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Annals of Economic and Social Measurement, 6/3, 1977

GENERALIZED LEAST SQUARES APPLIED TO TIME
VARYING PARAMETER MODELS

By DoNALD T. SANT*

This paper shows the formal equivalence of Kalman filtering and smoothing techniques 1o
generalized least squares. Smoothing and filtering equations are presented for the case where
some of the paramelers are constant. The paper further shows that generalized least squares
will produce consistent estimates of those paramelers that are not time varying.

When linear models have been used to model economic problems, it has
been useful many times to allow for parameter variation across observa-
tions. Various statistical procedures have been developed to estimate and
test this hypothesis of nonstable regression coefficients.! Recently, it has
been recognized that a technique known as the Kalman filter has useful
applications in estimating economic models with nonconstant coeffi-
cients.? The purpose of this paper is to show the formal equivalence of
Kalman filtering and smoothing techniques with generalized least squares,
to derive the Kalman filter and smoother. without assuming all of the
parameters are subject to stochastic variation, and to show that gen-
eralized least squares produces consistent estimates of those parameters
which are not subject to stochastic change. An immediate use of this last
result is in the model of Cooley and Prescott (1973, 1976). In their model
(1973), only the intercept is subject to stochastic change, so generalized
least squares will produce consistent estimates of all the slope coefficients.

The framework for presenting the filtering and smoothing techniques
will be in a linear time-varying parameters model where the regression
parameters follow a simple random walk.> Suppose the scalar p, is gen-
erated by the model

(H Vo= X8+ ¢

where x, is a k-dimensional row vector of exogenous variables at time or
observation ¢. It is also assumed that the k-dimensional column vector B,
evolves according to the structure

*Helpful comments of Gregory Chow and Roger Gordon are gratefully acknowledged.

1See the October 1973 issue of the Annals of Economic and Social Measurement for a
collection of papers describing the different techniques and models that have been analyzed.

2For a description of the algorithm see Athans (1974) and for a use in testing hy-
pothesis see Garbade (1975).

$More complex parameter variation can be analyzed, but it mainly serves to complicate
the mathematics without substantially altering the results.
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AT/ ﬂr = 61—[ + u,

where ¢, and Y are unobserved error terms with mean 0. There are T or-

dered Observations op Yrand x,, ¢ = I, T and € and u, have variances-
Ccovariances described by

(3) E(ge) = 0,02

(4 E(uuy)) = 80P

(%) E(e,.uj) =0

UZR,(Z’) be the covariance matrix of B,(1"), the Kalman fijter IS a sequen-

(6) B =B -1y K= xB,¢ - 1y
where

Q) K= R - yxitx,r 0 — Dx; + 1]~
(8) R(t) = R(r - 1) - Kix,R,(t - 1)
&) Bu(r -1y < Bt - 1)

(1) R~ <R_,u- ) + pe

84! X
Y, <[ X, =

i X,

€ U
E, = U =/

€, u,




‘[—xl X, cee o x,T]
0 x, X,
0 0 x5 - X;
A, =
Xi-)
_0 0|

The relationship of the first 7 observations is now given by

(ll) Y1=X1161+E1_A1U1'

The covariance matrix of the error terms in equation |1 is

(12) E(EI - AIUI)(EI - AIUI)I = 0'2[11 + Al(ll—l ®P)AII)]5 = O'ZQ,
Applying GLS to equation 11 gives us

(13) B.() = (X107 X)) X0, Y,
and
(14) R,(1) = (X,97'X,)",

If one is estimating recursively, ie., for the appropriate stacking proce-
dure

(15) Y = X_B_,+E_, - AU,

a GLS estimate of 8,_, using the first 7 — | observations is
(16) Bt - 1) = (X Q2 X, )Xy,
with

(I7) R - 1) = (X097 X,_)~!

The presentation of the proof is to show that one can obtain the relation-
ships given by equations 6 through 10 from the relationships given by
equations 13 through 17.

Let G, be the (t — 1) x ¢ dimensional matrix, G, = [/,_,:0], which
removes the last row ofa 7 x £, matrix, so that

(18) GY =Y_,=GXp, + GE, - G, A4,U,
=X,_\8,+ E_, - GA,U,

GLS applied to 18 gives us

(19) B(t-1) = (X;_,(G,Q,G;)"X,_1)"X;_,(G,Q,G,’)“Y,_,.

