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ADAPTED METHODS FOR SOLVING ANt) OPTIMIZING
QUASI-TRIANGIJI1\R ECONOMEfRI(' MODElS

fly PIERRE NIPO\1JAS1(,l\ AND AlAIN RAVEl I I
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I. lNTROI)Ij('T

Let us consider a non-linear and dynamic fl1acroecwonic niodcj with nendogeneous variables. To solve this model, 'se propose the following
method. A set ofs variables, called loop Ii/rjah/(ç and 21 Set 0! S C(luatjoflt
called loop equations are selected such as: for given values of the loop
variables, the remaining model with ii - s equations and n - s variables
is triangular and can be solved directly: then, an algorithm is chosen toiterate on the values of the loop variables in order to satisfy the loop
equations.

The efficiency of this method obviously depends on the number of
loop variables. We propose in [I] a method to renumber the equations and
the variables in order to minimize this number.

U, after a possible renumbering, .c is small compared to n. then the
jacobian matrix of the model is Iower.quasi_triangukjr (i.e. most of its non
zero elements are under the main diagonal) and the model is called quasi-
triangular. In the paper, we shall consider only this kind of model hut it
seems to be the case for many macroeconomic models. 1-lere are a fes
examples:

Model Number of equations (a) Nuniber of loop variables (s)
Andomini [2] 4
Pimpon 13] 14 2
Fair [4] 83 7
Star[5J 130 3
DMS [6] about 1000 less than 100

The quasi-triangular structure was obtained by hand for Andomini
and Pimpon, by the algorithm described in ]!] for Fair, and was provided
by the author of Star: for DMS. no renumbering was made.

In section III, we propose an adapted Newton method easy to use
and we give numerical results using comparisons with Gauss-Seidel.
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We have sho'n in ) 7) on t he small Pini pan model that the adjo.1

variable method is more eflecti\e fr c mputing the gradient th
th

cenera liv ried finite difference method proposed h I air . We pn1n1

in section IV an adaptation of this a(t0ii1t variable method to the quN
triangular structure of the model a rid give ii ullicrical results of -

pariSons s ith the finite di ikrence method made usi !IC the Star model
These comparisons provide most encouraging 15its to suippon di

et1icienc of the two proposed met hods.

II. Sii.u'ri tRF (ii liii \1OI)iI

For sake ofelaritv of the preseiltation. s e shall siiii pills 'he struct
of the model in the sense that e are not going to distingi si hetr.een
equations s hich do not depend on loop variables and which correspond
to pre-determ med variables, equations ss Ii icli depend tiii loop variahks
(heart of' the model) a iid the triangular set o1 oiitpu t equations Th5
niiethodc proposed in sections III and IV can easi I be adapted to take intl
account these dillerences between equations (see [I J).

Let us consider a discrete time dynamic model with periods i goint
from I to T. Let n he the number of endogeneous variables, x be the
value of variable i at period t and v, be the vector f., v'}. Let r be
the number of control variables. u he the vector 1u u ). Let p and q
he the maxilnuni lag appearing in the model on (respectively) endo-
eneous and control variables. Then, the model is described b the fol-
lowing set of equations:

= f (x, x1 ,..,x1
.

U1, U, , U, ),

I 1 ,i. t = I, j
(Ib) x given for I = 1 n and i -p + I. p ± 1 l_o

We shall assume that the given functions I are continuously dif-
ferentiable and that, at least for any control taken in a reasonable rane,
the system (I) has a unique solution.

For solving the model at period i, the vector:

(, = I. .k , p U,. U, . - U1 q

is knos n and the problem is to find the solution v of the prohlem:

.v = / (. ,.e,). i = I

After a possible renumbering of equations and variables, the loop
equations are tile .c last equations of the model and r, = 1 v7 ' .....

is the vector of the loop variables. Then. by definition of the loop
variables, the system 13) is triangular for an gi en n , and (3) can

It)



written:
C

= /( v ',v,e,). I = I, it

I = ii v

he Ill So t.1JTtO" UI Ill F NIoDIL

I-or any given ,, the system (4a) is triangular and can he solved by
simple evaluations of functions /, which gives us values of x for any

< ii - .c. Since i', = , it can he seen that, taking (4a)
into account, x, can be considered as a function .v,( r,) of r,. Of course,

ire with an arbitrary value of v,x,( v1) does not in general satisfy equations
Cli (4b), there is an error which depends on and only on v. We shall denote

md ,( i's) this error. The problem is to find c, in such a was' that this error is
es equal to zero:

Ihe
tito (5) c'(i'1) = 0, I = I,

In i/wore, it is possible to eliminate variables x, I < n - .s, from
iing equations (4) and obtain the anuliiieal expressions of functions ( t- ).
the For large models, this is obviously impossible for practical reasons but it

be is clear that, using (4). one is able to compute the numerical value of
d q ( e,) for any given numerical value of v1. In this case, the partial de-
og- rivatives of Cannot he analytically computed and the simplest method
fol- for solving (5) is the v.ell-known (lauss-Seidel algorithm.

