITU,Ir
Applying generalized least squares to equation 27 would give us an esti-mate of, say (t + 1, T) based on observations t + 1 through T. As in
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we can relate future observations to fi, as
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\y; /
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x1+1 0
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the last section a "backward" filter can be derived utilizing the structureof equation 27 to obtain the recursive estimating equations
+ I, T) = + I, T)

(t + I, T) = + I, T) + P
where 2Vk(i, j) has the interpretation of being the covariance matrix ofthe GLS estimate of/3k using the consecutive observation i throughj.The generalized least squares estimate of31 using all the observationscan finally be obtained by combining i31(t) and /31(t + I, T) resulting inthe estimate

= (R(t) + V'(t + I, T))'(Rrl(t)(t)
+ V(t + l,T)1(t + l,T)).

Equation 30 can be shown to be equivalent to the sequential procedure ofequations 24 through 26 by combining the forward and "backward" filter-ing equations.
To simplify notation, let

B1 = 131(t) =

B2 = 1(t + l,T) = 11(t + I, T)
R = R(t)

V = +(t + l,T).
Using the filtering equations we know that

R11(t) = R + P
J'(t + l,T) = V + p

so the GLS estimates of31 and using all observations are
p1(T) = [R + (V + P)]-'[R-'B1 + (V + P)'B2]
+(T) = [(R + P) + V'][(R + P)B + V'B2]

Lemma;
If R and Vare positive definite k x k matrices and P is a k x k posi-tive semidefinite matrix then

[R' + (V + P)]' R + H[(R + P) + V'}' - (R + P)}H'
where H = R(R + P)*
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Proof

Apply lemma 4 (since V + P is flonSingular) and obtain
+ (V + P)]- = R - R(V + P + R)-'R

R R(R + P)'(R + P)(V + P + R)'
(R + P)(R + P)-'R
R - H(V(R + P) + I)'(R + P)H'

= R - H((R + P)- + V)-'V-'(R + P)H'
= R + Hf(R + P)' + V-I]-' - (R + P)}H'by lemma 2.

Interpreting this lemma gives us equation 25 and 26 of the smoothingalgorithm Expanding equation 37 we have
(39) p1(T) - B1 - HB1 + H((R + P) + V')-'(R + Py'B1

+ fR + (V + P)']-'(V + P'B2
= B1 - HB1 + H((R + P)' + V-')-'(R + P)'B1

+ RfR + V + P]-'B2
= B1 - HB1 + H((R + P)-' + V')-'(R + P)B1

+ R(R + P)-'[(R + P)' + V']-' V-1B2
= B1 + Hf((R + P)-' + V-')-l((R + P)-'B1

+ VB2) - B1]
= ,(t) + Hf11(T) -

The importance of knowing P is now readily apparent from standardproofs of the properties of GLS estimators Nice sampling distributionsfor use in hypothesis testing depend on knowing P and not having toestimate P. If P is not known, asymptotic properties of GLS estimatorsusing a consistent estimate of P can be investigated, but in the generalproblem just presented, no one has yet demonstrated that P can be con-sistently estimated In the situation where only one coefficient is sto-chastic, P and 2 can be consistently estimated, as was demonstrated byCooley and Prescott (1973) for the case of a stochastic intercept and byCooley and Prescott (1976) for a slope coefficient The next section willshow that the non-stochastic coefficients can be consistently estimated byGLS even though the time varying parameters cannot be estimated con-sistently, Combining these results will give us asymptotic distributions for
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the non-stochastic parameters which can be used as the basis for hy-pothesis testing.

III. CONSISTENT ESTIMATES

A useful result of the smoothing algorithm is that it permits us toobtain theorems regarding large sample properties of without lookingat (X'-'X) The following section will be devoted to showing that GLSwill yield consistent estimates of those parameters that are not subject tostochastic variation.
In what follows assume that P is of the form

[P1 0]

00
and

(41) (I3,f3')
where /3 is the k2 x 1 vector of coefficients that are constant across obser-vations.

Proposition.

The GLS estimate / of 3 using all the observations i through T isinvariant with respect to the parameterization regarding /3 1 T.
Proof

The proof consists of showing that from the smoothing algorithm

(42) I3,1(T) -
\
0/

which is an equiva'ent statement to the proposition.
From equation 24

+ R,(t)IR,(t) + P},1(T) -
but R,(t)IR,(t) + P} is of the form

[Qi
Q21

Lo 1k2J

which implies equation 42. This follows from theorems on inverses ofpartitioned matrices.

(40)
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It follows from this proposition that the variance of is invariantwith respect to the parameterization and of the actual realization of Y and/l,j 6 That is the variance of the parameters not subject to stochasticchange do not depend on which lj I that is also estimated in theblock GLS procedure This observation gives us a proof of consistency atleast in the situation where one considers that X is constant in repeatedsamples of size T.
Consider increasing the sample by observing

x + , fort = T + 1,2T
but where we have set

= t = T + I, 2T.
We now have two samples and writing them in the form of equationII yields

1X 'I,2T
\Xr/ \/

when they are stacked and both samples are parameterized using 1312T'Alternatively, if we don't stack them and parameterize them separatelywe have two equations of the form

