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Cnnaly of Feonvetc and Soctal Meavuremens 65, [0S

FEFECE OF UNCERTAINTIES ON THE CONTROIL
PERFORMANCE O LINEFAR SYSTIEMS WITH
UNKNOWN PARAMETERS AND TRAJECTORY

CONFIDENCE TUBES*

By Y. Bar-Stat oy

Fhis investivation deals with the avsessment of the elfects of the crrory in the pargineters
estfiates ot the quadratic perlormance indey nsed Jor comrrolling linear cconometric models.
An algorithoy based upon e open-toop feedback comteepr v oused to evaluate the increave m
the cost due to parameter creor Furthermare, the opendeop feedhack concept iy used 1o
detive confidence regions for the varions state components of iterest al given futire times
Fhese confulence recioms cambined sogether defme the confrdence tube for the tragectory the
videm will follow i the state space e iecliigne i dlustrated on o nigcroe gttt ric
models where the “ushines™ of the control, i ¢ ithe extent 1o which the mhe i narrow iy of
major niferest

Lo INTRODUCTION

The unavoidable uncertainties associated with cconometric models have
heen long since recogmized and much effort has been spent in mproving
the quality of models. More recently work has been done in using stochas-
tic control techniques Tor cconometric models {C1, A1}, These methods
account for the existing uncertaintics in the model and the decision vari-
ables are modificd from the deterministic case. Assuming the performance
mdex is i cost function to be minimized, the uncertainty in the model will
leadd o wn increase in this cost. While the additive disturbances are the
eflects that canot be explained by the model, the paramcter uncertainty
is more of a basic “imperfectness™ of the model. The latter might be re-
duced by more sophisticated estimation technigues, by longer data
records or by using the control's “dual effect™ [IF2, Bi].

The present investigation addresses first the question of how much is
the penalty in terms of increased cost due o the parameter uncertaintics.
The goalis o ebtain a simple, non Monte Carlo, evaluation technique
that can be used to caleulate the cost increase duce to the parameter uncer-
taintics, Such a technique based upon a stochastic control method s
presented in Section 20 The approach takes the Bayesian point of view,
i.e., that the true parameters are random variables.

*Rescarch supported an part by NSE under Grants GS 32270 and ENG 77.08177,
Presented at the NBER Conlerence on Stochastic: Control in Economivs, New  Haven,
Conpectrcat, May 1977 Stimalaiing Discussions with David Kendnck and Keat Wall are
pratetully acknowledped.

)‘ QY




The second question relates to the ability of controlling the variables
of interest in an uncertain cconometric model. The true criterion in ¢op.
trolling any system is in general a vector-valued objective function. For
reasons of tractability a scalar criterion is usually set up that represents
dcompromise between the various objectives. While this scalar criterion
becomes the design tool, it is of interest to examine separately the be.
havior of several variables. There are two aspecets one can consider here-

(1) predicted values

(i1) contidence regions
The sequence of predicted values for a certain variable is the trajectory
that the variable is (most) likely to follow. However, the goodness, or
reliability, of the control derived using a given model should also be
eviluated using a measure of how close the actual values of the viriables
ofinterest will be to the predicted ones. This leads to the concept of 4
“confidence tube™ for a trajectory, made up from a sequence of confi.
dence regions. While most studies concentrated on examining predicted
trajectories little attention has been apparently paid to the region in which
the realizations of these trajectories are likely 10 be. A simple technique
that evaluates the confidence tube's width is presented in Section 3.

The application ol these methods to two macrocconometric models is
carried out in Section 4.

2. Tug CosT INCREASE DUE 10 UNCERTAINTY
2. Xest = AX, + By, + ¢ + o, t=1_.. N .|

where x, is the state vector at time 1. The decision variable 1, is obtained
al time ¢ with the knowledge of x, and Wy, I < 1. The additive noise o
is assumed zero-mean, white and with covariance matrix V. The system
matrices A, B and ¢ contain some unknown parameters. Following the
Bayesian point of view, which is needed in order to define a stochustic
control problem for systems with parameter uncertainties, the uncertain
parameters can be modelled as-

(i) asingle realization from a distribution which remains fixed over
the control horizon [C4] (“random variables that do not change
in time")

(it) the result of independent drawings from a fixed distribution [Cl,
C2. C3j(“multiplicative white noise" [Al]).

The cost function to be minimized is tuken as quadratic about a
desired trajectory X, k = 0.. ... N. and desired controls i, & = 0....
N — 1 for a certain horizon N. The cost is thus the expected value of a
sum of quadratic forms of these deviations
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(2.2)

A
El(xy = 33)'0a(xy ~ X6) + 2 (v TV 0ulrs ~ ¥0)
A=l

to]—

+ (u;, - 17; )ER;(II;‘ - ) + )(\,‘ _i’] )’Y-A(“A 1, )}

where . R and T arce matrices of appropriate dimensions.

