OPTIMAL EXPERIMENTAL DESIGN FOR DYNAMIC ECONOMETRIC MODELS

BY ELIZABETH CHASE MACRAE

A methodology for designing time series experiments is developed through the use of stochastic control theory. One implication that can be drawn is that with less initial information it may be better to postpone most of the information gathering activity, until the results of earlier periods are available to help in designing a more reliable and cost-effective experiment.

1. Introduction

The growing interest in controlled social experimentation has led economists to devote more attention to the appropriate design of such experiments. In general, the formulation of the design problem involves a trade off between the maximization of information gained by the experiment and the minimization of costs, both to the experimenter and possibly to the subjects of the experiment. When the model under consideration is a classical static regression model, the analysis of experimental design is straightforward and has been discussed by Watts and Conlisk [5]. If, however, the model is dynamic and if time-series data are to be collected then the analysis becomes much more complex.

The purpose of this paper is to use stochastic control theory to develop a methodology for designing time-series experiments. The basic approach to stochastic optimization by MacRae [4] is extended to include a valuation of the stock of information at the termination of the experiment. The experimental design is then derived as a sequence of plans in which the information that becomes available in each period is used to update and refine the design for the remainder of the experiment.

2. Problem Statement

Assume that model under consideration has the form

\[x_t = \alpha x_{t-1} + \beta u_t + \epsilon_{x_t} + \epsilon_t, \quad k = 1, 2, \ldots. \]

where \(u_t \) is a design vector which may be chosen by the experimenter in period \(k \), \(x_t \) is a vector of endogenous variables, and \(\epsilon_{x_t} \) is a vector of exogenous variables. Matrices \(\alpha, \beta \) and \(\epsilon \) are the unknown parameter matrices to be estimated and \(\epsilon_t \) is a vector of random disturbances, independent over time, with zero mean and variance matrix \(\Omega \).

The experimenter is also faced with a function \(J_t \), which incorpo-
rates not only the monetary costs of conducting the experiment but also any social costs or benefits that accrue to the subjects of the experiment. This cost function over the N periods of the experiment is assumed to be quadratic in form:

\[J_1 = \sum_{t=1}^{N} \frac{1}{2} x_t^T Q_t x_t + \frac{1}{2} u_t^T R_t u_t + \frac{1}{2} v_t^T V_t v_t + \xi_t^T \xi_t, \]

where Q_t, R_t, V_t, and ξ_t are fixed matrices and vectors. If the exogenous variables play a role in the cost function, they are subsumed by the Q, R, V, and ξ coefficients.

The final element of the experimenter's problem is a measure, J_2, of the accuracy of the parameter estimates at the end of the experiment. Letting Γ be the variance-covariance matrix of the estimated parameters as of period N, a natural choice for J_2 would be some scalar function of Γ^{-1}, the information matrix. Thus,

\[J_2 = I(\Gamma^{-1}), \]

where the function I is, for example, a determinant or weighted trace.

The problem facing the experimenter is to determine a sequence of vectors, u_1, u_2, \ldots, u_N, so as to minimize J_1 and maximize J_2. This may be handled in three ways. First, the experimenter may choose to minimize costs subject to attaining some given level of information. Second, he may maximize the information gained, subject to some upper bound on costs. Finally, he may minimize a weighted sum of J_1 and $-J_2$. Since, by appropriate manipulation of the weights on J_1 and J_2, solutions can be obtained which are equivalent to the first and second approaches above (the weights taking on the role of Lagrangean multipliers), only the third method will be dealt with explicitly in this paper.

As will become apparent in the next section of the paper, the experimenter must start with prior guesses, A_0, B_0, C_0, Θ, Φ, Σ, as well as a prior value for the inter-equation noise variance, Ω. This prior information is the same as that required for design of experiments in the static structural equation case discussed by Conlisk [1]. In addition, experimentation in a time-series model requires a prior variance-covariance matrix, Σ_0, which measures the uncertainty associated with the prior parameter values, A_0, B_0, C_0. At the beginning of the experiment, the experimenter calculates a series of control vectors, u_1, u_2, \ldots, u_N, utilizing his prior guesses. As the observed results of the first period become available, the experimenter revises his guesses of the unknown parameters, and recalculates the optimum values for the remaining control variables, u_2, u_3, \ldots, u_N. Thus as the experiment progresses, more and more information becomes available and the initial guesses at the parameter values
may be replaced by better estimates, which in turn are used to update
the design of the remainder of the experiment.

3. Solution

The mathematical problem facing the experimenter in each period is
to minimize an objective function

\[J = \lambda_1 J_1 + \lambda_2 J_2 \]

which is a weighted sum of the expected cost, \(J_1 \), and the information
gain, \(J_2 \). The minimization is carried out subject to the constraint im-
posed by the model.

\[x_k = A x_{k-1} + B u_k + C z_k + \epsilon_k = D w_k + \epsilon_k, k = 1, \ldots, N. \]

where A, B and C are matrices of random variables used to model the
uncertainty regarding the constant but unknown parameters, \(\theta \), \(\phi \), and \(\epsilon \), and where \(D \) and \(w_k \) are defined as \([A, B, C] \) and \([x_k, u_k, z_k] \) respectively. The experimenter’s prior guesses at the unknown parameter values,
\(A_0 \), \(B_0 \), and \(C_0 \), will be taken as the prior means of the random matrix \(D \)
and his guess at \(\Gamma_0 \) will be used as the prior variance-covariance matrix
of \(D \).