It should he noted that this Gauss-Seidel algorithm, applied to the
system (5) of dimension .c (s = 3 for Star) and not to the total system (3)
ol' dimension it (n = 130 for Star) is adapted to the quasi-triangular struc-
ture of the model. But, still, it has the usual disadvantages of the Gauss-

1 o
Seidel methods, namely:

a) the convergence is slow:*
dii- h) the convergence is strongly dependent on the ordering and nor-

ange, malization of the equations and on the weights chosen for the
feedback, weights which can be determined for each model only
by a large number of random tests.

We propose solving (5) b using the Newton method which has a
convergence rate of 2** and no parameters to determine in the feedback
rule. It should he noted that if the Newton method had been applied
directly to the total model (3). then each iteration would have required
the solution of a linear system of dimension ii. Using a general package

loop

*115 convergence rate is I the error iii iteration k s proportional to the error at
c loop ieriiton A -

an he **The error al iteratioll A is proportional to the square oi the error at iteration -
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to solve this linear system. e have ohtai ned very p001 re Its.I his lirleir

system is sparSe aiRI call tie ok'ed h) adapted met hod Ii k the pro-
posed by Drad 191 and we shall wait until I )rud's routine i a ailuhie ° ee
jf the "global Newton method'' vtIi the sparse tech flRf ue for SOline the
linear system is more effective than our method 01 1101.

Applying the Newton method to (5). at each iteration \ e have onI
to solve a linear system of (lirnensloil s (with . = f Conse-

quently, the only problem is the coni putation of the partial deriitivs
a If an analytical derivation package (as I"ormac i availahk then
the analytical expressions of the derivatives if /ix can he deduced from
(4). By definition of ',( v,). we have:

(;') = - + [v,( i,), e, ), = I

with i- = v' ' * from (4a) we have:

= i__ --- ± i = I,..., n - = I,
= I (IX, lit', iiv

which for anyj. is a triangular s\stem in iI. /Th' , : = I

Then, from derivation of(6), we have:

(8)
--1 I A -

d1.k = I,
- (ft , ( I

If no analytical derivation package is available. then finite diticrence
approximations of the /Th' are computed. The computation of (il
for s ± I values of vector r,. that is s -+- I solutions of the triangular svs-
tern (4), gives an approximation of these derivatives: for more details.
see [1J

With programs written in Fortran H extended on an IBM 370-lot
computer and with a unit of one millisecond of CPU time, Table I gives.

for different values of the required accuracy, the computing time of one
simulation over 10 periods of the 130 equations model Star.

1 \I1i I' I

GS: (iauss=Se,dei method
Ni: Nt+ ion method ith anaIi,e,,i deri ,t,o,, ui the model
N2. Nev,tøn method ith flUflir,eaI deriaiion ol he motel

: accuracy re4uircd.

(S

4.7
Si.')

129.0
265.9

NI

9 1*

4
2(1 2
2 9

12(1
Is 5
20.6
26. .

0-2
in-i
to-b
iO8



Remember that the model is solved when ,( t',) = 0, with '( v,)
given by tormulu (6). We have chosen as the test to stop the algorithm:

(9) f -

All the methods tested were adapted to the quasi-triangular structure
of the model. A run of the "global Newton niethod" discussed above with
a standard package for the linear system produced disastrous results: 13
seconds for = l0 (50 times worse than (IS).

ii The (lauss-Seidel method chosen for comparison was the one de-
scribed above, namely (lauss-Seidel applied to (5). after optinhizalion of
the s = 3 weights of the feed-back rule. It is obvious that Gauss-Seidel
applied to the total system (3). even after the optimization of the a = 130
weights of the feed-back rule, would have given 'xorsc results.

In methods N I and N2, the jacobian ((i)ç/Th')) was computed for
each iteration of the Newton methods. Computing it only sometimes gives
a small improvement (for more details, see [I]).

From table I, it appears obvious that when the Newton method is
adapted to the quasi-triangular structure of the model, then this method
is much more ellèctive than the Gauss-Seidel, especially when a high ac-
curacy is required. which is the case when the simulation algorithm is only
a part of an optimization problem solved b sophisticated algorithms
like Davidon-Fletcher-Powell.

