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A nrials of Economic and Social Measurement, 6/) 1977

COVARIANCE OF ESTIMATED PARAMETERS IN
ARMA REGRESSION MODELS

By RIcuARD HILL

In this paper we denve the asymptotic colarianee niatrix of the maximum likelihood est 1-
mator for regression models with A RMA error, we di.ccucs some aliernntiie sample estimates
of this coi'a riance matrix, and we extend conic of these results to forecasting.

1. INTRODUCTION

We begin by defining a general class of regression models, having gaussian
errors with unknown covariance structure. We derive the likelihood func-
tion and its derivatives, and specialize these to the case where the co-
variance structure is that specified by an autoregressive moving average
process. Next we derive the asymptotic covariance matrix for the maxi-
mum likelihood estimator, and we discuss some alternative sample esti-
mates of this covariance matrix. Finally we extend some of these results
to forecasting.

II. TUE M0IEE.

Let fi be a k x I vector of parameters. ni a twice differentiable func-
tion nz: - R, so that ,n(8) is an n x I vector. V(6) is an n x n sym-
metric positive definite matrix, whose elements are a function of the

X I vector 0.
Our model is

(1-I)

where

so that if

(1-2)

For example if V(0) = I, we have the usual nonlinear regression model,
and if

rn(13) = Xf3

then we have Y N(O, a2!) which is the usual linear regression
model. For convenience, we put f(fl) = Y - rn(S), so that f(5) is the
n x I vector of residuals. We let y = (), the combined parameter vector.
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In our applications we will find that p. the dimension of (1, muchsmaller than n, so that V(0) is unknown only up to few Parameter Vaino,
which we wish to estimate. For example, if V were a iero mean tiiii serieswe could takcf(i) }', and perhap asurne

ft 0 0

010 - ..0
= 0 0 1 0

\0 0 0 0 0 1/
This is a one parameter model, in which we are trying to estimate the cor-relation between V and V,4 , assuming that V1 arid }. , are uncorre.lated for t The ARMA models described in Box and Jenkins (1970)
are special cases oI(1-I). In fact, they can he written as

- Th 'i_ - P2 L- 2 - 0 = I I

(1-3)

where

In our notation

(1-4)

where

(1-5) P(p) =

P(p)Y =

Pa Pa-i 0

0 _p 0

0 0 p0 0



and

for all values of 0. Hence

II. TUE LIKELILlOOl) FUNCTION

N(O,a2I,,),

so that the Box-Jenkins models are indeed special cases of (1-I), with
,n(f3) 0 and V(0) given by (1-8). Throughout, we will let P(p) and
T(ç) be defined by the above matrices.

We propose to estimate the parameter y by using the method o1
maximum likelihood. We can only observe the n x I vector Y, so we need
the likelihood in terms of Y:

(2-I) L(f, . 0, a)
Cdet(V

exp [

where C' is a constant (see Rao(1969) Section 8a.4).
For all out applications we will have det(V(0)) = I, so we immediately

simplify things by assuming that

(2-2) det( V"2(0)) =

0 0

1 0 0

t7 _' I 0

(1-6) T(çI)) =

çba -i 0

o bat 0

o 0 0

0 0

Letting

(1-7)

and

0 = (p1 ,..., çb1 .....

(1-8)

we have

V - '(0) = i () P(p),



(2-3) log L(f, , 0, a) = fT(/1) V - - n log a f C
2a

To maximize this we ditferentate and set the derivatives to 0. (Recili that
/(i3) = Y - in(8). so for each d.j'(d) is observable.)

log L I v' (0)f($) - = 0(f3 a
or

J'(fl) V'(0)ftj3) = fl2
Hence

(2-4) fT(f:) V()f(f)
fl

and we can treat a2 as a constant throughout the rest of the discussion
Note that we are now trying to minimize

f'([3) V (0)f(/3).