There is in general no way of obtaining an exact solution to the above
stochastic optimization problem except through numerical techniques.
Moreover, for problems of any reasonable magnitude, numerical solu-
tions are simply not feasible, and some sort of approximate solution must
be developed. The solution to be used here is a straight-forward extension
of that presented in [4], in which the random matrix \(D \) is replaced by a
sequence of independent random matrices \(D_0, D_1, \ldots, D_{N-1} \), whose
means are all equal to the prior mean of \(D \) (i.e., equal to the experimen-
ter’s guess, \(D_0 = [A_0, B_0, C_0] \)) and whose variances reflect the growing
amount of information that is expected to become available in each period
of the experiment. The rationale behind this approximation is discussed
in detail in the above-mentioned paper.

The variance matrices are related to each other by the equation.

\[\Gamma_k = \Gamma_{k-1} + \Omega^2 \cdot E[\epsilon_k \epsilon_k^T] \]

where \(\Gamma_k \) is the variance-covariance matrix of the elements of \(D_k \) (arranged
by rows). If it were not for the expected value operator on the right-hand
side, the above equation would describe the change in the variance of
ordinary least squares estimates of the unknown parameters as additional
observations become available. As it stands, however, equation (3.3)
may be interpreted as measuring the anticipated growth in the stock of
information over the course of the experiment.

401
Before going on to describe the solution to the experiment design problem under the approach just discussed, it is useful to clarify the interpretation of the two components of the objective function, J_1 (the cost) and J_2 (the information gain). In the first period of the experiment, a set of design vectors will be determined for the first and all subsequent periods. Only the first of these design vectors u_1 will actually be implemented; of course, but it is necessary to make tentative plans as to what will be done later in the experiment in order to make an optimal choice of what is to be done in the first period. However, in view of the fact that the future cannot be predicted precisely, the tentative design vectors will not be calculated as fixed numbers, but as functions of variables which will be observed later in the experiment. In other words, the set of design vectors, u_1, u_2, \ldots, u_N, will not be calculated as a set of explicit values but rather as a set of strategy rules or contingency plans. This means, of course, that the cost of carrying out the tentative experiment design cannot be calculated exactly at the beginning of the experiment, nor is it possible to calculate exactly what gain in information will result. The procedure to be used here is to use the expected cost of the tentative plan as place of the actual (but unpredictable) cost, and to use the final information matrix I_s^J (as defined by (3.3)) as the argument in the information gain measure J_2. These two conventions have been incorporated in (3.1).

The solution to the experimental design problem under the assumptions discussed above may be obtained in a manner similar to that used in [4]. The objective function in that paper corresponds to $E[J_1J_2]$ in (3.1); the objective function shown in (3.1) simply has that term multiplied by the scalar λ and an additional term involving the terminal stock of information, I_s, and the scalar λ_s. Neither of these changes affects the derivation of the solution in any substantial way.

The optimal set of vectors, or strategies, u_1, u_2, \ldots, u_N, is given by the following system of solution equations:

\begin{equation}
 u_k = -H_k^1(I_k \chi_k + f_k), \quad k = 1, \ldots, N
\end{equation}

where, for $k = 1, \ldots, N$,

\begin{equation}
 H_k = B^*k_kB + K_k \otimes I_s^{\text{ik}} - \Omega^{-1} \otimes M_s^{\text{ik}} + \lambda_s R_k,
\end{equation}

\begin{equation}
 I_k = B^*K_kA + K_k \otimes I_s^{\text{ik}} - \Omega^{-1} \otimes M_s^{\text{ik}}
\end{equation}

and

\begin{equation}
 f_k = (B^*K_kC + K_k \otimes I_s^{\text{ik}} - \Omega^{-1} \otimes M_s^{\text{ik}})z_k + B^*g_k + \lambda_{ik}
\end{equation}

Matrices A, B and C are equal to the experimenter's initial guesses A_0, B_0 and C_0 (the subscript 0 is omitted for clarity), and the superscripts on
I refer to particular elements of the full covariance matrix. The matrix \(\Gamma_{k+1} \) for example, contains those elements of \(\Gamma_k \) which are covariances between elements of \(B \) and elements of \(A \). Matrices \(K_k \), \(M_k \) and the vectors \(g_k \) are defined recursively, for \(k = N, N - 1, \ldots, 1 \), by

\[
K_{k+1} = \lambda_1 Q_{k+1} + \mu^T \kappa_A + \kappa_k + \Gamma_{k-1}^{-1} - \Omega^{-1} \ast M_k^{11} - F_k^T H_k^{-1} F_k,
\]

\[
g_{k+1} = \lambda_1 g_{k+1} + \mu^T g_A + \mu^T \kappa_C + \kappa_k + \Gamma_{k-1}^{-1} - \Omega^{-1} \ast M_k^{11} \ast \gamma_k - F_k H_k^{-1} f_k,\]

and

\[
M_{k+1} = M_k + \Gamma_{k+1} (\kappa_k \ast E | w_k w_k^T |) F_k^T.
\]

\[
K_k = \lambda_1 Q_k
\]

\[
\gamma_k = \lambda_1 s_k
\]

\[
M_k = -\lambda_3 (\partial L / \partial \gamma_k) (\partial L / \partial \gamma_k)^T.
\]

