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I. IN! ROI)i..'('lU)N

The gro\viflg interest iii controlled social experimentation has led econ-
OI1IIStS to devote IiiOrC attention to the appropriate deswn of such ex-
periments. In general, the formulation of the design problem involves a
trade oIl' beteen the maximizatioti of information gained by the experi-
merit and the nunimlyation of costs, both to the experimenter and pos-

sibly to the subjects of the experiment. When the model under considera-

tion is a classical static regression model, tile anatysis of experimental

design is straightforward and has been discussed by Watts and Conlis 5).

If, however, the model is dynamic and if time-series data are to he col-

lected then the analysis becomes much more complex.
The purpose of' this paper is to use stochastic control theor\ to

develop a methodology for designing time-series experiments. The basic

approach to stochastic optimization by MacRae [4) is extended to include

a valuation of the stock of information at the termination of the experi-
ment. The experimental design is then derived as a sequence of' plans in

which the information that becomes available in each period is used to
update and refine the de:;ign for the remainder of the experiment.

2. PR IIM Sr..\'rI\liNi

Assume that model under consideration has the form

(2.1) = Ux1 +BuA + eZS + 1,, = 1,2

where u, is a design vector which ma) be chosen by the experimenter in

period h-, x,, is'i vector of endogenous variables, and : is a vector of
exogenous variables. Ni atrices a. and e are the unkno' ii parameter

matrices to he estimated and is a vector of random disturbances, in-
dependent over time, with zero mean and variance matrix .

'[he experimenter is also faced with a function. J1 , which incorpo-
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rates not orik the monetars costs of conduetine the C.\periment hut also
ans social costs or bciiettts that accrue to the subjects of the expe[inleiit
rhis cost tunction over the periods ol the experiment is t\stIiii(j to h

quadratic in torm:

(2.2) .1 = Q .'0 + u R u .V kA t t i1.

ss here Q , , and are fixed mat rices and ectors. It the eXogei)
variables pla\ i role in the cost tuitetion. the are subsumed h the Q. R
.s. and I coe tilcients

The final element of the experimenter's problem n. a measure J,
of the accurac of the parameter estimates at the end of the experir)eit
l.ettiniz l'. he (he variance-covariance matrix of the estimated parani_
eters as of period .V, a natural choice for L would he sonic scalar In Fiction
of i'ç.' , the in formation niatri x . Thus,

(2.3) =

where the function 1. is. for example, a determinant or weighted trace.
The problem facing the experimenter is to determine a sequence ol

vectors, u . , SC, as to nhinimt/e .I and nia.Xini t/e I,. This mas
he handled in three ways. First, the experimenter miv choose to minimj/
costs subject to attaining some given level of information Second, lie may
maximize the information gained, subject to sonic upper hound on costs.
Finally, he ma minimize a 'seighted SLInI of J and - J2 . Since, h- ap-
propriate manipulation of the weights on J1 and J. solutions can be
obtained which are equivalent to the first and second approaches above
(the weights taking on the role of Lagrangean multipliers), only the third
method will be dealt with explicitly in this paper.

As will become apparent in the next section of the paper, the esperi-
menter must start with prior guesses. A0. B0. ('a. at the values of the
unknos% ml coefficient matrices, Q , . as well as a prior value for the
inter-equation noise variance, 1 . This prior in tormation is the same as
that required for design of experiments in the static structural equation
case discussed h Conlisk [I]. In addition, experimentation in a time-
series model requires a prior variancecovjriance matrix. s. hich
measures the uncertaint\ associated ss ith the prior parameter values.
A0. B. ('a. At the beginning of the experiment, the experimenter cal-
culates a series ot control vectors, u . u, u , utilizing his priorguesses. As the observed results of the fjrst period become available, the
experimenter revises his guesses or estimates of the unknos ii paranietems.
and recalculates the optimum values kr the remaining control variables,u, u1. u. Thus as the experiment progresses, more itiid more infir-mation becomes as ailah!e and the initial guesses at the parameter valijec



fluy be replaced by better estimates, s hich in turn are used to update
the desgn of the remainder of the experiment.

3 Soiurio:c

The nialhcrnatical problem facing the experimenter in each period is
to ni in imize an objective function

(3.1) J = AEJ1 +

which is a weighted sum ol the expected cost. .11, and the information
gain, J . The minimization is carried out subject to the constraint mi-
posed by the model,

(3.2) x = AXA I + BUA + (':A + + , k = I V

where A, B and (' are matrices of random variables used to model the
uncertainty regarding the constant but unknown parameters, . . and e,
and where I) and WA are detIned as [A. B, ('I and [x - n . :

]
respec-

tively. The experimenter's prior guesses at the unknown parameter values.
A0. B0. and Co . ill he taken as the prior means of the random matrix 1)
and his guess at 1' will be used as the prior variance-covariance matrix
of D.

