THE EFFECTS OF DISCOUNTED COST ON THE
UNCERTAINTY THRESHOLD PRINCIPLE*

BY RICHARD KU, MICHAEL ATHANS AND PRAVIN VARAIYA

The optimal stochastic control of a linear system with purely random parameters and with
respect to a discounted quadratic index of performance is considered. It is shown that if a
function involving the parameter variances and the discount factor exceeds a certain threshold,
then the infinite horizon optimization problem has no solution. On the other hand, it is also
shown that the existence of optimal infinite horizon rules may not guarantee the stochastic
stability of the underlying feedback system.

1. INTRODUCTION

In this paper we consider the problem of stochastic control of a linear
system with purely random parameters (i.e. uncorrelated in time) with
known statistics. Such a mathematical model for uncertain systems has
been advocated by Chow [1], [2], [3] for economic applications; the ran-
doness of the parameters of the econometric model represent the un-
predictable future changes of key multipliers.

Apart from certain technical considerations, the optimal stochastic
control problem is well defined for such systems for finite horizon plan-
ning problems; see Chow [1] and Aoki [4]. However, if one considers
the infinite horizon problem the results of the Uncertainty Threshold
Principle (UTP) (see Athans, Ku, and Gershwin [5], [6]) indicate that an
optimal solution will not exist if the standard deviations of the random
model parameters is large. In fact even for finite planning horizon prob-
lems the optimal cost-to-go undergoes exponential growth with increasing
planning horizon (N). In this paper we consider the effects of including
discount factors in the objective function. Traditionally, discount factors
have been used in economic problems to accentuate the near term worth
of the utility function as compared to the long-term one. One may then
suspect that the inclusion of discount factors in the objective function may
increase the threshold at which optimal decision rules for the infinite hori-
zon problem exist; this indeed is the case as it will be shown in the main
body of this paper.

However, the analysis of optimization problems involving systems
with random parameters and discounted quadratic performance indices
brings into the surface another curious phenomenon. One can determine
a quantifiable region, involving the statistics of the random parameters

*Research supported by NSF grant SOC-76-05837.
and the value of the discount factor, in which optimal long range decision rules exist but the underlying optimal closed loop system is unstable in a mean-square sense.

The implication of these results is that proper care must be exercised in the interpretation of results of optimization of uncertain systems when discount factors are present. The existence of optimal decision rules does not guarantee the stochastic stability of the system. A separate stability analysis must be carried out.

These issues are demonstrated by the simplest possible scalar example in the main body of this paper.

2. PROBLEM STATEMENT

In this section we summarize the problem statement. The notation is consistent to the degree possible to that used in ref. [5].

Consider a first order stochastic dynamical system with state $x(t)$, control $u(t)$, and process noise $\xi(t)$ described by the difference equation

$$x(t + 1) = a(t)x(t) + b(t)u(t) + \xi(t); t = 0, 1, 2, \ldots$$

We suppose that the purely random parameters $a(t)$ and $b(t)$ are Gaussian and white (uncorrelated in time) with known constant means \bar{a}, \bar{b} and variances Σ_{aa}, Σ_{bb} respectively. They may be also correlated with (cross) covariance Σ_{ab}. More precisely, assume that

$$E[a(t)] = \bar{a}, E[b(t)] = \bar{b} \text{ for all } t$$

and that their variances are given by

$$E[(a(t) - \bar{a})(a(r) - \bar{a})] = \Sigma_{aa} \delta(t, r)$$

$$E[(b(t) - \bar{b})(b(r) - \bar{b})] = \Sigma_{bb} \delta(t, r)$$

$$E[(a(t) - \bar{a})(b(r) - \bar{b})] = \Sigma_{ab} \delta(t, r)$$

where $\delta(t, r)$ is the Kronecker delta ($\delta(t, r) = 1$ if $t = r$, $\delta(t, r) = 0$ if $t \neq r$); and

$$\Sigma_{aa}\Sigma_{bb} - \Sigma_{ab}^2 \geq 0$$

It is assumed that the means \bar{a}, \bar{b} and variances $\Sigma_{aa}, \Sigma_{bb}, \Sigma_{ab}$ are constant and known a priori.

We assume that the process noise $\xi(t)$ is zero mean, white (i.e., uncorrelated in time), with variance

$$E[\xi(t)\xi(t)] = \Sigma_{\xi} \delta(t, r)$$

We further assume that the process noise $\xi(t)$ is independent of the random parameters $a(t)$ and $b(t)$. 486
We consider the minimization of the discounted quadratic cost functional

\[
J = E \left\{ \frac{1}{N} \sum_{t=0}^{\infty} \alpha^t (Qx(t)^2 + Ru(t)^2) \right\}
\]

where \(N \) is the planning horizon time and \(Q > 0, R > 0 \). The scalar \(\alpha \) is the discount factor. We assume that

\[
0 < \alpha < 1
\]

When \(\alpha = 1 \), then we have the no-discount case discussed in ref [5]. We assume that the state \(x(t) \) can be measured exactly.