The symbols \(\ast \) and \(\ddagger \) stand for the Kronecker product and star product\(^1\) respectively.

If the design problem were specified in terms of minimizing a weighted sum of cost and information gain, then explicit values would be assigned to the two weighting parameters, \(\lambda_1 \) and \(\lambda_2 \), and the system of equations (3.3) to (3.11) would be solved iteratively to give the design vector \(u_k \) which is to be implemented in the first period, and the tentative strategy rules, \(u_{k+1}, u_{k+2}, \ldots, u_N \), for the remaining periods.

If the design problem were originally stated in terms of maximizing information gain for a given cost, then the above system of equations would be augmented by the additional constraint

\[
E | a_k | \leq \text{maximum allowable cost},
\]

the parameter \(\lambda_3 \) would be set equal to 1, and \(\lambda_1 \), which now plays the role of Lagrange multiplier for constraint (3.12), would be determined by the system of equations. It will generally be the case that additional expenditures on the experiment will yield additional information, so that (3.12) will almost always be satisfied by equality.

If the constraint is on the information gain, then the extra equation

\[
1^\text{The star product of an } n \times n \text{ matrix } A \text{ and an } m \times m \text{ matrix } B \text{ is an } p \times q \text{ matrix } C \text{ with } C_{ij} = A_{ij} B_{ji}, \text{ where } A_{ij} \text{ is the } i\text{th element of } A \text{ and } B_{ji} \text{ is the } j\text{th element of } B \text{. The } B_{ji} \text{ are all of dimension } p \times q. \text{ A more complete description of the star product may be found in MacRae (1954), along with techniques for calculating the matrix derivative found in (3.11) above.}
\]

403
becomes

\[
(3.12') \quad J_1 \geq \text{minimum required information}
\]

parameter \(\lambda_1 \) is set to 1, and \(\lambda_2 \) becomes the Lagrangean multiplier to be determined by the system of equations. In general, \((3.12') \) will also be satisfied by equality except in the unrealistic situation where the initial information is more than is wanted at the end of the experiment.

4. Analysis

The set of equations which defines the tentative design vectors involve three Lagrangean multipliers, \(\lambda_1, \lambda_2 \), and the matrices \(M_k \). These may all be interpreted as the marginal gain in the objective function of relaxing the associated constraint. Thus for example, \(\lambda_1 \), which is associated with the cost constraint \((3.12) \), measures the marginal value in units of information of having an additional dollar allocated to the experiment. Similarly, if the design problem is specified with an information constraint such as \((3.12') \), then \(\lambda_2 \) shows how many dollars could be saved by a marginal reduction in the amount of information required at the end of the experiment.

The interpretation of matrices \(M_k \) is somewhat less obvious. They were introduced into the problem as Lagrangean multipliers for the variance-update constraints \((3.3) \), and as such may be interpreted as the imputed price of the stock of information, \(\Gamma_k^{-1} \), in each period \(k \). As equation \((3.11) \) states, the value of having more information in the last period of the experiment is exactly equal to the marginal contribution of \(\Gamma_k \) to the objective function. Whatever is learned during the last period has no additional value to the experimenter since it cannot be used to improve the experiment design in the earlier periods. As can be seen from equation \((3.10) \), the matrices \(M_k \) grow in value the nearer \(k \) is to the first period. This simply indicates that additional information is of more value early in the course of the experiment where it contributes not only to the terminal stock of information, but also permits a more finely tuned experimental design.

Matrices \(M_k \) appear in the strategy rules only in conjunction with \(\Omega^{-1} \), the inverse of the variance of the basic model. The effect of a larger \(M_k \) is generally to make the design vector more radical so as to increase the information level more quickly. This effect is modified, however, if the system of equations is noisy (i.e., if \(\Omega^{-1} \) is small), for then it is not clear that actively manipulating the design vector would result in an information gain which is worth the cost.

Paradoxically, in a dynamic model, less initial information (i.e., smaller \(\Gamma_0^{-1} \)) does not necessarily make it optimal to do more active ex-
perimtation to learn more in the earlier periods. The reason is that the potential cost of carrying out the experiment is increased if less is known about how the model behaves. Thus it may actually be better to adopt a rather conservative experimental design in the earlier periods and postpone most of the information gathering activity until such time as a more reliable and cost-efficient experiment may be designed, using some of the results of earlier periods.

Submitted: March 1977
Revised: June 1977

REFERENCES