IV. OpFINIIZAFioN 01 liii- v10i)1L

We have to minimize the following loss function:

168
(10) j(x,u)

=
Jf(t''(-I....... Utq)

\ CS.

OflC where x and ii are liii ked by the model (I). Ve shall assume that the func-
tions], are continuously difTerentiable.

In this paper. we are only concerned by the search for an efficient
algorithm to compute the gradient J '(u) of J(u) = j[.v(u), uI, where .v(u)
is the solution of(l) associated with the control u.

The linite difference method [8] is a very simple method for gradient
computation. but it requires rT model simulations for one gradient corn-
putation, where r is the control dimension and 1 the number of periods.
We propose using the adjoint-variable method. This method is well
known in optimal control theory (see, For example [10]) but, as far as we
know, was applied to the optimization of a macroeconomic model for the
first time by us [7]. In [7], we have shown how it can be applied to the 14-
equations Pimpon model: here we show how it can be adapted to the
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quasi-triangular structure ot the model and we give results lOr the 130_
equations star model

lu describe the adjoint- a riahie niethod. let us introduce severti
i!ota utoits:

I = I, i,, I = I

1= r i=l .....

(14) =
(X / rIU J

Let = , . v,ith ', R, be the Solution of:

=
(J:)* ± if. I = I ......

A I)

where (1- )t is the transposed matrix of !" . The etuation (IS) is called the
adjoint system of the optimitation problem and its soltitioii is called
the adjoint-variable. It can he proven (see [Ij) that the gradient can be
ded need fro in the vu I tie of + by the forni ii Ia:

J(u) = a, + ô,+k(G)t,+A. I = I, T
A=

For the gradient computation, one must solve the system (15) for
= T then for i = 1' - I. and so on till t = I. Indeed, when +, is com-

puted, the values of +,. br an I' > I are known, hence the vector:

p

c, = u', ±

is known (from (II) v e see that, br t = T. c, = i- ) and computing
reduced to the solution of the linear s stern:

= (f'1)*

From the notation ( 14) and the structure ot the model gicn h (41.

it can he seen that (18) can he w ritten:

fl

(19a)
= (iI! + . I = I ii -

'S I

5

(12)

I. I 0;

(13) = E iii, + S

k-li



(19h)
dv,

Using the same argument as lor solving the model, let A =
he the vector of the adjoi nt loop variables. for an

given , using ( i9a). it i5 possible to compute the Corresponding values
of ', then f' and so on till and cheek whether these values
satisfy (19h). Consequently, we are able to compute the errois

(20) E,(A) = A, - : (A) 7i4J
= Ij-i (ix,

and the only problem is to find A such as E(A) = 0. From (19). it is clear
that A - E(X) is a linear mapping which can he denoted h E(A =-A A _b
The computation of E(A) for A = 0 gives the vector h. It can he provcn*
that the matrix A is the transposed ol' the jacobian matrix of the system
(5), hence A is known. Consequently, the system A A = I,, which is only
of dimension s has to he solved, then, the adjoint variable , is coili-
puted with the help of ( 19a) and, tinall, the gradient is obtained by the
formula (16).

The adjoint variable method requires, for one gradient Computation,
2T evaluations of equations (19) and 7' solutions of a linear system of
dimension s: on the other hand, the finite difterence method requires
rT2/2 solutions of the non-linear system (3) of dimension n. Conse-
quently, it is clear that the adjoint variable method is much more effective
as shown on Table 2 which gives, for the model Star, the computing
time of a gradient computation using the t o methods:

lA IILI/ 2

1 nu in her iii si nii at ion periods.
Ii I : gradient coinpu Li rig time using li e iii, ic diflerencc method.
,t12 : gradient compu1in trifle usine the idjoint sariahie method.
.1/I /512: ratio ol computing times.

'this result v.as kindk suggested to us h one ol the relerecs ol this paper lor prooF.
sec II.

**i)rSt.irs,,h:I,e 0.,, 130... = 3jr] / .

*,)h proeranis in Fortran II estended on an IRM 370-lOs computer.

5(1

1' Ii 112 1/1/112

0 0. sec. U.0lô see. 4ft6
20 2.39 Sec. 0.1)3 SCC. 771)
30 49(3 sec. 0.040 sec.
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In this comparison, the matrices l' and (1 were obtained by anaIti.
cal derivation of the equations of the model. A fInite di!1rence apprtxi
mation of' these matrices multiply the coiliputing tune of method %1 2 h 'i

factor 10 (independentlY of 'I') aiid the adjotni variable method still re.
mains much powerful that the finite dilkrenee method.
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