This PDF is a selection from an out-of-print volume from the National Bureau
of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 4
Volume Author/Editor: NBER

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm77-4

Publication Date: October 1977

Chapter Title: Identifying Identical Distributed Lag Structures by the Use

of Prior Sum Constraints

Chapter Author: Benjamin M. Friedman, V. Vance Roles

Chapter URL: http://www.nber.org/chapters/c10526

Chapter pages in book: (p. 429 - 444)



Annals of Econcmic and Social Measurement, 6741977

IDENTIEYING IDENTICAL DISTRIBUTID 1LAG STRICTUR LS
BY THIE USE OF PRIOR SUM CONSTRAINTS

BY BENJAMIN M. FRIEGMAN AND V. VANCE Ropey *

This paper derives aa estinaion procedure shich, witea the sqme distribuaed lag appears iwice
in an equation 16 Ee estimated by leasi-squares regression, identifies ql of ;Iu- n'h-rz'm{ co-
efficiens and lag weights and also consirains the 1wo sery of individual lag weights 10 be ideni.
eul. The procedure for solving thiz idemtification-conviraing rroblem imju/\m . Prios imposition
of a restrictivn on the lag weight sum Qe iy necessary 1o tpose the
belore estimating the equarion. A further wsefid jeare of the derived pracedure is thar jt
fucilitares conveniemly imposing the swm restriciion on all of the weighis in a disiribiced fay
even if the leading weight is independent of a polvnominl resiriction intposced on the others. .

U restriciion

Itis well known that af anindependent variable in an equation to be esti-
mated by teast-squares regression is itself a distributed fag. it is necessary
to impose some restriction in order to identify both the independent vari-
able’s cocflicient in the equaiion and the weights defining the distributed
fag. If the proxy variable for “expected permanent incame™ in a cansump-
tion function is defined as a distributed lag on past observations of in-
come. for example, a restriction is necessary to identily both the marginal
propensity to consume out of expected permanent incame and the weights
defining the autoregressive expectation. A familiar practice under such cir-
cumstances is to impose the restriction that the weights in the distributed
lag must have a prespecified sum, so that the estimated coeflicient of the
independent variable in the equation is simply the sum of the unrestricted
lag weightestimates divided by the prespecified weight sum. This sum re-
striction, which is casy enough to irpose after estimation of the cquation.
need not represent any complication for the estimation process itself
even if the relevant independent variable is a nenlinear term such as the
product of the distributed tag and another variable.

Bui what if the equation to be estimated includes rwe nanlinear in-
dependent variables, each defined as the product of the samie distributed
lag and one other variable? Simply estimating the equation and then ap-
plying the same prespecificd sum restriction to both appearances of the
distributed fag is sufficient to identify all of the lag weights as well as the
cocflicients of both independent variables, hut the two sets al estimated
lag weight patterns will in general be different. Impasing the usual sum

*The authors are. respectively, Associate Professer of Economics. Harvard University,
and Financial Econoniist. Federal Reserve Bank of Kansas Citv. Thev are grateful to Gars
Chamberlain and Zvi Griliches for helpful discussion, and to the Nationzd Science Founda-
tion and the National Burcau of Ecenomic Rescarch for research support.
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restriction after estimation of the cquation i not suflicient to Constrain
the two sets of individual ftg weights to be tdentical.

The object of this paper is to derive a precedure which pop only
identifies all of the relevant coeflicients and fag weights, when the s;un;:
distributed lag appears twice in an cquation to be estimated, by also
constrains the two sets of individual lag weights to be identical. i par-
ticular, the procedure for solving this tdentification-constraing problem in-
volves prior imposition of the restriction on the Iflg \\-cxghl sum - e it
necessary to impose the sum constraint before estimating the equation. Ap
additional useful feature of this procedure is that it Tacilitates readily i
posing the sum constraint on all of the kg weights even if, following Sins
[14]. the leading lag weight 1s independent ol a polynomial constraint .
posed on the remaining lag weights.