Note that in the above expression the expectation is over all the ran-
dom variables, i.c.. all the noises as well as the ensemble of parameters.
This is a consequence of the Bayesian framework underlying all stochastic
contro! problems.

Denote by J"* the minimum value of the cost J if all the uncer-
tainties are ignored and cach random variable is replaced by its mean,
(estimates for the parameters and zero for the noises) i.e.. applying heu-
ristically the certainty equivalence principle (HCFE). This is obtainced by
well-known recursions [Al]. )

To assess the cffect of the parameter uncertainty alone, we shall
consider system {2.1) without the additive noise and evaluate the cost (2.2)
with a control of the open-loop feedback (OLF) type (F1. Ci]. The basic
assumption in this control policy (also called stochastic control without
learning in [C1], Chapter 10) are:

a) future state feedback will be available

b) the parameter statistics will not be updated during the control

period (in practice only the first decision is retained and the en-
tire solution is recomputed at every period)
Applications of this technique to econometric models have been reported
in [B3, C1-C4, S!]. Note that this policy is different {rom the open-loop
optimal feedback (OLOF) [B2, T1j because the latter ignores future state
feedback.

A brief review of the equations pertinent to this OLE pelicy is given

next. The assumed optimal cost-to-go is, starting from time 1 + 1,

OLF | . .
{23) Jh'—t-l = -13.\,'”[(,”.\,,[ + pllvl"nl + &

Inserting this into the stochastic dynamic programming equation and
using (2.1) without the additive noise yields

(2.4)
I, = min B - X'Qua — F) + g = @YR(u, )
Uy
+(x, = &) T(u, - ) + 5(Adx, + Bu, + o)’
K, ((Ax, + Bu, + ¢)
+ p"4l(Axl + B“l + ) + gt I [‘]
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where [‘ stands for the cumulated information at time ¢ {all the statey
through ).

Since x, is not a randem variable when /' is given, the expectition
in (2.4) is taken as fellows on a generic term:

(2.5) E[A'K 0 Ax 1] = XE[AK, 4 1)y,
In view of assumption (b) one has
(2.6) ElA'KA|I') = EJA'K,4) 3 4K, A

Assumption (b) states that the posterior distribution of the parameters is
replaced by the prior. This simplifying assumption allows one to obtaip
the solution to this stochastic control problem with the resulting al.
gorithm being only slightly more complex than in the deterministic case.
However, there is a less obvious implication of (2.6): by using the prior
distribution of the parameters in (2.6) the dependence of the expectation
on x, is ignored.

Therefore this OLF algorithm is suboptimal tor model (1) described
above (parameters that are random but time invariant) and optimal for
model (ii) (parameters that are independent from period to period
(white)). In practice the situation is probably in between. Nevertheless,
the resulting algorithm, due to its simplicity is a useful tool in evaluating
the eflect of the parameter uncertainties. The confidence tube discussed in
the next section is also based on this algorithm.

The resulting control and eost from (2.4) can be found in [C1j. This
is also summarized in Appendix A.

The effect of the parameter uncertainty under the above assumptions
18

(27) AJP - JOLF _ JHC!:

The effect of the additive noise (disturbance) can be eusily obtained
explicitly by incorporating it into (2.4). The result is

N
(2.8) AJ% =33 (K, V)

tel

where K, follows from recursion {A.4) and V is the covariance matrix of

7.

3. THE CONFIDENCE TUBE FOR THE TRAJECTORY

Assume that the feedback rule (A.1) resulting from (2.4) is used* for
system (2.1). Then the predicted trajectory for the system will be

*Anv otha 3
Any other feedback rulc or sequence of controls can be assumed.
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(3.9) A
(3.10) g = SxT 00 N

One backward iteration has to be done with Eqs. (3.5) (3.7). which are
lincar recursions, lor each time ¢ and component £ of interest. This wil]
give cross-sections of the trajectory uncertainty tube.

The above algorithm represents a convenient implementation of the
concept of the “vanance ol a forecast.™

4. SiIMULATION RESULTS

The techniques presented in Sections 2 and 3 were applied to two
macroeconometric models with endogenous variables total private con-
sumptien C,, total gross investment /, and GNP (less net exports) ¥, and
exogenous variable the government expenditure

@.1) G, 2 ou

First a 3 state model identified in reduced form with OLS in [K1] is
considered. For the purpose of this study, which was to illustrate the
technique of Section 3, out of the IS5 parameters of this model. only the
5 entering the consumption equation were considered random with co-
variance matrix as yielded by the identification procedure.* Additive noise
was assumed to enter in each equation.