>The notation 7, will mean the identity matrix of dimension k.
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Using the definition of 2, given in 12
(20) GQG = GG + G,A,(I®P)A,’G,’

1
-1

= GG + (A,_,EX,_,)(I@P)
X

=l +4,_a._ Py, 4 X\ PX;_,
(21) =0 _, + X\ PX!_ |
Using lemma 3 in the Appendix, €quation 19 cap pe written as

Bt -1 = (R,_,(t - l)-+4P)A7_,GL_, + XQ_LPA7_,)")Q_,
=(R,_,(t - D+ pP)
(Xi-, 97, Y, ., - (R_,(t - 1) + P)-'Px:_| QLY )

G,Y, Gx, G,E, GA,U.
(22) e fe (g [T (O
yl xl 61

Then it follows that €quation 13 js €quivalent to
(23) B,(t) = (X,’_,(G,Q,G,’)"X,_, + x,’x,)“(X,’_,(G,Q,G,’)“Y,_, + x/y,).
Using lemma 4, equation 23 becomes
R@t-1)~( + X R, (1 - Dx,)='R,t - Dx/x,R,i - 1)
X1(G6)-1y,_, X)) =Bt - 1) - KxB,(t - 1)
U+ xR - Dx))K,y, - K.x,R,(1 - Dx/!y,

This completes the derivation of equation 6 through 10 since equation 8§ jg
Just lemma 4.




at observation k + 1 by applying GLS to the first £ observation and ob-
taining the estimate B (k).

II. SMooTHING

The filtering algorithm does not use all the information available in T
observations to estimate the parameters B, t=1,T Smoothing algo-
rithms dre available which, when given estimates of the form B,(r) and

tion in estimating each B,. If we call estimates of B, using all observations
I, TB8,(T), and o’R,(T) the covariance matrix of 8,(T), an algorithm for
relating all smoothed estimates would be of the form

(24) )ér(T) = iér(t) + Hr(iéIH(T) h )ér(t))
(25) H, = R,(1[R, (1) + pP]-!
(26) RI(T) = Rl(’) + Hl[Rl+l(T) - Rl+l(’)]Hll‘

These estimating equations are equivalent to GLS applied to all the op-
servations,

If we let

yl+l xr+l
Y1+I,T = N XI+LT =

Yr Xr

€1 ul+l
Er+l,T = ; UI+I,T =

€r Ur

xr+l 0 0

xl+2 xr+2 0 0
AI+I,T = .

XT XT LRI XT

We can relate future observations to B, as
(27) YI+I.T = Xl+l,T)61 + EI+I,T + AI+I_TUI+LT

Applying generalized least squares to equation 27 would give us an esti-
mate of 8, say 8,(r + I, T) based on observations ¢ + | through 7. As in
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the last section a “backward” filter can be derived utilizing the structure
of equation 27 to obtain the recursive estimating equations

(28) Blt + LTy = Bt + 1, 1)
(29) Vit + L,T) = V., + 1,T) 4 P

where o2V, (i, j) has the interpretation of being the covariance matrix of
the GLS estimate of 3, using the consecutive observation i through .

The generalized least squares estimate of 8, using all the observations
can finally be obtained by combining G,(¢) and Bt + 1, T') resulting in
the estimate

(30) BAT) = (R'(0) + Vi'(r + LT~ (R 1)B,(2)

+ VI + LT+ 1,T)).
Equation 30 can be shown to be equivalent to the sequential procedure of
equations 24 through 26 by combining the forward and “backward” filter-

ing equations.
To simplify notation, let

(1 B, = B,(t) = B,..()

(32) By = Bt + L,T) = B\t + 1,T)
(33) R = R,(1)

(34) V=V, 0t+1,T).

