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Arinals of Econontic and Social Measurement O/4. 1977

OPTIMAL EXPERIMENTAL DESIGN FOR DYNAMIC
ECONOMETRIC MODELS

By EbrLizaBrtH CHAaSE MAacRaE

A methadulogy for designing iime scries experimenits iy develvped through the use of stochastic
control theary., Ore impiication that can be drasvn i thar wiih less iniial information it nuy
be better 1o posipone mast of the information gathering aciivity. antil the resulis of earlicr
periods are avaifabie 10 help in designing a more reiioble and cosi-effective experiment.

1. INTRODUCTION

The growing interest in controlled social experimentation has led econ-
omists 1o devote more attention to the appropriate design of such ex-
periments. [n general. the formulation of the design problem ivolves a
trade oft between the maximization of information gained by the experi-
ment and the minimization of costs. both to the experimenter and pos-
sibly to the subjects of the experiment. When the model under considera-
tion is a classical static regression medel, the analysis ol experimental
design is straightforward and has been discussed by Watts and Conlisk [5].
If. however, the model is dynamic and if time-series data are to be col-
lected then the analvsis becomes much more complex.

The purpose ol this paper is to use stochastic control theory to
develop a methodology for designing time-series experiments. The basic
approach to stochastie optimization by MucRae {4] is extended to include
4 valuation of the stock of information at the termination of the experi-
ment. The experimental design is then derived as @ sequence of pluns in
which the information that becomes available in cach period is used to
update and refitic the design for the remainder of the experiment.

2. PROBLEM STATEMENT

Assume that model under consideration has the form
(2.H X = @x; +‘qu+ezk+(k.k = 1.2.....
where 1 is @ design vector which may be chosen by the experimenter 1
perind &, x is a vector of endogenous variables. and is a vector of
exogenous variables. Matrices @. ® and @ are the unknown parameter
mutrices to be estimated and ¢ is @ vector of random disturbances. in-
dependent over time, with zero mean and variance matrix 2.

The experimenter is also faced with a function. J;. which incorpo-
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rates not only the monctary costs of conducting the experiment but y)y,
any social costs or benetits that acerue to the subjects of the CxXperimeny
Th‘is cost function over the N periods of the experiment is assunsed 16 be
quadratic in form:
~ 1 o, e

(2.2) Jyo= Z—; X Qi oS wRoug v 5o i .

h-1 = -
where (0 Ry s and ¢ arc fixed matrices and vectors, I the Cxogenons
varizbles play a role in the cost function. they are subsumed by the Q. R,
s.and 1 coctlicients,

The final clement of the experimenter’s problem s a measure. Js,
of the accuracy of the parameter estimaltes at the end of the experiment,
Letting I'y be the variance-covariance matrix of the estimated param-
cters as of period V. a natural cheice for J, would he some scalar function
of I'5'. the information matrix. Thus.

(2.3 Jy= L

where the function £ is. for example. a determinant or weighted trace,

The problem facing the experimenter is (o determine g seqlicnee of
VeCloTs. ty . tae o ... uy. S0 as o mimmize Sy and maximize J,. This may
be handled in three ways. First. the experimenter may choosc to minimize
costs subject Lo attaining some given level of information. Sccond. he may
maximice the information gained. subject to some upper bound on costs,
Finally. he may minimize a weighted sum of J, and ~Jy. Since. by ap-
propriatc munipulation of the weights on J, and Jy. solutions can be
obtained which arc equivalent to the first and second approaches above
(the weights taking on the role of Lagrangean multipliers). only the third
method will be dealt with explicitly in this paper.

As will become apparent in the next section of the paper. the experi-
menter must start with prior gucesses. Ay, B,. Ca. at the values of the
unknown coeflicient matrices. @, ®. €. as well as x4 prior value for the
ter-equation noise variance, 2. This prior information is the same as
that required for design of experiments in the static structural ¢quation
case discussed by Conlisk [1]. In addition. cxperimentation i a time-
series: model requires a prior variance-covariance  matrix. 2.0. which
measures the uncertainty associated with he prior puarameter values.
Ao Bo. Cyo AL the beginning of the experiment. the experimenter cal-
culates a series of control vectors, Wi tixo.. .o uy. utilizing his prior
guesses. As the observed results of the first pertod become available. the
experimenter revises his puesses or cstimates of the unknown parameters.
and recaleulates the optimum values for the remaining control variables.
. 1. . ... ty. Thus as the experiment progresses. more and more infor-
mation becomes available and the mitial guesses at the parameter values
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may be replaced by better estimates, which in turn are used to update
the design of the remainder of the experiment,

3. SoruTion

The mathematical problem facing the experimenter in cach period is
to minimize an objective function

(3.1) J o= MEW 4 A

which is a wcighted sum of the expected cost. J,. and the information
gain. J;. The minimization is carried out subject to the constraint im-
poscd by the model.

