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THE EFFECTS OF DISCOUNTEE) COST ON THE
UNCLRTAINTY TIIRISIIOLI) I)RNCIPLE*

B\ RIUIARD Ku, MlcIIA1I. ATHANS ANT) PRAVIN VARAIYA

The optimal toiha C lit t'ozlrol of a li,u'iir sVstt'iPl it it/i piirt'li randwn para?flt'tC'rt and with
rC'spi(l to a tlistounit'd quadrant itide.v of pt'rforfluint C' it totisidi'ied. It it c/FOCI ii i/Fat II U
/uflition involving ihi' paraliieter CarutntC's ttnd liii' tIiiouiii ficior C'XCC't'dS Ii tertaiti threshold,
iheti 1/IC' infinite hon:on opti?ni:utton prob! em /0)5 flit solution. On 1/it' other hand. it is alto
shown i/tat the i's ,.ctenet' of optona! in/mite hon:sn ni/C's mar not guarantee the stochastic
S ia/n/itt of/lie undt'rls;ni,' /t't'dlFacJ,s tern.

INTRO I) L('I 10 N

In this paper we consider the problem of stochastic control of a linear
system with purely random parameters (i.e. uncorrelated in time) with
known statistics. Such a mathematical model for uncertain systems has
been advocated by Chow [1]. [2], [3] for economic applications: the ran-
domness of the parameters of the econometric model represent the un-
predictable future changes of key multipliers.

Apart from certain technical considerations, the optimal stochastic
control problem is well defined for such systems for finite horizon plan-
ning problems: see Chow [I] and Aoki [4]. However, if one considers
the infinite horizon problem the results of the Uncertainty Threshold
Principle (UTP) (see Athans, Ku, and Gershwin 15], [6]) indicate that an
optimal solution will not exist if the standard deviations of the random
model parameters is large. In fact even tth finite planning horizon prob-
lems the optimal cost-to-go undergoes exponential growth with increasing
planning horizon (N). In this paper we consider the eflects of including
discount frictors in the objective function. Traditionally, discount factors
have been used in economic problems to accentuate the near term worth
of the utility function as compared to the long-term one. One may then
suspect that the inclusion of discount factors in the objective function may
increase the threshold at which optimal decision rules for the infinite hori-
zon problem exist: this indeed is the case as it will be shown in the main
body of this paper.

However, the analysis of optimization problems involving systems
with random parameters and discounted quadratic performance indices
brings into the surface another curious phenomenon. One can determine
a quantifiable region, involving the statistics of the random parameters
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and the value of the discount factor, in which optimal long range dec50
ni/es exist hut the under! vi,ig optimal ('loved loop .St'Ste?fl j.c unstable in a
nean-s qua cc sense.

The implication of these results is that proper care must be
ex-

ercsed in thc intcrprctation of results of optinli/.ation of uncertain sys.
tems when discount factors are present. The existcnce of optifljl decision
rules does not guarantee the stochastic stability of thc systeili. A

separate
stability analysis must be carried out.

These issues are demonstrated by the simplest possible scalar
example

in the main body of this paper.

2. PRoBt11 SiATi1iNr

In this section we summarize the problem statement The ntation
is consistent to the degree possible to that used in ref. fS].

Consider a first order stochastic dynamical System with state x(t)
control u(t), and process noise E(t) described by the difference equation

x(t + I) = a(t)x(I) + h(t)u(t) + at); t = 0, 1,2,..,
We suppose that the purely random parameters a(1) and b(t) are

Gaussian and white (uncorrelated in time) with known constant meansd,b and variances abb respectivcI. They may be also correlated
with (cross)covarianceQh More precisely, assume that

Ela(t)I = ii, Eh(i) = h for all t

and that their variances are given by

- a) (a(s) - a) =)J°(t, r)
E$(h(i) - h)(h(r) - = Lh(f, r)
E1(a(t) - a) (h(s) - h) = s)

shere ô(i, T) Is the Kronecker delta ((t, s) = I if t = r, (t, r) = 0fft r);and

Lb
It is assumed that the means à ,5 and variances

aa, are con.stand and known a priori.
We assume that the process noise E(') is zero mean, white (i.e.. Un-Correlated in time), with variance

(5) E(t)(7) = Z(t, T)
We further assume that the process noise E(t) is independent of the ran-dom parameters a(t) and h(t).
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3. Poui SOLUTION FOR FINITE PLANNING HORIZON

The solution can be obtained by standard stochastic dynamic pro-
gramming methods: the derivations represent a trivial exercise and hence
will not be given. We summarize the results below.