Using the filtering equations we know that

(35) Ro()=R+ P

(36) Ve+1L,Ty=v 4+ p

so the GLS estimates of 8,and 3, , using all observations are
(37 BA(T) = [R- + (V' + P)')"'[R-'B, + (V' + P)y-'B,)]
(38)  B..(1)

Lemma:
If R and V are positive definite k x k matrices and Pis a k x k posi-
tive semidefinite matrix then

[RT'+ (V4 P17t = R ¢ H{[((R + P)~' + v-1]-1 _ (R + P)H'
where H = R(R + P)-!,

(R + P! + V-11-1(R + P)-'B, + V-'B,)
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Proof
Applylemma 4 (since V + Pis nonsingular) and obtain

[R™' 4+ (V + Py-'I"t = R - RV + P + R)-'R
R - RR + P)y-"(R + PYV + P + R)-!
(R + P)YR + P)-'R
R~ HWVR + P! + I)"YR + P)H'
R—H(R + P + V-h='V-YR + PyH"
R+ HIR + Py 4 Vo= _ (g 4 PYH'

1}

It

]

I

by lemma 2.
Interpreting this lemma gives us equation 25 and 26 of the smoothing
algorithm, Expanding equation 37 we have

(39 8.T) = B, - HB, + H(R + Pyt + V'R + p)-1B,
TR+ (V4 Py 4 )i,

B, - HB, + H(R + Pyt 4 V“)-'(R + P)"'B,
+ R[R + V + Pl-'B,

B, — HB, F H({(R + Py-t 4 V“)—'(R + P)y-'B,
+ R(R + PYy-[(R + Pty V“]-'V—‘B2

B, + HI(R + Py-' 4 V-‘)-‘((R + P)-!B,

+ V"Bz) - B|]

= B0 + HIB,(T) - 4.

i

I

1l

Il
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the non-stochastic parameters which can be used as the basis for hy-
pothesis testing.

ITII. CONSISTENT ESTIMATES

A useful result of the smoothing algorithm is that it permits us to
obtain theorems regarding large sample properties of 8, without looking
at (X'Q7'X). The following section will be devoted to showing that GLS
will yield consistent estimates of those parameters that are not subject to
stochastic variation.

In what follows assume that P is of the form

(40) [P, OJ
P =
0 o
and
41) Bl = (81.,8")

where 8 is the k, x 1 vector of coefficients that are constant across obser-
vations,
Proposition:

The GLS estimate 8 of B using all the observations 1 through T is
invariant with respect to the parameterization regarding 8, ;1 < j < T.
Proof

The proof consists of showing that from the smoothing algorithm

A - (&
(42) Brsi(T) = B(T) = 0

which is an equivalent statement to the proposition.
From equation 24

BAT) = B.(1) + R[R(t) + PI'(B,, (T) - B,
but R, ()[R,(t) + P]'is of the form

1 Q2
0 I

which implies equation 42. This follows from theorems on inverses of
partitioned matrices.
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change do not depend on which Bi;1<j< Tthatis also estimated in the
block GLS procedure. This observation gives us a proof of consistency at

samples of size T
Consider increasing the sample by observing

(43) YVe=x8,+¢ fort =T + 1,2T
but where we have set
(44) : X, =X_r t =T+ 12T

We now have two samples and writing them in the form of equation
11 yields :

(45) Yir = , + Eyp ~ AUy,

when they are stacked and both samples are parameterized using 8.7
Alternatively, if we don’t stack them and parameterize them separately
we have two equations of the form

(46) YT=XT ﬂ‘ +ET_ATUT

The invariance property of the variance besides being intuitively obvious js also easily
proven using equation 26,
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mator is best linear unbiased. In the limit then, the variance of the GLS
estimator for 8 must converge to zero at least in the case of repeated
exogenous variables. The case of repeated samples is not really that re-
strictive. The asymptotic results are used as approximations to the dis-
tributions we are actually interested in, and the case of repeated samples is
Just the easiest way to obtain these approximations. The case without re-
peated samples is not as intuitive and casy to understand. The coefficients
which are subject to stochastic variations cannot be estimated con-
sistently, so the standard procedure of finding conditions on X that insure
the covergence of (X'Q;'X)/T does not apply. An orthogonality result
like the previous proposition is needed to show the consistency of the esti-
mators. An immediate use of the property that the non-varying coefficients
can be consistently estimated is in deriving distribution theory in the

model of Cooley and Prescott (1973, 1976). In their mode] (1973), only the ‘
intercept is varying randomly, but the appropriate variances are not as-
sumed to be known. They show that these variances can be consistently’

estimated which when combined with the property that the slope co-
efficients can be consistently estimated, gives us the usual large sample
approximations to the distributions of the slope coefficients. The large
sample approximate distribution is the same as the true distribution when
P is assumed to be known.’ '