32y xi = A+ By + Cop + =2 Dwy + 60 k= 1., N.

where AL B and € are matrices of random variables used to maodel! the
uncertainty regarding the constant but unknown parameters, @ ®. and ©.
and where D and wy are defined as [4.8.C] and {x; . ). z;] respec-
tively. The experimenter's prior guesses at the unknown parameter values.
Ag. By.and Cy. will be taken as the prior means of the random matrix D
and his guess at 'y will be used as the prior variance-covariance matrix
of D.

There is in gencral no way of obtaining an exact solution to the above
stochastic optimization problem except through numerical techniques.
Moreover, for problems of any rcasonable magnitude, numerical solu-
tions are simply not feasible. and some sort of approximate solution must
be developed. The solution to be used here is a straight-forward cxtension
of that presented in [4]. in which the random matrix D is replaced by «
sequence of independent random matrices Dy, Dy L. ) IO
means are all ¢cqual to the prior mean of D (i.c.. equal to the ¢xperimen-
ter’s guess. Dy = [Ay. By, Cy])) and whese variances reflect the growing
amount of information that is expected to become available in cach period
of the experiment. The rationale behind this approximation s discussed
in detail in the above-mentioned paper.

The vartance matrices are related to cach other by the equation.

whose

(3.3) P =10t o+ ' e Efwawil.

a-1

where I'; is the variance-covariance matrix of the elements of D (arranged
by rows). If it were not for the expected value operator on the right-hand
side. the above vquation would desenibe the change in the variance of
ordinary least squares estimates of the unknown paramcters as additional
observations become available. As it stands, however. cquation (3.3)
may be interpreted as measuring the anticipated growth in the stock of
information over the course of the experiment.
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Before going on to deseribe the solution to the experiment design
problem umicr ll;c approach just discussed, i'l is'mc["uI m_ clarily the nfer.
pretation of the two componenis of the nh|c@|\'c function. J, (the O
and J, (the information pain) In the first period of the CAPLIIMCHL, 4 sl
of dc;igrl veetors Wil be deternmuned for the dirst .'1_m| Al Slthcunm
periods, Only the first of these design vectors {u)) “{'” retually be .
plemented. of conurse. but it is neeessary te muke tentative plans as 1o Whit
will be done later in the experiment in order to make an optiml chojee
of whitis to be done in the first period. However, in view of the Lact thyy
the future cannot be predicted precisely, the rentative design veetors will
not be calculated as fixed numbers, but as functions of varkables which
wili be observed Iater in the experiment. In other words, the set of design
veelors. 1y ... uy. Wil not be cileulated as a set of explicit vilues, by
rather as aset of strategy rules or contingeney plans. This means, of
course. that the cost of carrying oui the tentative experiment design cap.
not be cafeulated exactly at the beginning of the CXPCriment, nor iy 1 Pos-
sible to ealeulate exactly what gain in information wili result. The pro-
cedurre to be used here is 1o use the expected eost of the tentative plan in
place of the actual (but unpredictable) cost. and to use the tinal informy.
tion matrix 1'y! (a8 defined by (3.3)) us the argument in the information
gain measure. J,. These two conventions have been incorporated in (3.1,

The solution to the experimental design problem under the Assump-
tions discussed above m:y be obtained in a4 manner similar 1o that used
in [4]. The objective tunction in that paper corresponds to E4J,} in (3.1}
the objective function shown in (3.1) simply has that term multiplied by
the scalar A, und an additional term involving the terminal stock of in.
formation. I'y. and the sealar Ay, Neither of these changes affects the
derivation of the solution in any substantial way,

The optimal set of vectors, or strategies, u,, u,. .. .. 1y . IS given by
the following system of solution cquations:

(3.4) o= ~H"(Foxy |+ ) k=1, v
where fork = 1., | A

(3.5) He = B'K(B + Kiel'f, . - oM+ N R,
(3.6) Fo=B'Kid + Kia 18, _g'e RVES
and

37 5= (B'K,C + K, » e, - 0 'e M-+ B'e + Xy,

Matrices 4. B and ¢ are equal to the experimenters initial guesses Ao,
Boand Co (the subscript 0 js omitted for claritv), and the SUpCTseripts on
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I refer to particntar clements of the full covariance matrix. The matrix

B4 . vy PN a1 . - N . N
I'#, . for example, contains those elements of 1, |, which are covariances

between elements of B und elements of A, Matrices A, A, and the vectors
g, are defined reeursivelv, fork = VN - 1L 1. by

{i.8) Ac = MU b VAL Ap s 1) - Qe MY
Fol,o 'k
(3.9 g = Nseog 4 ATg + (AC - A e I,

- O I@ /‘lf( | Il I;I];‘]/L

and
(3.10) My = Mo+ Ty ((Kpe Ebwowi DI
3. Ky = MOy

gy = NSy
My = =No(@L {1l y/orh.