Section | states in preeise terms the nature ol the identification prob.
lem. Section 1, using the direet miethod of polvaomal distributed lag esti-
mation, derives the prior sum constraint procedure. Section 111 illustrates
the use of this procedure with an example drawn from an analysis by one
of the authors of corporate financing behavior, Section |V briefly sum-
murizes the paper’s principal conclusions.

l. THe PrROBLEM

Consider the problem of estimating by ordinary least squares the ex-
pression

(II) Y=o+ D’(Pr\}) + 4,
where
IR
(]2) 'tl = Z 6r:r—r‘
r=0

. dandd,. 7 =0...., T + 1, arc the parameters to be estimated. and 7 is
an integer delining the lag length in (1.2). Simply estimating (1.1) with
(1.2) substituted Tor x, yields a set of estimates (8-}:). r=0....T+1
thereby still leaving Band 8,. 7 = 0.. .., T + 1. unidentified. A common-
place way to identify these parameters is to IMPpose it sum constraint

1-1

(13) Db =4

7=
lor prespecitied 8, thereby facilitating the solution for g and 8,. 7 = 0... ..

!'The most familiar such constraint in expectationsl maodels is 3 = 1. which imples
that the autoregressive expeciation defined by (1.2) is formed on the assumplion that the
process generaling z, is borderline slalionary/nonstationary ... any level of - which
has persisted for 7 + 1 time periods is expected 1o persist indetinitely. For enticisms of the
use of a unit sum constraint, see Lucas {10} and Sargent [12].
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This simple restriction. imposed after estimation of (]3/.};)_ =0,
T + 1,is suflicient to identify the equation's parameters regardless ol ad-
ditional polynomial constraints on §,. 7 = (0. T + 1. with or without
further zero restrictions, ete.

Suppose, however, that the equation to be ¢stimated js not (1.1) but

(1.6) o= oo+ B0p,x) + y(gx,) + u,

where v, is again the distributed lag defined in (1.2) and v is an additional
parameter to be estimated. Repetition of the procedure described above
for equation (1.1). now with the addition of

141
Z (- 6))
A =0
7 -
(1.7) ¥ -
N N
(1) fo- 2000 g
2 F5)
7=0
results in two different values of each 5,. 7=0.... 7T+ 1- one from

(1.5) and one from (1.8). By contrast. the economic logic of (1.6). in which
the two independent variables involve the same distributed lag. clearly in-
dicates that the 5, relevant to (p,x,_,) should be identical to the 3: rele-
vantto(g,x,_ ). 7 =0,..., 7 + 1.

Hence unrestricted estimation of (1.6). with subsequent imposition of
the sum restriction (1.3) via (1.4. 1.5) and (1.7. 1.8). oversolves the prob-
lem of identifying the parameters of (1.6). Section 11 derives a procedure
for solving this problem which uses (1.3) to yield estimates 8 and y and

”

identical sets of estimates §,.7 = 0. ... T+ 1.

Il. THE PriIOR SuM CONSTRAINT PROCEDURE

Direct Estimation of Polvnomial Distributed Lags. Constraining dis-
tributed lag weights such as §,. 7 = 0..... T+ 1.1n (1.2) to depend on
the corresponding lag 7 according to some polynomial expression is a fa-
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miliar proecdure, intended to reduce the number of independeng parime.
ters to be estiniated as wel as o enforee priort bediefs abog smooth.
ness. The most common method of rmposing polyvnomial distributed lig
construints & duc o Almion {1 o the contest of PLior imposition of 4
SUM constraint, however, is moic convenient te work fram w h:yt Cooper
(3] has cafled the “direet”™ method. Cooper demonstrated thay, SEICE {he
two methods duler only by it nonsingular transformation, the vorrespong.
ing scts of estimated Iag weights are idertical, so that the reason for using
the direet method here is merely @ matter of computtional convenienge
The Appendix to this paper derives procedures, bused on the Almon
method, which are cquivalent to the procedures derived in this seetion
esing the dircet method,