There is in general no way of obtaining an exact solution to the above
stochastic optimization problem except through numerical techniques.
Moreover, for problems of any reasonable magnitude. numerical solii-
tions are simply not feasible, and SOfliC sort of approximate solution must
be developed. The solution to be used here is a straight-forward extension
of that presented in [4}. in which the randoni matrix D is replaced by a
sequence of independent random niatrices fl. fl whose
means are all equal to the prior mean of 1) (i.e.. equal to the experimen-
ter's guess, D0 = [A0, B0, C')]) and whose variances reflect the groing
amount of information that is expected to become available in each period
of the experiment. 'The rationale behind this approximation is discussed
in detail in the above-mentioned paper.

The variance matrices are related to each other by the equation.

(3.3) 1'' = l' + l ® E w w

where I' is the variance-covariance matrix of the elements of D (arraned
by rows). If it were not for the expected value operator on the right-hand
side, the above equation would describe the change in the variance of'
ordinary least squares estimates of the unknown parameters as additional
observations become available. As it stands, however, equation (3.3)
may be interpreted as measuring the anticipated growth in the stock of
information over the course of the experiment.
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E3etore cUing on to describe the solution to the experiment dcsj11
probleni tinder the aproaeh list discussed, it is useful to cljirifv the OtCi.
pretation of the tsOconipoiicnts of tOe obpcctive tunitR)ii. I, (thie
and J (the inl'ormatiori oainl In ih first p'rod rI the pere a set

Jof
design vectors svtll he tletcriiimnecl for the tirsu nid ilI suihseqiiciit

periods. Only the !irst of these dcsiri vectors (u1 ) s', ill act nalk he
pkniented, of course. hut it is neccssar\ to make tentatis C plans as to 0,
will he done later in the esperimnen t in order to make an optimil ehoi
of hat is to he done in the first period. I lowever, in vies of the fact thatthe future cannot he predicted precisely, the tentative desiun

Vectors o,jfl
not be calculated as fixed numbers, hut as functions 0!

Variables Which
will he observed later in the experiment. In other words the set of desi1
Vectors, a1 a5, will not he calculated as a set of explicit values

hutrather as a set of stratei rules or c0ntir1i!enc plans ibis means of
course, that the cost of carr ing out the tentative experiment

design can.
riot he calculated exaetl at the heginn fig of the experiment, nor is it pos-
sible to caicLihmte exactly s hat gain in in formation will result. The pro-
cedure to he used here is to use the expected cost of the tentative plan inplace of the actual (hut unpredictable) cost, and to use the final informa.tion matrix 1' (as debned by (3.3)) as the argument in the in6arniation
gain measure, J2. These two con ventions have been incorporated in (3.1),

The solution to the experimental design problem tinder the assun]p
tions discussed above may he obtained in a manner Similar to that uise
in {4J. The objective function in that paper corresponds to EJ1 n (3.1);
the ohjcctivc function shown in (3. I ) simply has that term multiplied

bthe scalar A and an additional term involving the terminal stock of' in-formation, 1',, and the scalar A.,. Neither of these chamiges alfects the
derivation of the solution in any substantial way,

i'he optimal set of vectors, or strategies, a1 , ........u. . is given bythe following system of solution equations: -

(3.4) = i' ( I"x + .t A = I v

where for Ic = I V

(15) lIt = IJ'KB + NA® "f .- !r + AR.
(3.6) l' = B'K-j A I

anti

(3.7) J = (B A C + A0 I - i

) + B .A + A '.
Matrices A, B and C' are equal to the cxpeniillenter's initial guesses .4.B and C' (the subscript 0 is onimtted for clarit), and the superscripts on
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I' reler to particuar eIeientsot the IIL1I CO\ ariarice matrix. Ihe matrix
t.er- I'" , or example, coiltains those eleiiierits l which are covariances

A'st) hetveei1 elements of B and elements of A. Matrices Ic( , 3/ and the vector'.
are defined recursively, br k = .\', -' -- I I

(3X) A.A =
I ikl ' '5 , l(1I -- .&

ill-I-

hat "A

olce (3 1((
I -t l'( 4 (.1'kC k

that
ill cS)

iJ.1( 1:, -- "( '
hich and
siLzn

hut (3.10) I = + I (A I: tt ic )l

of (3.11) K, =
can -

pos-
= X1S

pro- )/iI').
fl

The symbols ® and stand for the Kronecker product and star product1
rma-

respectively.