This model is characterized by the following equations (the notations
from (2.1) are used)

(4.2) X, =[Gl Y)
(4.3) 6 6 6
A =|-328 425 403
527301 557
(4.4) b' = [ —.499 345]
4.5) ¢ =[6 008 —15I2]

The estimate of the unknown parameter vector was:
(4.6) 0" = [—852 —.125 156 —1.482 ~.158)

with the associated variance-covariance matrix

*This was the extent to which data were available.
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@.7) 02914 02176 - 02767 02983 02720 ]
02176 01973 —.02136  — 00618 02122
S = [-.02767 — 02139 02652 —.03398 - 02642

02983 -.00618 —.03398 4.122 .08987

02720 02122 -02642 08987 .02832

The covariince matrix of the process noise (random shocks) was
4.8) V = diag(9.61, 18.92. 28 94)

The second model is the one from [W1]. This is a structura! form
identified with FIML by the ERSI- algorithm [W2] for increments rather
than levels. The same data base was used in both cases. The state spdce
form has 11 states and only 3 unknown parameters (due to the modd
specification).

(4.9) Xp= [AY,ACALN, (AL el el L Y.Col, )

where 3 stands for increment (first difference): the quantitics with the
“tilde” sign had their mean variations subtracted: the appearance of
lagged noises is a consequence of the prewhitening procedure carried out
in the course of the identification (sec [W1] for details).

The non-zero elements of the system matrices were

(4.10) ¢y = @ = ay; = aqy = 0,
iz = G32 = Qg3 = oy = B,
di5 = ays = ags = ags =
e = rg = g = Ay = —.211
Q7 = Qa7 = Qg7 = Uy7 = 357

Qoo = Qg0 = ~Qyy) = —@gy = |

sy = Asg = 15 = Qgy

by = bg = b =1

¢y = C8 = ——132
¢ = 2.974
Cy = 658

where § are the unknown parameters with estimates
(4.11) 0 = [.227 703 —.1399]

with covariance matrix
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Figure | Desired and predicted consumption with uncertainty region for 3-state model.
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Figure 2 Desired and predicted censumption with uncertainty region for |1-state model.
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in the dynamic model identified directly in levels there sees
stantial effect of the parameter uncertainty on the cost.

A comparison of the first period control for the two models with both
HCE and OLF control strategies is presented in Tible 2. The CE control
is larger for the second model than for the first one  <uch g diserepancy
can be always expected when two different models are obtained. If the
parameter uncertaintics are accounted for, the first period control in the
smaller model decreases by about 1. In the larger model the parameter
uncertainties have a very small effect on the control {about .13" ) but,
interestingly, in the opposite direction. While this could sound counter-
intuitive, it has been pointed out [A2} that the OLF control can be larger
than the CE as well as smaller.

Figures | and 2 present the desired trajectory for consumption in bil-
fions of 1958 dollars (solid line), predicted values (dots) and associated
confidence regions as defined in (3.2) for the two models. The predicted
trajectory of the 3-state model is substantially farther away from the de-
sired path than for the second model. The first model cannot apparently
sustain the uniform growth rate of 0.75°, per quarter for each of the
variables. Furthermore, the confidence regions associated with the pre-
dicted values of the consumption are substantially larger in the first model
than in the second. The pattern for the other variables was similar. It is
felt that forecasts or recommendations following from models should be
Judged not only based upon the corresponding values (point estimates)
but the assoctated uncertainty should also be taken into consideration.

ns to be a sub-

5. CONCLUSION

A method based upon the OLF stochastic control has been developed
to assess the effects of model parameter uncertainties on the perform-
ance index when controlling an econometric model. An algorithm was
presented that calculates the uncertainty tube for the trajectory of an
endogenous variable in an econometric model for a given control law or
set of values for the control. The potential usefulness of this lies in the
following:

I. It can be used to assess the reliability of models and controls de-

rived using those models.

2. It can serve in the comparison of proposed control laws vs. past

actual values.

University of Connecticut, Storrs
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APPENDIN A

The OLE Algorithm

Fhe contrad is given by

(A1) wt - Loy, iom,

where

(AY) L, (R B'K, B N(BR A T

(A3 m s (R, v KB YBK e Bp o R, T )

and the backwards recursions for A, p, g arc:

(Ad) K, = O+ AK, A4 4 (AR B4 1)1,

(AS)  po= O Ly AN e dpo CUKGB Y Ty,

(ADY k= 00 0 SR 4 T v SR, ey e,

CMBRLC o B R TN m e,

tort - N ..., 0with intad conditions

(A7) ANy = Oy
(f\.x) I’;’V = ()‘~r.\-,~'
(A9) En = ‘5-\.'\‘().\ \a

The cost JU results then from (2.3) using the above 1ecursions.

The deterministic algorithm is the same as wbove with the expecta-

tions (denoted by overbar) removed.,

(AN}
[A2]
(B1]

(B2]

[RY)

[
12
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