‘l:or pgenceradized distributed Ing term like (1.2), the dircet approach

to imposing polynomial constraints on the lig weights 67 = 0. 7 + 1
represents these coctiicients in the form
O
(2.1 b= DL NTL T =0T
AT
where @ + 1is the degree of the polynomiul. and the Aj=0..... 0+,
tre the fixed parameters to be estimated. Substituting (2.1 into (1.2) vields
UAI
{2.2) X, = Z A7,
10
where
[N}
Zy=2 75 L =004
-1

In the simplest polynomial distributed Ltg modeis, variable x, in (1.2)
is obscrvable, und the probicm is o estimate (1.2) dircetly, constrained
only by the polvnomial pattern of the lag weights. Ordinary least-squires
regression, with x, as the dependeat variable and the distributed lag in the
form (2.2), viclds an estini:le ;\‘/ for cach A, j = 0., . Q + 1. together
with the respective varianees and covariances of these estimates, Corres-
ponding cstimates of the distributed g weights themselves follow directly
from (2.1) as

il

70
The variances und coviriances of the distributed g weight estimates fol-
fow axs

2 o . . .

=For additional reference, see Jorgenson {9] and Griliches [}, Shiller's {13] procedure
meets these two objectives in g semewhat diflerent wiy. Beliefs abont smoothness are
especially prevalentin the conte of tags representing autoregressive expectations,
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Imposing zero constraints on particular clemeiis of the poiynomal
distributed dag (typreally 6 | or 6,,,. or both) is also common and is

straightforward. For example. the constraint

¥,

(2) 61‘32()

implies from (2.1)
[

(2.6) DOMT 12

=0

To impmc this constraint. it is necessary to solve (2.6) tor any onc of the

Nod = @+ 1 For A\, for ex: umple. the solution of (2.6) vields sim-
piy

[P
2.7 M= = 20 N(T 4 2y

-1
Substituting (2.7) into (2.2) yiclds
Q)

(2.8) Y =D N7,
i=1

wherc

zr’l 7/1 - (I + 2)}2“,.

Ordinary least-squarcs regression, with x, as the deLlldLll[ variable
and the distributed lag in the form (2.8). yiclds estimates ALf=1,.... O+ 1,
together with their respective variances and covariances, dn\J the estimate
of A, follows from (2.7) as

<

5\(, = 5\,('1' + 2}

I=

The distributed lag weight estimates 8, 7 = 0, .. 1+ 1, again follow
from (2.3). The variances and covariances of these estimates again follow
from (2.4), where

Pet Qi L
var(A,) = Z (7 + 2)" cov(A X))
1= =1
- - Q)QI - -
cov(AgA) = (T + 2) cov(A A
=t

Imposing the Prior Sum Constraint.  As Scction | explains. when the
equation to be estimated is (1.1) instead of (1.2) - for example, if x, is un-
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ohservable it is useful to tmpose. in addition to the polynomiy con.
stramt (2.1) and the zero constraint (2.5), the sum constrainy (13
Furthermore, following Sims” [ 14] SHEECSLON. I many CITCUM S ey s
appropriate to exclude the leading g weight 6, from the Polynomiy| con.
straint, which then becomes

il
v) (2.1) bov =2 AT 0. T
i=0

while still including by within the sum constraint (1.3).
Substituting (1.3) into (2.1) vields

[P
(2.9) S + (T + DAy + ¢\, + Z BN, =4,
1=2
where
i
D D I 0+ 1
ral)
and substituting (2.5) into (2.1") viclds
(2N
(2.6") 2MT 1) -0
1=0

To impose Jointly the full set of constraints, it is sufticient (o solve (2.9)
and (2.6') for any two of the ALj =0, ¢ + 1. For Ao and X, for
example, the solution of (2.9)and (2.6") viclds

