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Annals of Econanuc and Sovial Measuremen, 0/5 1yry

ADAPTED METHODS FOR SOLVING AND GPTIMIZING
QUASI-TRIANGULAR ECONOMETRIC MODELS

By Piergre NEPOMIASTCHY AND ALAaN Ravern

This paper sets aut a Newten-tike methad for solving the model und o method for compiting
the gradient {adjoint variable technique; which are both adapted 10 econometric models with a
quasi-triangtiar structure (after a possible remuhering of the cquations). Comparivony gre
madde with classical wethods an the 130 equations Star madel.

. INTRODUCTION

Let us consider a non-lincar and dynamic macroeconomic modei with »
endogencous variables. To solve this model. we propose the following
method. A set of s variables. called loop variables. and u set of 5 equations,
called loop equations are seiected such as: for given values of the loop
variables. the remaining model with » — equations and # ~ s variables
is triangular and can be solved dircctly: then. an algorithm is chosen to
iterate on the values of the loop variables in order to satisfy the loop
equations.

The efficiency of this method obviously depends on the number of
loop variables. We proposc in (1] a method to renumber the equations and
the variables in order to minimize this number.

If, after a possible renumbering. s is small compared to n. then the
jacobian matrix of the model is lower-quasi-triangular (i.e. most of its non
zero elements are under the main diagonaly and the model s called guasi-
triangular. In the paper, we shall consider only this kind of model but it
seems to be the cuse for many macroeconomic models. Here are a few
examples:

Model Number of equations (1)  Number of loop variables (s)
Andomini {2] 4 |
Pimpon (3] 14 2
Fair [4) 83 7
Star (5] 130 3
DMS 6] about 1000 less than 100

The quasi-triangular structure was obtained by hand for Andomini
and Pimpon, by the algorithm described in [1] for Fair. and was provided
by the author of Star: for DMS. no renumbering wus made.

In section 11, we propose an adapted Newton method easy to use
and we give numerical results using comparisons with Gauss-Seidel.
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We have shown in [7] on the x:muII l’irnp('m model that the adjoing
variable method is more cllective for computing lhg TL‘rL't(Il.lCI]I. than (e
penerilly used finite difference mclhoq ]ﬁopmgd by Fair {8, W Doy
}n sccli(;n 1V an adaptation of this adjomnt .\';lrmhlc m'clllmd to the Quasi.
trianeular structure of the model and we give ml_mcrlcmircsults of com.
p;lris:ms with the finite diiference method made using the Star model

These comparisons provide most encouraging results to support the

efliciency of the two proposed methods.

1. STRUCTURYF OF THE Mobr

For sake of clarity of the presentation, we shall simplify e stiicture
of the model in the sense that we are not going to distingi sh bety. eep
equations which do not depend on.loop \';x.rmblcs and which correspongd
to pre-determined variables, equations which dgpcnd on loop variable
(heart of the model) and the triangular set of ontput cquations, The
methods proposed in sections HEand PV can casily be adapted to take ing
account these differences between equations (see [1)),

Let us consider a discrete time dynamic model with periods 1 going
from | to 7. Let # be the number of endogencous variables, X) be the
value of variable i at period ¢ and x, be the veetor {x) . . 3"} Let , be
the number of control variables. u; be the vector fuf, ...} Let pandg
be the maximum lag appearing i the model on (respectively) endog-
encous and control variables. Then, the model is deseribed by the foi.
lowing set of equations:

(ta) Npo= LN X i, L J)-
f=1.....n, t=1.....T
(Ib)  xjgivenfori=1,....n and 1 - —-p 4 |, -p+ 2. =00

We shall assume that the given functions Jioare continuously dif-
ferentiable and that, at least for any control taken in a reasonable range.
the system (1) has a unique solution.

For solving the model at period 1, the vector:

(2) e =1y wx oy p Ul )
1s known and the problem is to find the solution x, of the problem:
(3) No=filxees o i= 1 n

After a possible renumbering of equations and variables, the oo
equations are the s last equations of the model and v, = "'
xrhis the vector of the loop variables, Then, by definition of the loop
variables. the system (3) is triangular for any given 1, and (3) can b
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written:
y R i . .
(4a) Np= e ). E o=

{db} Xy

fix. e f=n - ¢4}

1. SotutioN or THE Mobkl

For any given y,. the system (da) is triangular and can be solved by
simple evaluations of functions fi. which gives us values of x| for any
i<n— s Sinee v, = {77 x"U it cun be seen that. taking (4a)
into account, v, can be considered as a function x,(1,) of .. Of course.
with an arbitrary value of v, x,( 1) does not in general satisfv equations
(4b), therc is an error which depends on and only on v,. We shall denote
¢, (v,) thiscrror. The problem is to find y, in such a way that this error is
equal lo zero:

(3) cly) =0 71 =1...... §

In theory 1t is possible to eliminate variables x' 7 < n — 5. from
equations (4) and obtain the analytical expressions of functions ¢( v,).
For large models. this is obviously impossible for practical reasons but it
is clear that. using (4). one is able to compute the numerical value of
¢,(») for any given numerical value of y,. In this case. the partial de-
rivatives of ¢ cannot be analytically compuited and the simplest method
for solving {5) 1s the well-known Gauss-Seidel algorithm.