The optimal feedback control at each instant of time is given by a
linear transformation of the state, i.e.

u(i) = G(i)x(t)

The scalar linear gain G(t) is given by

G(t) aK(i + i)[ + àh]

R + aK(t + l)[h + h]

The scalars K(t) are related by a Riccati-like recursive equation (The UTP

equation [6]) by

K(t) = Q + aK(t + l)( 2)

a2K2(I + I )( + : K(V) = 0
R + aK(t + l)(bh ± b2)

The optimal cost is given by

i { ø)x2(0) + a'K(! + l)}(II) = -

4. THE INFINITE HORIZON CASE

The optimal solution stated above exists for all finite values of the
planning horizon time N. However, the solution to the optimization prob-
lem may fail to exist (in the sense that the optimum cost is infinite) for the
infinite horizon case. The precise result is stated as follows.
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We consider the minimization of the discounted quadratic cost
fun ctio nat I N

J = £ o'(Qx2(i) ± Ru2(t))
l-o

where N is the planning horizon time and Q > 0. R > 0. The scalar a is
the discount factor. We assume that

0 < 0 < I

When a = 1, then we have the no-discount case discussed in ref [51.
We assume that the state x(i) can be measured exactly.
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Let A - x . Define the wuli.crounted tJire.'h old /)arai?le(er in [5], ](] by

" '
-4- 1-

Then the solution to the optimal infinite hortton piohieni exists i/ (1,1(1
onh if

in -
Proof

Let (i) v'a(1) and R = R/. Then itter sotue algebra, equation
(10) reduces to

K(t) = Q + K(t + !)( + a2)
A±

R + Mi + l)( ± b)
where the quantities refer to the statistics of (t). The strueturt of
eq. (14) is identical to that given in ref [5] and hence the rcult foIls
QED

The above result implies that ii (13) holds then the limiting solution
of eq. (10) exists, is bounded and approaches a constant A' i.e.,

lim K(i) = A' <

and it is the positive solution to the alehraic equation

K = Q + aK(00 + a2) 2K2(Ob + ab)
I? + aA(hh + h

and, consequently, the linear gain G(t) of eq. (9) also approaches a
constant value

G = Urn G(t) aA'Q + a)
R + ciK[hh + h]

On the other hand if

in > -
linK(t) is not defIned, and in fact K() grows exponentialJ' as

(19) Jim K(i)

certainty can be tolerated in the random svsteni parameters (rellected

Note that the more the future is discounted ( - 0), the more un-



in the numerical value of undiscounted threshold parameter in) and still
have an optimal decision rule for the infinite horizon case. Thus in the
case that the solution exists (in I /s), the use of the optimum decision
rule () together with the optimal constant value of the gain ( given by
eq. (17) will result in the followin optimum evolution of state, according
to the stochastic difference equation (obtained by substituting () and (17)
into (Ii)

x(: + I) = [a(t) - Gb(t)]x(i)

= Ia(t) (
aK(Oh

+ \ b(i)l x(t)
[ \R+aK(bb+b)) j

5. STOCHASTIC STABILITY CoNsIDERATioNs

One may suspect that the existence of an optimal decision rule in the
case in I/o, will cause the dynamic evolution of the state according to
eq. (2) to "behave" and to have certain stability properties. This is not the
case! In this section we s/ia/I demonstrate that the optimal closed-loop si's-
tern (20) Ls unstable in a mean-square sense in the region

I < in < I/a

in spite of the exislence of an optimal decision rule in the range given

by(2!).
Consider the stochastic system (1) and any linear control law

u(t) = h(t)x(1)

Then the closed loop system will propagate according to the stochastic

equation

x(i + 1) = [a(i) + h(z)h()]x (1) = c(1)x(t)

Since the c(t) are uncorrelated in time, one can calculate the ratio

Ek2(t + I) Ec2(l)}E1c2(2) .... Ec2(i)) S(i)
Elx (l)