The svmbois ® and & stand for the Kronecker product and star pmducl'
respectively.

If the design problem were specified in terms of minimizing 2
weighted sum of cost and information gain, then explicit vatues would be
assigned to the two weighting parameters, A, and X,. and the system of
equations (3.3) to (3.11) would be solved iteratively to give the design
veetor w, which is to be implemented in the first period. and the tentative
strategy rules, wy. ...y, for the remaining periods.

If the design problem were originally stated in terms of maximizing
information gain for a given cost, then the above system of equations
would be augmented by the additional constraint

G0 E1 < maximum allowable cost,

the parameter X. would be set equal to 1. and Ay, which now plays the
role of Lagrangean multiplier for constraint (3.12), would be determined
by the svstem of equations. 1t will generally be the case that additional
expenditures on the experiment will yield additional information, so that
(3.12y will almost alwavs be satisfied by equality.

If the constraint is on the information gain, then the extra equation

IThe star product of an o by nomatris L and wmp by ag matns Basap by g matrix
CC - A@ B.delined by O = 30 ay, B, where ay s the gt element of A4 and 8,18 the
yth submatriy o B, The 8, are all ol dimension p by ¢. A more complete description of
the star prodact may be found in MacRae (3} along with technigques for caleulating the
matriy dernvatese Tound in (3 11 abose.
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hecomes
(3.12") J, = minimum required information.

I) irameter \ l set 1o ! lln(l :\.7 th()lllcS [hc l.ilEli“IL’L’l“] lllll“l[ IK.' to blf
dre AL IS S . 3 ‘ ’ .l v]‘»
‘!C["rn‘;n"d l')" fhr' svstem l‘!. t'l_}l.!,'!fl()n\ l” "::'('ncri!l. (x I 2w l” vll\l.\ hi-
utie e ax L sVNC e o ) ) n e l‘
\lllhcd b : C(]llillil\‘ C.\CC])[ in [hC in Clll!.‘llC sHuation w hl (8 th lnl[llil
e S .‘ A I hY S ) I

information is more than is wanted at the end of the experiment.

4. ANALYSIS

The set of equations which defines the tentative design vectors mnvolve
three Lagrangean maltipliers. X, Ny, and the m;ilriccs. M, .‘ lhcs‘c may all
be inlcr[;rclcd as the marginal gain in the ohjcuivc{ tllqclmn o‘l relaxing
the associated constraint. Thus for example. Ny, which is dssociated wizh
the cost constraint (3.12), measures the marginal value in units of in-
formation of kaving an additional dollar allocated to the experiment.
Similarly, if the design problem is specified with an information con-
straint such as (3.12"), then A, shows how many dollars could be saved
by a marginal reduction in the amount of information required at the end
of the experiment.

The mterpretation of matrices M, is somewhat less obvious. They
were introduced into the problem as Lagrangean multipliers for the vari-
ance-update constraints (3.3). and as such may be interpreted as the
imputed price of the stock of information. I';'. in cach period k. As cqua-
tion (3.1 1) states. the value of having more information in the last period
of the experiment is exactly equal to the miarginal contribution of ' to
the objective function. Whatever is learned during the last period has no
additional value to the experimenter since it cannot be used to improve
the experiment design in the earlier periods. Ascan be seen fron equation
(3-10). the matrices A, grow in value the ncarer & is to the first peried.
This simply indicates that additional information is of more value early in
the course of the experiment where it contributes not only to the terminal
stock of information, but also permits a more finely tuned experimental
design.

Matrices M, appear in the strategy rules only in conjunction with
Q"' the inverse of the variance of the basic model. The efiect of a larger
M, is generally to make the design vector more radical so as to increase
the information level more quickly. This effect is modified. however. if the
system of equations is noisy (ic.. if ¢ ' s smail). for then it is not clear
that actively manipulating the design vector would result in an informa-
tion gain which is worth the cost.

Paradoxically, in a dynamic model. less inttial information (ie..
smaller I'5') does not necessarily make it optimal to do more active ex-
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perimentation to learn morce in the carlier periods. The reason is that the
potential cost of carrying out the experiment is increased if less is known
about how the model behaves. Thus it may actually be better to adopt i
rather conservative experimental design in the eurlicr periods and post-
ponc most of the information gathering activity until such time as i morc
reliable aind cost-cflicicnt experiment nmay be designed, using some of the
results of earlier periods.
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