It should be noted that this Gauss-Seidel algorithm. applied to the
system (5) of dimension s (s = 3 for Star) and not to the total system (3)
of dimension n (n = 130 for Star) is adapted to the quasi-triangular struc-
ture of the model. But, still. it has the usuval disadvantages of the Gauss-
Seidel methods. namely:

a) the convergence is slow:*

b) the convergence is strongly dependent on the ordering and nor-
malization of the equations and on the weights chosen for the
feedback. weights which can be deternuned for cach model only
by a large number of random tests.

We propose solving (5) by using the Newton method which has a
convergence rate of 2** and no parameters to determine in the fecdhack
rule. It should be noted that it the Newton method had been applied
directly to the total model (3). then cach iteration would have required
the solution of a linear system of dimension n. Using a general package

*Its convergence rale is 1 the error at itertion &k is proportional to the crror ut
ieration A - 1.
**The error at Heration & 1s proportional 1o the square of the error atiteration 4 — .
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to solve this linear system. we hawve obtiined very F)nﬂr fCSli!ls_ This lineyy
svstem is sparse and can b 50!\';:(1 b'\.-‘.ldilplk'.d hlcl!l().d.s |l|\-.“ those pro.
p,oscd by Drad 91 and we shall wait until Drud’s r()llll-{lc s u\;nluhls. 0 sec
if the "élobul Newton method™ with tlic sparse technique for solving the
linear system is more ellective than our method (.>r l_lnl_. .

J Applying the Newton method l.o (5). at .cmh ncmu.un we hm,s only
: to solve a linear system of dimension s (\_mh s = 3} for -Smr;, A( onse.
the only problem is the computation (‘)I the p;.n'lml derivatives
If an analytical derivation package (u:s' Irormacy is available, thep
tical cxpressions of the derivatives df/dx) can be deduced from

quently,
dei /oy
the analy
{4). By definition of ¢,( 1,). we have:

(6) ey = v = L7 e s ¢

with v/ = x7 0 from (da) we have:
-1 . Wk .
o gt e d . .
(n 9—2=Zﬂ%9—'+~j~; r=1..... n— s =1, .y
vy iTvax, vy dy
which for any j. is a triangular system in axyjovii = oo no- s
Then. from derivation of (6). we have:

n-s . ;
O O it L RS
( ) (“}, - iy e l’\,‘ (”}’ {”}’ K

If no analytical derivation package 1s available. then finite difference
approximations of the d¢;/dy’, are computed. The computation of ¢ ()
for s + 1 values of vector y,. that is s + | solutions of the tniangular sys-
tem (4). gives an approximation of these derivatives: for more details,
see [1].

With programs written in Fortran H extended on an 1BM 370-168
computer and with a unit of one millisccond of CPU time. Table 1 gives,
for different values of the required aceuracy. the computing time of one
simulation over 10 periods of the 130 equations model Star.

TABLE |
¢ GS N N
10-2 14.7 9.6 120
1)-4 S1.9 {45 8.5
10-¢ 129.0 0.2 0.6

10-8 2639 R 263
GS: Gauss-Seidel method.
N1 Newton method vath snzlvtical derivation of the model
U I N : : -
N2 Newton method with numerical deavation of the modet.
€ aceuracy reguired.
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Remember that the model is solved when ¢ 1) = 0, with ¢,(v)
given by formula (6}. We have chosen as the iest to stop the algorithm:
Vi

£nl.,

i=1| A

s

oS

All the methods tested were adupted to the quasi-triangular structure
of the model. A run of the “global Newton method™ discussed above with
a standard package for the linear system produced disastrous results: 13
seconds for € = 107* (50 times worse than GS).

The Gauss-Seidel method chosen for comparison was the one de-
scribed above, namely Gauss-Seidel applied to (5). after eptimization of
the s = 3 weights of the feed-back rule. 1t is obvious that Gauss-Seidel
applied to the total system (3), even after the optimization of the n = 130
weights of the feed-back rule. would have given worse results.

In methods N1 and N2. the jacobian {(d¢}/dy)) was computed for
each iteration of the Newton methods. Computing it only sometimes gives
a small improvement (for more details, see [1]).

From table I, it appears obvious that when the Newton method is
adapted to the quasi-triangular structure of the model. then this method
is much more effeetive than the Gauss-Seidel, especially when a high ac-
curacy is required, which is the ease when the simulation algorithin is only
a part of an optimization problem solved by sophisticuted algorithms
like Davidon-Fletcher-Powell.

iV. OPTIMIZATION OF THF MobEL

We have to minimize the foilowing loss function:

T
(10) FOu) = 2 X X X e )
1=1

where v and u are linked by the model (1). We shall assume that the func-
tions j, are continuously differentiable.