¢t
(2]0) /\o = *7715 + '7(6!) + Z 771’\1

p=2

[
(2.11) A= -mid + s, 4 2. A,

1=2
where

T+
me—T 41

¢ = (T + 1)
(T r q
nf:[.‘{’_/&_ le] 'f)". jo=2 0 +1
®, J|</),—('I'+l)3
pi= (T .y

¢

3 - . . . ’y . M
. ljrccmg the leading lag weight from the polynomis) constiraint is computationaliy
trivial in the absence of the sum constraing .
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(¢, + n(T + 1]

o= 6 . =20+
Substituting (2.1') into (1.2) yields
oo
(2.12) Xo= 83+ D0 A7
1=0

where
]

Z:':SZ"’Z,,Pl' j=0,.__‘Q+ 1,

1=0
and substituting (2.10) and (2.11) into {2.12) yields
¢+l
(2.13) X, = 0oz, + (6 - )7 + ) N Z!

J=2

where

2y = - mly - mZ,,

Z’ ]m+7l,/n+i.,' J=2....0 + 1.

_Nonlinear regression, with x, in the form (2. 13) r(,pl‘l(_cd by (\ -

oz}, )on the right-hand side of (1 6) yiclds estimates :50 and )\ Jo=200,
0+1 togelher with their rcspedlvc variances and covan‘mus, as well as
CSllmdlCSﬂdnd ¥. Estimates A, and )\ then follow from (2.10) and (2.1
as

U+
= —m6 + nd, + Z A,
j=2

g+
——ni5+n§5o+zr7,'j

1=2

P
S
!

_>4
|

and estimates of the remaining distributed lag weights follow in turn from

(2.1 as
(2.14) b= At/y 1 =0T

Hence imposing the sum constraint prior to estimation, in the manaer of
(2.9}-(2.14), viclds only a single set of lag weights for the two appearances
of the distributed lag in (1.6). The variances and covariances of the dis-
tributed lag weight estimates follow from

Pl O+1

CO‘((SnlvAr+|):Z ZTT]\-UV( ,. ,) ' =0,....T

p=0 =0
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[
R - ~ < NN - oy
Cov(By. 8,,,}) = Z T cov(dy,. A, ). =01
At
where
¢l

\’ilr(;\u) = (”x ):' \’ill’(t‘;”) t 2”! ’ Z n, L‘(\\'((S,,_ ;\/)

3
[

(U I O

+ Z Z 1, C()\'(/;\I. /;\,r)

[N A

¢t
valr(;\|) = (n) -var(d,) + 2, Z N Coved, X))
o

Qe

-
S i)
[ A
[

L'O\'(X(,. ):,) = 90 - var(d,) 4 Z () -+ niy,) cov(d,. \)

r 2

Ol Qs

+ Z Z nn- C()\r‘(i\, . ;\,. )

[
c<)v(5\(,_ X/) = ;- u)v((g(,. A+ Z N, COv(A,, /A\,v)_ J=2

;2

Ol
cov(i,.;\,) =3 - wv((gn, 5\,) + Z nCoviA, LA, J=2... 0+ 1
(A
(R
cov(d, . o) = n o var(d,) + Z N, COV (6, 5\,)
r=2
R (XN
cov(d,. :\|) = - v;lr(S,,) + Z r;,'L‘m'(ri‘,_ /i,).
R
In all cases considered here. it iy of course possible to use ti. and
viar(dy) to test directly the null hypothesis that 1he (frec) leading weight
by is zero. I 6, = 0. the procedure developed above is still valid for the
remaining weights b7 = b T+ 1. Al that is nceessary is to set
6y = 0in (2.13) and to re-cstimate the cquation accordingly. All estimates,
variances and covariances follow as before. with 8, var(d,) and ail co-
variances of 5,, with the other estimated paramecters simply set equal to
7ero.
In sum _ the estimation procedure based on nonlincar regression using
the substituted form (2.13) for the distributed lag vartable v, in (1.2) viclds
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lag weight ustintates 6,.. 7= 0, T + Lowhich satisly the sum constraing
(1.3), the zero constraint (2.5) and the polvuowial coustraint (2.1) or the
equiivalent (2.i"y which omits the leading fag weight. Tn addition the pro-
cedure not ouly identifies the coctlicients 8 and v in (1.6) but also con-
grains the individual lagweights o be identical in both appear