Y2T =

309

+ E2 - A2rU2

Yr = Xr
\

+ E - ArU

Yr1,2 = x (I2r
+ Er+12 -

The matrices X and A are the same in equations 46 and 47 since theexogenous variables are the same, Applying GLS to equations 46 and 47would give us two estimates of having exactly the same covariancematrix. This follows from the fact that the exogenous variables are thesame in the two samples and the covariance matrix of the residuals in thetwo particular parameterizations chosen are identical Now having twoestimates of with the same covariance, one can obtain an estimate oflinear in the original 2T observations that has a covariance matrix equalto one half the covariance matrix of the estimator derived from usingeither sample. This estimator (the average of the two estimators ihicheach use only half the total sample) must not have a smaller covariancematrix than the GLS estimator applied to equation 45 since the GLS esti-
6The invariance property of the variance besides being intuitively obvious is also easilyproven using equation 26.
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mator is best linear unbiased. In the limit then, the variance of the GLSestimator for fi must converge to zero at least in the case of repeatedexogenous variables. The case of repeated samples is not really that re-strictive. The asymptotic results are used as approximations to the dis-tributions we are actually interested in, and the case of repeated samples isjust the easiest way to obtain these approximations. The case without re-peated samples is not as intuitive and easy to understand. The coefficientswhich are subject to stochastic variations cannot be estimate con-sistently, so the standard procedure of finding conditions on A' that insurethe covergence of (X'12X)/T does not apply. An orthogonality resultlike the previous propoition is needed to show the consistency of the esti-mators. An immediate use of the property that the non-varying coefficientscan be consistently estimated is in deriving distribution theory in themodel of Cooley and Prescott (1973, 1976). In their model (1973), only theintercept is varying randomly, but the appropriate variances are not as-sumed to be known. They show that these variances can be consistentlyestimated which when combined with the property that the slope co-efficients can be consistently estimated, gives us the usual large sampleapproximations to the distributions of the slope coefficients. The largesample approximate distribution is the same as the true distribution whenP is assumed to be known.7

APPENDIX
Lemma I

Let be a t x t non-singular positive definite matrix, P a k x k posi-tive semidefinite matrix and A' a t x k matrix. Then
( + XPX')-' = - X(X'-'X)-I[(X'-X)-I + P]-'Px,-

Proof

+ XPX'J-' - 1X(X''X)-l[(X'-IX)i + P]-'Px'-'J
- X(X'-'X)-1[(X'-lX)- + PJ-'Px'-' + xpx'-i

- XP[(X'-'X)-' + PJPX''
1 + Xi - (X'-'X)-'[(X'lX)-i + PJ - P[(X'-lX)l
+ PJ-lJPx,_l

= 1 + XI - [(X''Xy' + PJ [(X'-'X)-' + PJJPx'-'
= It

7A proof of this type of result is given in Amemiya (1973).
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Lemma 2

For the same matrices as in lemma I
+ PJ' = - [(X'-'x)-' + PJ'PX'-'x

Proof

Premultiply by [(X'IX)-1 + PJ and Postmultiply b (X''X)-'
Lemma 3

For the same matrices as in lemma I

+ XPX')-'X = [(X'-'X)-' + PJ'
Proof

From lemma I

+ XPX')-'X = - [(X'-lX)-1 + PJ-'PX'-'x
= [(X'1X)-' + PJ' by lemma 2.

Lemma 4

For the same matrices as in lemma I but P non-singular then
( + XPX')-' = - 'X(P-' ±

Proof

See Duncan and Horn (1972) or it follows directly from Lemma 1.
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Annals of Economic and Social Measurement, 6/3, 1977

"GENERALIZED LEAST SQUARES APPLIED TO TIMEVARYING PARAMETER MODELS: A COMMENT"
BY THOMAS C00LEY*

The paper by Donald Sant provides a useful service to the profession byshowing clearly the formal equivalence of Kalman filtering and smoothingmethods with generalized least squares. In addition, he derives the ap-propriate form of the filtering and smoothing equations for a model withboth constant and time varying parameters. Although much of what iscontained in this paper has either appeared elsewhere in the literature or isknown to practitioners (and therefore is assumed to be obvious to others),much of the literature is somewhat inaccessible. The treatment of thevarying parameter estimation problem as.a generalized least squares prob-lem in Cooley and Prescott (1973, 1976) was motivated, at least in part,by a desire to treat the problem in a way that is familiar to economists.Sant's paper does much to demystify the Kalman filtering approach andthe purpose of this comment is to abet that process by making a fewother useful references to the literature on this topic.The derivation of the Kalman filter as a generalized least squaresestimator is generalized from the paper of Duncan and Horn (1972) by theuse of matrix relations which allow the variance covariance matrix of thestates to be singular. This permits treatment of constant and varyingparameters in the same model. This approach is also mentioned in an un-published thesis by Rosenberg (1968) although the point is not made asexplicitly. The smoothing equations are derived as a combination of a"forward" and "backward" filter. This approach first was proposed in anunpublished thesis by Fraser (1967) in the aforementioned thesis byRosenberg and in a paper by Fraser and Potter (1967).A recent paper by Cooley, Rosenberg and Wall (1976) derives thesmoothing equations for a model with both constant and varying param-eters as a combination of a backward and forward "information" filter.The information form has the advantage that it represents the filter interms of the inverse of the covariance matrix of the states and thus elimi-nates the need to initialize the filter using a subset of observations as theauthor suggests. The initialization procedure proposed by Sant has alsobeen suggested by Kaminski, Bryson and Schmidt (1974).As a final comment I would like to point out that the problem of con-sistently estimating P (the variance covariance matrix of the states) in the
*Unjversjty of California and N.B.E.R.
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more general case has been addressed by Mehra (1970, 1972) and Cooleyand Wall (1976) but it has not, to my knowledge been unequivocally re-solved.
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