3. Problem Solution for Finite Planning Horizon

The solution can be obtained by standard stochastic dynamic programming methods; the derivations represent a trivial exercise and hence will not be given. We summarize the results below.

The optimal feedback control at each instant of time is given by a linear transformation of the state, i.e.

\[
u(i) = G(i)x(t)
\]

The scalar linear gain \(G(t) \) is given by

\[
G(t) = \frac{aK(t + 1)(\Sigma_{\alpha} + \bar{a}b)}{R + aK(t + 1)(\Sigma_{\alpha} + \bar{b}^2)}
\]

The scalars \(K(t) \) are related by a Riccati-like recursive equation (The UTP equation [6]) by

\[
K(t) = Q + aK(t + 1)(\Sigma_{\alpha} + \bar{a}^2)
- \frac{a^2K(t + 1)(\Sigma_{\alpha} + \bar{a}^2)}{R + aK(t + 1)(\Sigma_{\alpha} + \bar{b}^2)}; K(N) = 0
\]

The optimal cost is given by

\[
J^* = \frac{1}{N} \left\{ K(0)x^2(0) + \sum_{i=0}^{t-1} a^{t-i}K(t + 1)Z \right\}
\]

4. The Infinite Horizon Case

The optimal solution stated above exists for all finite values of the planning horizon time \(N \). However, the solution to the optimization problem may fail to exist (in the sense that the optimum cost is infinite) for the infinite horizon case. The precise result is stated as follows.
Theorem 1

Let $N \to \infty$. Define the undiscounted threshold parameter m [5], [6] by

$$m = \frac{(\sum_{\omega} \hat{a}^2) - (\sum_{\omega} \hat{b})^2}{\sum_{\omega} \hat{b}}$$

Then the solution to the optimal infinite horizon problem exists if and only if

$$m < \frac{1}{\alpha}$$

Proof

Let $\hat{a}(t) \equiv \alpha a(t)$ and $\hat{R} = R/\alpha$. Then after some algebra, equation (10) reduces to

$$K(t) = Q + K(t + 1)(\sum_{\omega} \hat{a}^2) - \frac{K^2(t + 1)(\sum_{\omega} \hat{b})^2}{\hat{R} + K(t + 1)(\sum_{\omega} \hat{b})}$$

where the $\hat{\cdot}$ quantities refer to the statistics of $\hat{a}(t)$. The structure of eq. (14) is identical to that given in ref [5] and hence the result follows.

The above result implies that if (13) holds then the limiting solution of eq. (10) exists, is bounded and approaches a constant K, i.e.,

$$\lim_{N \to \infty} K(t) = K \leq \infty$$

and it is the positive solution to the algebraic equation

$$K = Q + \alpha K(\sum_{\omega} \hat{a}^2) - \frac{\alpha^2 K^2(\sum_{\omega} \hat{b})^2}{\hat{R} + \alpha K(\sum_{\omega} \hat{b})}$$

and, consequently, the linear gain $G(t)$ of eq. (9) also approaches a constant value

$$G = \lim_{N \to \infty} G(t) = \frac{\alpha K(\sum_{\omega} \hat{b})}{\hat{R} + \alpha K(\sum_{\omega} \hat{b})}$$

On the other hand if

$$m > \frac{1}{\alpha}$$

$K(t)$ is not defined, and in fact $K(t)$ grows exponentially as

$$\lim_{N \to \infty} K(t) = e^{\alpha t}$$

Note that the more the future is discounted ($\alpha \to 0$), the more uncertainty can be tolerated in the random system parameters (reflected 488
in the numerical value of undiscounted threshold parameter \(m \) and still have an optimal decision rule for the infinite horizon case. Thus in the case that the solution exists \(m \leq 1/\alpha \), the use of the optimum decision rule (8) together with the optimal constant value of the gain \(G \) given by eq. (17) will result in the following optimum evolution of state, according to the stochastic difference equation (obtained by substituting (8) and (17) into (11))

\[
x(t + 1) = [a(t) - Gb(t)]x(t)
\]

\[
= \left[a(t) - \left(\frac{ak(\sum_a + \bar{a}b)}{R + ak(\sum_a + b^2)} \right) b(t) \right] x(t)
\]

5. STOCHASTIC STABILITY Considerations

One may suspect that the existence of an optimal decision rule in the case \(m \leq 1/\alpha \), will cause the dynamic evolution of the state according to eq. (2) to "behave" and to have certain stability properties. This is not the case! In this section we shall demonstrate that the optimal closed-loop system (20) is unstable in a mean-square sense in the region

\[
1 \leq m \leq 1/\alpha
\]
in spite of the existence of an optimal decision rule in the range given by (21).