o i ancees i
(1.6) of the distributed lag variable v,

[11. AN TLLUSTRATION

An example may serve toallustrate the application of the estimation
procedure derived in Scction 11 An analysis of corporate financing be-
havior by one of the authors {7] modeled nwonfinancial business Corpora-
{ions’ net new issues of loug-ternt bonds by cowbining the fanuliar lincar
homogencous wodel of portfolio allocation. applicd to the sclection of
liahilities to finance externally a given cumulated deficit requirement,’

* ,\_‘ M
(3]) _[')‘,l = Z‘ ﬁ.-;.’u + z Youldw + T, i = I,A\
It A h

with the optimal marginal adjustment model of portfolio adjustment out
ofequilibrium,°

N
(32) ALy = 2 04D,y — Lo, ) + NRAD,. i = 1N,
A
where
33 A= F i= 1N
and
L* i =1_....N = the borrower's desired cquilibriume amount of

the i-th liability outstanding at time period ¢
(Z:Lﬁ = l)l)

4]1 is clear that this procedure based on a prior sum constraint on the distrihuted lag
weights is not the only way to accomplish these objectives. A prior constraint on the ratio
of 4and ¥ in (1.6) for example. would fucilitute achicving the same purpose hy simply im-
posing the lag weight sum constraint after the nonlincar estimation of (1.6) in the form

Y 17
y=a+p [p,+ <— q,} X
3

with prespecified ratio (¥/8). Imposing the lag weight sum constraint before the estimation
has the advanlage, however. of requiring no further resirictions such as a prespecified ratio
of Band y.

$See de [ecuw [4) for a discussion of the rationale behind the familiar linear homo-
genous modei of portfolio ajlocation.

6Sce Fricdman 6} for a discussion of the rationale behind the optimal marginal ad-
justment gencralization of the standard stock adjustnient model.
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D, = lhc.lmrrm\.'cr s total cumulgted Cxterny| deticir
at time period ¢
ri, k=1 AN = the expected "horrm\iny-pcriml" vield o he
l A-th hability at time penod

Gu B = 1. .. M = the v;nlun"s il.l time period ¢ of additiony| vari-
;.lhl_cs \\'.llicll mﬂugncc.llnf 'zl!l()c;llloll of the poy.

folio of outstandimg habilitics
Loi = 1. N = the borrower's actual amount ol the j-th Jiyh.

ity outstanding at time period (3 1, - D)
1

and the B, v, ,and 6, are paramelers satistying the relevan adding-up
constraints specified in Brainard and Tobin [2].

Any r, or g, variable which influences the determination of (he equi-
hbriuni allocation ratios in (3.1) therefore appears twice N {3.2). in noy.
lincar form both tines. Expanding (3.2) after substituting (3.1) for the A
f= b N indicates that the coeilicient of each resulting (r,AD) o
(45 AD,) term consists of a single parameter B 0t ¥ which . from (3.1).
is presumiably of known sign a priori. By contrast. the cocflicient of eaeh
resulting (r, D, ;) or (gn D, 1) term is a sum of products of parameltery
from (3.1) and (3.2y and is in general of unknown sign a priori: neverthe.
less, since these terms do appear in the model speaification, it is imappro-
priate to impose the assumption that their respective coeflicients are %ero
by climinating them from the estimated equation.