APPENDIX

Lemma 1

Let 2 beas x ¢ non-singular positive definite matrix, P a k x k posi-
tive semidefinite matrix and X a 7 x k matrix. Then

@+ XPX) = 07 — QX (X Q- x)-[(x'e-1x)- 4 P)-'PX'Q-!

Proof
{Q + xPxj{o- - Q‘‘X(X’Q“X)"[(X’Q“X)‘l + PI7'PX'Q-Y
=], ~ XX'Q' X)) [(x'e-'x)-' + PI7'PX'Q-! 4+ xpx Q-
- XP[(X'Q"'X)~' + P)-'px'-i
=1, + X{I, - (X' X)-'(Xx'e-1x)- 4 PI-t Pl(X'Q1Xx)-!

+ P YPX'Q-!
=L+ Xl - (X2 + Pl(x'2 1 %) 4 P Y PXIQ-!
= I’

A proof of this type of result is given in Amemiya (1973).
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Lemma 2
For the same matrices asinlemma] -

(X270 4+ P = g1k~ xrg-ixy- PI"'PX'Q-1x
Proof -
Premultiply by [(X'Q1X)~" 4+ P]and postmultiply by (X'Q-1x)~!

Lemma 3
For the same matrices asin lemma 1

Y@ + XPX)X = [(X'Q-1x)-1 4 ppi

Proof
From lemma 1 )
X'(Q + XPX') X = x'Q-'y _ [(X’Q"X)‘l + PI7'PX'Q-1x
= [(X'Q' X)) 4 P by lemma 2.

Lemma 4
For the same matrices as in lemma I but P non-singular then

(@ + XPX")-! = @-! _ QX(P 4 X'Q'xy-1x'Q-i

Proof

See Duncan and Horn (1972) or it follows directly from Lemma 1.

REFERENCES

Amemiya, Takeshi (1973). “Generalized Least Squares with an Estimated Autocovariance
Matrix,” Econometrica 41, 723-732.

Athans, Michael (1974). “The Importance of Kalman Filtering Methods for Economic
Systems,” Annals of Economic and Social Measurement 3,49-64, )

Cooley, T. F. and E. C. Prescott (1973). “The Adaptive Regression Model,” International
Economic Review X1V, 365-37 .

(1976). “Estimation in the Presence of Stochastic Parameter Variation,” Econo-
metrica 44, 167-184.

Duncan, D. B. and 8. D, Horn (1972). “Linear Dynamic Recursive Estimation from View-
point of Regression Analysis,” Journal of the American Statistical Association 67, 815-
821.

Garbade, Kenneth (1975). “Two Methods for Examining the Stability of Regression Co.-
efficients,” Econometric Research Program, Memorandum No. 186, Princeton Uni-

Sage, Andrew and James Melsa (1971). Estimation Theory with Applications to Communieq-
tions and Control. McGraw-Hill, New York.

Princeton University
31






"Annals of Economic and Socigl Measurement, 6 /3, 1977

“GENERALIZED LEAST SQUARES APPLIED TO TIME
VARYING PARAMETER MODELS: A COMMENT”

By Taomas CooLEY*

the purpose of this comment is to abet that process by making a few
other useful references to the literature on this topic,

unpublished thesis by Fraser (1967) in the aforementioned thesis by
Rosenberg and in a baper by Fraser and Potter (1967),

A recent paper by Cooley, Rosenberg and walj (1976) derives the
smoothing equations for a model with both constant and varying param-
eters as a combination of a backward and forward “information” filter,
The information form has the advantage that jt represents the filter in

*University of California and N.B.E.R.
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More general case has been addressed by Mehra (1970, 1972) and Cooley
and Wall (1976) but it has not, to my knowledge, been unequivocally re-
solved. :
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