1)
If the design problem were specified in terms of minimizing a

veihted sum of cost and in formation gain, then explicit values ould he
unit)- assigned to the two weighting paranleters. A and X2. and the s\ steni of

US equations (3.3) to (3.1 1) would he solved iterative1 to give the design
vector u1 hicli is to he implemented in the first period, and the tentative
strategy rules, u: u . for the remaining periods

hF If the design problem were originalI stited in terms of maximizing
S t information gain for a given cost, then the above system of equations

would he augmented h the additional constraint
en by

the parameter A would he set equal to I. and . which now pla s the
role of lagrangeami multiplier for constraint (3.1 2), would he deternitned
h the system of equations. It ill generally he the case that additional
expenditures on the experiment ill yield additional information, so that
(3.12) will almost aiw avs he satisfied by equalit

If the constraint is on the information cain. then the extra equation

es A0.

pis Oil

(3.12) !:J1 maximum allowable cost.

the sI,r produ1.t oh aIC In h), fl lll:IirI.\ .1 4fld amp h nq lnatrI\ B I' 1 p h q I1C,IIrI\

C. C - -1 B. Itelmed h C i1, Br,. v.here a is the jib elelilelli ol .1 111(1 ll, I" itCC

,,ih ',tihTflti1t oh B. I tie II,, are jhl oh (IIlllehl"IC)Il p h Cf A '(lOre e)illpIetC (ierlpiIC)I1 (II

the star product ,ns he o,,iid in \l,teRae . IkmtC Ithl techniqu:s tor (ikUIatiiig the
1(1,tt1i dcii', MISC ioiiiid ii (3.1 i I ahoe.

403



l)ecOmeS

(3. 12') 1, > in nim urn req tijied Ii foriiiatiun,

parameter A is set to and A becomes the I agrancan iii ultiplier hi he

L1)

determined h'. the svsteiii 0! equ!t!ofl\ In 'cneraI. (3. II k

satisfied h equality except iii the unrealistic situation '. here the Initial
iiilorniation is more than is wan ted t the end of the C\ perimeilt.

4. \s.i YSIS

The set of equations which defines the tentative desgn vectors nole
three Lagrangean multipliers. A . A , and the matrices MA These ma all
be interpreted as the marginal gain in the objective function of relaxing
the associated constraint. Thus 1r example. .\ i . which is associated di
the cost constraint (3. 12). measures the marginal value in units of in-
formation of having an additional dollar allocated to the experiment
Similarly, if the design problem is specified with an information con-
straint such as (3.12' ), then A2 shows how many dollars could he saved
by a marginal reduction in the amount of information required at the end
of the experiment.

The interpretation of matrices MA is somewhat less obvious. They
were introduced into the problem as 1.agrangean multipliers for the vari-
ance-update constraints (3.3). and as such ma be interpreted as the
imputed price of the stock ofinformation. 1', in each period k. As equa
tion (3.11) states, the value of having more information in the last period
of the cxperinicnt is exactly equal to the marginal contribution of F .) to
the objective function. Whatever is learned during the last period has no
additional value to the experimenter since it cannot be used to in1proe
the experiment design in the earlier periods. As can be seen from equation
(3.10), the matrices MA grow in value the nearer k is to the first period.
This simply indicates that additional information is of more value early in
the course of the experiment where it contributes not only to the terminal
stock of information, but also permits a more finely tuned experimental
design.

Matrices MA appear in the strategy rules onl in conjunction with
the inverse of the variance of the basic model. The ellct of a larger

MA is generally to make the design vector more radical so as to increase
the information level more quickI'. This effect is modified, however, if the
system of equltions is noisy (i.e., if -i is small), for then it is not clear
that active! manipulating the design vector would result in an informa-
tion gain which is worth the cost.

Paradoxically, in a dynamic model, less initial inlormation (i.e
smaller I)

does not necessarily make ii optimal to do more active cx-
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perimentation to learn more in the earlier periods. The reason is that the
potential cost of carrying out the experiment is increased II' less is known
about how the model behaves. Thus it ma actually he better to adopt a
rather CO!iSerVatiVC experimental design in the earlier periods and post-
pone most of the information gathering activity until such time asa more
reliable and cost-eflicient experiment may he designed, using sonic of the
results of earlier periods.

l'ederal Etiergt' .1 t't'tzei'
Submitted: Mare/i /977
Revised: June 1977

t I I F RE N ('IS

II) Conlisk, John, ''I.xpertrnental I)esiin in lIe n metrics: The Simultaneous Fquaiioii
Problem.''

[2) l:ederov, V. V., ihi'ori' of Optimal i.spt'rioiefl(s Academic iress. Nct York, ( 972).
3) MacRae, Iiiiahetli Chase. ''Matrix l)eriatives sith an Application to an Adaptive

Linear Decision Problem, 1/it' .1 tout/i 0/ .S'iitji s. 1197.1).
[41 Mac Rae, Fhia beth Chase, ''An Adaptive l.earn ing R tile for M ultiperiod lkciston

Problems,'' l'.eonomctrua (Sept. Nov., 1975).
[5) Watts, harold and John (.'onlisk. ''A Model of ()puiniiiiug l.xperimentai h)cigii for

Lstirnauiug Response Surfaces...'l ,nrrii an ,Siaruiu al l'raiet'ilip,'...oiial .Suittu Sit
Ito!?. /vóQ.

405