The value of SO) is a measure of how the second moment of the state
propagates in time. The larger the value of S(i), the more variable the

state is. In particular, if

urn S(i)

the system (23) is unstable in a mean square sense.
The value of S(i) vill be influenced in part by the value of the feed-

back gain /i(z) in eq. (22). So one can seek the value of hO) which will

minimize the ratio 5(i) given by eq. (24).
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Obviously, S(i)is minimized if each element of the product

El e2(t)l = Ej [a (t) + h(t)h(! j
2

is minimized by hO). But

Elc2(i) Eta2(t) /12(1)1,20) 2h(t)a(t)hO)[

= E1a2(1 ) + h2(1)E lh20) + 2h(i)E laO)h(1)l

Therefore, the best value of /z(,). denoted by ht(t), is obtained from the
solution of

0
aElc2(t)l - 2h(i) E1b2(i)l + 2h(t) Ela(t)h)l- ôh(i)

which yields

Ela(i)b(i)l ah + a!)
/i = h*(1) =

- E1h2(t)l

Hence the minimum value of E1e2(i)l is

E1C2(t)lm!n = .Efla(i) + h*h(1)]2
I

(i + àh)2
= + a2

-i- b

where m is the undiscounied threshold parameter given by eq. (12).
It follows that

S(1)min Fflt

and hence that

hr S(t )mul < il 'p1 < I

Hence we have proved

Theorem 2

The stochastic system (I) is stabihizable by linear feedback in a meansquare sense if and only if the undiscounted threshold parameter m, de-fined by eq. (12), is less than unit. In particular, the optimal closed loop
system of eq. (20) is not stable in a mean square sense in the range I

in < I/a, where a is the discount factor.

- constant

= In

6. DISCUSSION

The implications of the above results are best understood by ref-erence to Figure I. The undiscounled threshold parameter m can be
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0 m:1 niI/a m

O<a<l Discount Factor
Figure I Behaviour of Solution as a 1-unction of the Threshold l'arameter in

O optimal infinite hortion decision rules exist
N: optimal infinite horiion decision rules do not exist
S closed loop system siochastically stable
U: closed loop system stochastically unstable

thought of as a measure of the system parameter uncertainty sincc for any
given mean values , of the random (white) parameters a(!) and b(t), n
increases monotonically with both parameter variances and Note

that a, is uniquely characterized by the stochastic system itself and is in-
dependent of the performance criterion employed. For any given discount
factor 0 < a < 1, ii the system uncertainty is large enough (Region C in
Figure I) no optimal decision rules exist for the infinite horizon case, and
the system is not stabilizable. If the system uncertainty is sufficiently small
(Region A in Figure 1) then optimal and stabilizing decision rules exist.

The curious (and surprising') phenomenon occurs in Region B; note
that the size of this region increases as the future is discounted more and

more (a - 0). In region B optimal rules exist, but the resultant optimal
closed loop system is unstable in a mean square sense. The existence of
optimal decision rules in this region is solely due to the inclusion of a dis-
count factor in the performance index.

The implication of the above remarks seem to imply that one has to
be careful on interpreting results obtained through the use of discount
factors for stochastic optimization problems, and that an independent

stochastic stability analysis should be carried out. In most linear-
quadratic stochastic optimization problems solved to-date optimalty and
stability are not in conflict; optimal decision rules result in stable systems.
This is clearly not the case for uncertain systems in which the randomness
enters in a multiplicative rather than additive way (such as in the standard

Linear-Quadratic-Gaussian problem [7J).
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By the above results we do not imply that this J)af)f' is the only One
that points out thc interplay between stability and Opti!fl;jljt when di'
count factors are present. In the CCOflOt11iCS literature such problems have
received attention even in the deterministic case (see 101 eXaniple tnd
191). Problems in capital accumulation and business cycles IflVOlVing 51;t(e
dependent noise have been treated rcccntl% b Magill I iOj n the COIl.
tinuous time framework. Our remarks are primarily Oriented towards
linear-quadratic problems. II' there is no parameter uncertainty (m = 0)
there is no conflict between stability and optitnalit, independent 01 the
magnitude of the additive uncertainty (t).

ti'Iassachuso'tis Insiitu' o/ 7('Chfloiog;.
I'v1as.cucIzz,.ces ilIstilule of 7ec/w()lO1,

L 'filers itt' of C'(iIi/(rzj(z !ier1,e/e1
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