The equation developed in [7] for net new issues of long-term bonds
of nonfinancial corporations follows (3.1) (3.3), introducing three vield
variables and four non-vield variables in (3.1). The three vield variables,
in particular, are

tg. = he currently prevaiing yield, at te period 7, on new issues of
corporations’ long-terni bonds

rg, = corporations’ expectation, at time period 1, of the average fu-
ture yicld on new issues of their long-term bonds

ry, = corporations’ expectation, at time period 7. of the average cur-
rent and future level of vields on their short-tepm securilies

and the unobservable re and rg, variables are in turn modeled as auto-
regressive distributed lags asin (1.2). Henee the estimated net bond isstes
equation is analogeus to expression (1.6) in that the distributed lag vari-
ables exch appear twice. in (wo separate independent variables, Since the
expectation in the (rg. ALy term is the samie as that in the (ry, D, ) tem.
it s necessary o use some procedure like that developed in Section 11 in
order to constrain the individual distributed lag weights defining r§, to be
identical in the two terms. The same requirement applies to the two ap-
pearances of rg, .

The result of estiniating this expression. using quarterly U S. data for
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1960:1 - 1973:1V, is’
AB, = LB3TAD, — 53827, AD, + 0.04167 1, D),

(4.8) (—-6.2) 4.5)

+ 4732 rg, AD, — 003886 ry, D, | + 0.4046 r5, AD
(6.0) (-4.1) (3.0)

+ 5.600 ¢, A0, - 5331 ¢, AD, - 0.2579 ¢y, AD,
(2.7 (—-3.0) (=17

+ 0623944, AD, - 0.07134 B, | + 0.07889 S,
(3.6) (-4.8) (2.6)

R\ =095 SE =303 H - 12

where®

B, = corporations’ outstanding amount of long-term bonds

g, = stock of fixed investment

g» = average retained earnings

g, = inventory of bond dealess

G = cquity rctirements

S, = corporations” outstanding amount of short-term liabilitics
R = coeflicient of determination. adjusted for degrees of freedom
SE = standard error of estimate (in millions of dollars)

H = Durbin’s 5] H-statistic

and the numbers in parentheses are ratios of estimates to standard errors
for each coellicient.

All estimated coeflicients in the bond issues equation which corres-
pond to single parameters of (3.1) have the signs expected a priori. With
two exceptions, the cocflicients of the nonlinear terms involving D, | did
not significantly differ from zero, and s¢ these terms are eliminated from
the final specification of the equation. In particular, the (5, D, ,) term is
ehminated, thereby avoiding the need to constrain the distributed lag
weights defining r§, to be identical in two separate terms. Impesition of
the sum constraint (1.3) after estimation of the equation is suflicient to
identify both the associated 8, = 0.4046 and the set of lag weights.”

’The equalion is eshmated using an instrumental variables procedure, because of 1he
joint determination of A8, and rg,. For a detnled description of 1he eslimation process
and ar evatuation and inlerprelalion of 1he resulls. see Friedman |7].

¥See Friedmun (7} for a more delailed description of 1he dala and vanable definilians
lespeciaily gy, .. .. q4,)-

"The distribuled lag defining r§, is

17 17
. .
’s:=§_,6:’s.r—rr Zér: i
r=1

r=1

The estimation procedure constrained é,. 7 = 2 17.10 follow a third-degree polynomial
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By contrast, both (rs, D, |) and (rg, D, ) have cocthcients signit;.
cantly differ from zero. and the presence of (rg, D, 1) along with (’F*!AD,'
leads to the need for the prior sum constraint procedure developed iy S
tion I1. The distributed lag expression for rg, . in beth of the APPLhrange,
of rg, in the estimaled cquation. is'

12
1=0

0.1034 0y = 0.01474
0.07992 oy = 0.000124
0.05624 oy = —0.00827]
(.03398 0, = —0.008846.

B = 61397 4
5, = 0.1636 &,
5 = 0.1568 4
& = 01517 4,
8y = 0.125]

il

I

It

Following the discussion in Section 11, the estimation procedure co.
strains 6,, 7 = 1....,12. to follow a third-degree polynomigl with the
implicit 8,;; = 0. and leaves §, free of the polynomial constraint but sy}l
includes it within the sum constraint."