In this paper, we are only concerned by the search for an etlicient
algorithm to compute the gradient J'(u) of J () = j{x(u). u]. where x(u)
is the solution of (1) associated with the control u.

The tinite difference method [8] is a very simple method for gradient
computation, but it requires r7" model simulations for one gradient com-
putation, where 7 is the control dimension and 7" the number of periods.
We propose using the adjoint-variable method. This method is well
known in optimal control theory (see. for example [10]) but, as far as we
know. was applied to the optimization of a macroeconomic model for the
first time by us [7]. In {7). we have shown how it can be applied to the 14-
equations Pimpon model: here we show how it can be adapted to the
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quasi-triangular structure of the model and we give results for the 1.
equitions Stir model.
To describe the adjoint-vartable method, let us introduice severy)

BOLLIons:
| ity < T
(11 0, = N B
(th 0 ifr > 1
r yi
(12) "?:Z‘Sm(—f"%‘- i= o .o =1, A
’ k=0 d-\‘l
q U
~ df,. . , .-
(13) Wi D b A i = = LT
) o,

FUNN (CIET7) | D ar:.4Y)
() e <( i )> 1 (\ it /)

Lety = Wy Yoo with g, ¢ R7 be the solution of:

r
(15) ¢1 = Z {Snk(l'.:k)*lrllnl\ + Yis = I" ‘1
k=0

where (F1)* is the transposed matrix of 1. The equation (15) is called the
adjoint system of the optimization probiem and its solution ¢ ois called
the adjoint-variable. 1t can be proven (see [1]) that the gradient can be
deduced from the value of ¢ by the formula:

(16) Jiu)y = w, +Z SealG Y. =1 T

A=0

For the gradient computation, onc must solve the system (135) for
t= T thenfore =T — 1 and so on till 1 = 1. Indeed. when ¢, is com-
puted. the values of ¢, for any ¢/ > 7are known_ hence the vector:

g
(|7) ¢ = ,1'1 +'Z(§‘l¢i(l.-!k)*¢l-k
A=l

1s known (from (I1) we sce that, for ¢ = T, ¢, = 1,)and conmputing ¢, is
reduced to the solution of the lincar system:
(18} $o= (FD*Y + ¢

From the notation (14) and the structure of the model given by ()
it can be seen that (18) can be written:

n -
]

(19a) Y= af Lo [ =

A
R AR YE
I (A
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n

; af; P
(19b) bi =Z_—‘ﬁ:‘¢1+(‘,- R O P n

PEA ™

Using the same argument as for solving the model. et A =
ot Tl be the vector of the adjoint loop variables. For any
given A, using (i9a). it is possible to compute the corresponding values
of ¢7*, then ¢r* and so on till ¥ and check whether these vatues
satisfy (19b). Consequently. we are able to compute the errors:

n

e,
20) EM =N -2 DLoginyZ o oy

=1 (’.\':

and the only problem is to find X such as E(A) = 0. From (19). it is clear
that X -> £(A)is a linear mapping which can be denoted by £(A\) = AN ~p.
The computation of L{A) for A = 0 gives the vector 4. It can be proven*
that the matrix A is the transposed of the jacobian matrix of the system
(5). henee 4 1s known. Consequently. the system AN = b which is only
of dimension s, has to be solved. then, the adjoint variable (VAR com-
puted with the help of (19a) and, finally, the gradient is obtained by the
formula (16). '

The adjoint variable method requires, for one gradient computation,
2T evaluations of equations (19) and 7 solutions of a linear system of
dimension s: on the other hand. the finite difference method requires
rT*/2 solutions of the non-lincar system (3) of dimension n**. Conse-
quently, itis clear that the adjoint variable method is much more effective
as shown on Table 2 which gives. for the model Star, the computing
time*** of a gradient computation using the two methods:

TABLE 2
! M ML/M2
10 0.63 sce. 0.616 sec. 0.6
20 2.39 see. 0.031 sce. 770
30 4.90 sece. 0.046 see. 106.5
7 snumber of simulation periods.
Ml gradicnt computing time using the tinite diiference method.
M2 s gradient computing time asing the adjoint variable method.

M1/M2: ratio of computing times.

“this result vas kindly suggested to us by one of the referees of this paper. For proof.,
see {1).

**or Star, we have 7 = 1001 = 1305 = Yand 1+ 10,

***with programs in Fortran H extended on an IBM 370-16% computer.
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In this comparison. the matrices r*and G} were obtained by analyy.
cal derivation of the equations of the model. A tinite difterence zlppn;xi-
mation of these mairices multiply the computing time of method A2 py 4
factor 10 {independently of ) and the adjomt variable method stil) ’“k
mains much powerful that the finite difference method.
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