Consider the stochastic system (1) and any linear control law

\[
u(t) = h(t)x(t)
\]

Then the closed loop system will propagate according to the stochastic equation

\[
x(t + 1) = [a(t) + h(t)b(t)]x(t) = c(t)x(t)
\]

Since the \(c(t) \) are uncorrelated in time, one can calculate the ratio

\[
E[x^2(t + 1)] = E[c^2(1)]E[c^2(2)] \ldots E[c^2(t)] = S(t)
\]

The value of \(S(t) \) is a measure of how the second moment of the state propagates in time. The larger the value of \(S(t) \), the more variable the state is. In particular, if

\[
\lim_{i \to \infty} S(t) \to \infty
\]

the system (23) is unstable in a mean square sense.

The value of \(S(t) \) will be influenced in part by the value of the feedback gain \(h(t) \) in eq. (22). So one can seek the value of \(h(t) \) which will minimize the ratio \(S(t) \) given by eq. (24).
Obviously, $S(t)$ is minimized if each element of the product
\begin{equation}
E[c^2(t)] = E[(a(t) + h(t)b(t))^2]
\end{equation}
is minimized by $h(t)$. But
\begin{equation}
E[c^2(t)] = E[a^2(t) + h^2(t)b^2(t) + 2h(t)a(t)b(t)]
\end{equation}
\begin{equation}
= E[a^2(t)] + h^2(t)E[b^2(t)] + 2h(t)E[a(t)b(t)]
\end{equation}
Therefore, the best value of $h(t)$, denoted by $h^*(t)$, is obtained from the solution of
\begin{equation}
0 = \frac{\partial E[c^2(t)]}{\partial h(t)} = 2h(t)E[b^2(t)] + 2h(t)E[a(t)b(t)]
\end{equation}
which yields
\begin{equation}
h^* = h^*(t) = \frac{E[a(t)b(t)]}{E[b^2(t)]} = \frac{\Sigma a + \Sigma b}{\Sigma a + \Sigma b} = \text{constant}
\end{equation}
Hence the minimum value of $E[c^2(t)]$ is
\begin{equation}
E[c^2(t)]_{\text{min}} = E[(a(t) + h^*(t)b(t))^2]
\end{equation}
\begin{equation}
= \Sigma a + \Sigma b - \left(\frac{\Sigma a + \Sigma b}{\Sigma a + \Sigma b}\right)^2 = m
\end{equation}
where m is the undiscounted threshold parameter given by eq. (12).
It follows that
\begin{equation}
S(t)_{\text{min}} = m
\end{equation}
and hence that
\begin{equation}
\lim_{t \to \infty} S(t)_{\text{min}} < \infty \quad \text{if } m < 1
\end{equation}
Hence we have proved

Theorem 2

The stochastic system (1) is stabilizable by linear feedback in a mean square sense if and only if the undiscounted threshold parameter m, defined by eq. (12), is less than unity. In particular, the optimal closed loop system of eq. (20) is not stable in a mean square sense in the range $1 < m \leq 1/\alpha$, where α is the discount factor.

6. DISCUSSION

The implications of the above results are best understood by reference to Figure 1. The undiscounted threshold parameter m can be
thought of as a measure of the system parameter uncertainty since for any
given mean values \bar{a}, \bar{b} of the random (white) parameters $a(t)$ and $b(t)$, m
increases monotonically with both parameter variances \sum_{aa} and \sum_{bb}. Note
that m is uniquely characterized by the stochastic system itself and is
independent of the performance criterion employed. For any given discount
factor $0 < a < 1$, if the system uncertainty is large enough (Region C in
Figure 1) no optimal decision rules exist for the infinite horizon case, and
the system is not stabilizable. If the system uncertainty is sufficiently small
(Region A in Figure 1) then optimal and stabilizing decision rules exist.

The curious (and surprising?) phenomenon occurs in Region B; note
that the size of this region increases as the future is discounted more and
more ($\alpha \to 0$). In region B optimal rules exist, but the resultant optimal
closed loop system is unstable in a mean square sense. The existence of
optimal decision rules in this region is solely due to the inclusion of a dis-
count factor in the performance index.

The implication of the above remarks seem to imply that one has to
be careful on interpreting results obtained through the use of discount
factors for stochastic optimization problems, and that an independent
stochastic stability analysis should be carried out. In most linear-
quadratic stochastic optimization problems solved to-date optimality and
stability are not in conflict; optimal decision rules result in stable systems.
This is clearly not the case for uncertain systems in which the randomness
enters in a multiplicative rather than additive way (such as in the standard
Linear-Quadratic-Gaussian problem [7]).
By the above results we do not imply that this paper is the only one that points out the interplay between stability and optimality, when discount factors are present. In the economics literature such problems have received attention even in the deterministic case (see for example [8] and [9]). Problems in capital accumulation and business cycles involving state dependent noise have been treated recently by Magill [10] in the continuous time framework. Our remarks are primarily oriented towards linear-quadratic problems. If there is no parameter uncertainty ($m = 0$) there is no conflict between stability and optimality, independent of the magnitude of the additive uncertainty (ξ_t).

Massachusetts Institute of Technology
Massachusetts Institute of Technology
University of California, Berkeley

REFERENCES