1V. SumMmaRry

The procedure for distributed lag estimation developed in this paper
is useful when two separate independent variables. in an cquation 1o he
estimated by least-squares regression. both contain the same distributed
lag. The procedurc, which involves the prior imposition of a restriction on
the sum of the relevant distributed lag weights, serves not only to identify
the coefficients of the two nonlinear independent variables but also to con-
strain the individual distributed lag weights to be identical in the lag's two

with the implicit 8,4 = 0. and left 8, frec of the polynomial constraint bui still included it
within the sum constraint. (Initial experimentation could not reject the hypothesis &, = 0,
The lag weights {which exhibit a pattern strikingly similar to that reported by Modigliani
and Shiller 11} in their reduced-form equation which also includes a distriboted fag on
past levels of the short-term yield as a proxy for expectations of this yield's future level)
are ~.1657. .06996. .08212. .09451. 09691, 09998 1005, .09861, 09462, 05873, 08115
07212, 06186, .05060. 03855, 02596, .01303. The standard crror ratio for 8y is - 20, and
the F-statistic for the two polynomiat variables jointly is 5.7.

1Note that, since the fiest-differences representation of g, implics the presence of
78, With unit coeflicient. the identification problem of Section 1 would not arise in this 2qQua-
tion if rg, were not already an argument of the bond issues functiop. The analysis in {7
exploifs this relation to test whether the - 35382 coefhicient on rg, AD, 1s significantly differ-
ent from the 4.732 coeflicient on r5,AD, by re-estimating the equation witk rg, climinated
from the r§, expression: the resulting coefficient or rp, AD, (which is then, of course, —0.630 -
=5.382 4+ 4.732) does turn oul to he significantly diftcrent from zcro at high confidence
levels.

"The standard error ratios for 85 and the two polynomial variables are. respectisel.
66.. -35 and4.1,

440



appearances in the cstimated equation. In addition,
straint procedure is especially convenient iy the co
distributed lags with the leading lag weight left fre
consiraint.

this prior sum con-
rtext of polynomjal
¢ of the polynomia

APPENDIX

Estimation of Polynomial Distributed Lagy using the Almon Method
The Almon approach to imposing polynomial constraints on the lag
weights 8, in (1.2) represents these coeflicicnts in the form

[¢X ]

(A.l) 6, = Z "l'/(b;(T)' T = 0,...‘T + 1,
j=0

where @ + 1 is the degree of the polynomial as in (2.1); the Yo j =
0,....0 + 1, are the fixed paramcters to be estimated, and the ®.(7) are
values of Lagrangian interpolation polynomials given by

bir) = (r = 1) — 1))+ (7 ——w_fﬂl)...(r - Tour)
T (7 = 1)1 = 1) (7, - T, - T/u)"’_(fm

wherether,,j = 0,...,0 + 1, are arbitrary values along the polynomial
lag structure.

Forr =4,j=0,...,0 + I, the Almon approach reduces to the
direct approach of Section 11, and, in gencral,

(A2) e (7)) = 1, J=0....,0 + 1,
(A3) (1) =0, A =00+ 1

Substituting (A.1) into (1.2) vields

@+l
(Ad) X o= 2 4W,
=0
where
I+
mlEZ(b/(T)Zl—rv j=0‘---.Q+ 1.
=0

Ordinary least-squares regression, with X, as the dependent variable
and the distributed lag in the form (A .4), yieids an estimate 1@, for each
$ai=0,...,0 + 1, together with the respective variances and covari-
ances of these estimates, Corresponding estimates of the distributed lag
weights themselves follow directly from (A.1) as

Q+1
5'-_‘.4\?4V’:/¢)1("')v T=0,....,T + 1.
1=0
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The variances and covariances of the distributed lag weight estimates fo).

low ash
¢t U

(ALY) co\'(rg, . 5,') = Z Z F ()P (17 cov (¢;-¢, ).
-0y 0

Irom (A 1} (A.3). it follows that imposing the zero constraint ip (2.5
is equivalent to selecting

(A.6) Tog =1 +2

(A Yo = O

Hence it 1s possible to rewrite the lag coeflicients. conditional op (A.6). as
U

(A8) =2 b 1 -0 T4
=0

thereby deleting all terms invoiving ,,, | .

Estimation in this case proceeds as before. upon the substitution of
(A.8)into (1.2).

Imposing the Prior Sum Constraing.  To tmpose the constraings n
(A.1).(2.5) and (1.3). while leaving the leading lag weight 8, free of the
polynomial constraint. it is useful to represent the remaining lag weights
included in the polynomial lag as

Q1

bi= 2 (). r-0. 7
1=0

SO that imposing the zero constraint (2.5) is then equivaient to selecting
(A.6") oo =1 + |

in conjunction with (A.7). Hercee it is possible to rewrite the lag weights
included within the polynomial lag structure. conditional on (A.6'). as

4
(A8 b= b -0 T

1=
Substituting (A 8) into the sum constraint (1.3) vields

I

(A.9) bt 2D () - 5

r=0 4-0

b . " N .

RTo avad neediess repetition from the body of the paper. the discussion bejow of the
estimation procedure in the presence ol the zero and sum constraunts does not derne she
taonees and covariances of the 6. 7+ =0, I+ 12 these follow. in cach cise. from

estimating the varign ces and covariances of V=0 .. ¢ = i and substituling into (A 3)
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To impose the sum constraint, it is necessary to solve (A
= 0.....0. or ﬁ)r 5,,.-1"0r & - 0 the solution to this problem s
straightforward and s applicable using most currently available standard
polynomi"l distributed lag estimation programs. tor §, =
dure is computationaily more diflicult, so that it is mo
rely on the dircct approach of Section 1.

For 8, = 0, solving (A.9) for §, viclds

9) for one of the

the proce-
sU Convenient 1o

[EN?)

(A.10) bo = 8= D W),

r=0 j=0

Substituting (A.8") and (A_10) into (1.2) yields

¢
X, o= 6z, 4 Z ¥ W),

j=0

where
!

Wi = X $ Az, , , - z, )

r o)

i

The simplicity of this result is readily apparent. The procedure im-
poses both zero and sum constraints on a polynomial lag structure. with
8y free of the polynomial constraint, simply by representing the equation
with

7
(All) Xy = 62! + Z 61+l(21—7»l - Zr)

r=0
substituted for x, in the form (1.2), and using a standard polynomial dis-
tributed lag estimation procedure to censtrain the right-hand tail of the
lag structure to zero. The leading lag weight 4, is readily computed from
the sum of the lag coeflicients 5., 7 = 0,.. . 7 in(A.11):

i
(A12) bo=8-2 4.,
ro=)

and the variance of 8, follows as

!
(A13) var (8,) = vur(Z 5,,.).
7=0

Hence (A.12) and (A.13) facilitate testing directly the significance of 50.

IFthe leading lag weight 6, is constrained to equal zero. however, it is
necessary to solve (A.9) for some other parameter, therchy complicating
the computational aspects of the ¢stimation and rendering the direct ap-
proach of Section 1l substantially casier to uplemsnt. Solving {(A9) for
¥o. for example, yiclds
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v !
(A1) - - 38 D D 723
i [ 8 $ 1 e
where /
& = Z Dy(7).
7=

and imposing the constraint &, = 0 then involves simiply deleting the e
in 8, from (A.14). Substituting (A 8") and (A.14)into (1.2) viclds

14 !

5 6 " LR l ) . o

(A1S) %, = bz, + (2= WG+ 2w S )
p=t T

where ,
Wh=2. ®(Mz.,.\. Jj=0.. 0
r=0
The analog of this expression in the dircet approach is (2.13). The estima-
tion procedure based on (A.15) is morc diflicult to nnplement than that
based on (2.13) because of the greater compleaity of the $,(7) in (A¥)
i contrast to the 7/ in (2.1").
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