We writef(Ij) (f .....f,)': V-'(0) = (V'i) br convenience Then

i) log L i i f v'j;1$ 2a

=

V'J/ + j vu
J)

=
ô3, ')

= (a(1 V(0)f(()
a \ dJ3,

)logL 1 _?_f
m 2a2 OOm

f vu)

2i aV'
2a2 ( /I)

9 V'(
= f(9).

m

So the k -i- p normal equations are

jf T(fl)
V-'(0)j(B) = 0

(2-5)

{fT)
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Next, we compute the matrix of second derivatives. Omitting the de-
tails, we have:

i2logL ,fr([3)
V-t(0) V(0)J(f3)

I3,I3, ab,

2logL (91T([3) ôV(0)f()
(2-6) g2

2logL - JT(/i)
2V)f($)

- 2a2
43OlOm f3OiOm

We summarize these results as follows:

1Ff']' vf' + f" v-If Lf']T[Vh]f\
/1=1\[f]T[vlIf

(2-7)
([f']rv-If

G=.
f [ V ] 'f

The primes denoting the appropriate derivatives.
The asymptotic information matrix I(y) is then given by

(2-8) 1(y) = E(i_ H)

Holland (1973) described a method for carrying out the expectation in
2-9. Since a2 is considered fixed, we treat it as a constant. Then

[f']TVf' + [f"]' Vf]

= [f']' Vf' ± [f"]1 V-I [Ef} = [f']' V

since f'(fl) = m'(fl) was assumed fixed;

[f']T[ VJ'f = I j'T V]'[EJ] = 0,
a2 a2

-J

sincef(fi) = V -- ni() - N(0,o2V(0)),by I-i.

E[fh[V-']"fJ = 22 trace[E[fT[V]"f]]
2a2

= -.--- Etrace[fT[V']"f] _.!- Etrace[[V["ff']
2a2
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So we have

(3-1)

so that

(3-2)

(3-i)

22 trace rEUV- ]"f1'n = trace

trace ff V - 'a2 V = trace [ V(2- 2

V(0) = P'(p)T()EP(p)T(cb)}1

V- /2(0) = 7'- () P(p),

(TP) -p-- (PT) = i--
'Pi
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where T, Pare given by 1-5 and 1-6.
The error process is now an ARMA error process. Using the fact thatboth P and Tare Toeplitz matrices, it is possible to considerably simplify

the expressions 2-7 and 2-9. These computations are straightforward buttedious, and they will not be given here. They are carried out in full in I-jill
(1975). In particular, it can be shown that

i trace = trace I(T'P)a (TP)0 (F''T) Tj2 \ oo,,,.
OO OOm /

and

[(TP)(p-Il.) -
(3-4)

1

Op1

I v' 0

(2-9) I('i') =
0 trace

2 )
We see that the ARMA coefficient estimates are as\'rnptoticll!) un-

correlated with the regression parameter estimates, and Consequently thedesign of the regression experiment does not affect the prccisj of theestimate of the ARMA parameters.
We now specialize to a subset of (I-I) for which the expressions (2-9)are easy to compute.

Ill. SPECIALIZATION To ARMA ERROR PROCESSES

We restrict ourselves to the subset of (1-1) for which



Since the matrices P' and T' are readily computed indp, d,
closed form, these expressions simplify the computation of the informa-
tion matrix (2.9).

This is a perfectly sensible answer, stnce it is well known tha the estimate
for p. is essentially based on n - jobservations In particular forp = I

=nYsYi_I.

Furthermore, from formulas (3-3) and (3-4) we see that if either
F(p) I or T(p) I, so that we have only 's or only p's to estimate,
the value of I(-y) will depend only on the value of the or p vector, and
not on whether or not it is a vector or a p vector. That is, I() = I(p)
whenever = p and, respectively, P(p) = I or T(i) = I.

This result is rather surprising: it says that the asymptotic variance
for the p's is the same as that for the 1's if only p's or 's are present, even
though they represent quite different models: One is

- p1Y2. p,,Y1_,, N(0,r2)

The other is

where

- i.i.d. N(O, 02)

If p = cb, then I(çb) is singular, since it has the form (
).

This means that the parameters are not estimable, and this is reasonable
since our model is now

N(0,o21)

and many choices of p and will give us this model.
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i) If T() = Iandp

I(0) =

nI
o

o

.' 0

0, then

0

n-2
o

0

0

0

0 ...

0

0

0



IV. APPROXIM.klloNs To Tm COVARAN('F N4ATRIX

It is usual to assume that / '('i) / -' (), and in lact Ran
shows that if F, is the distribution function of and G,, is the

dislrjhutiofunction ofa random variable distributed iV(O, / !() then

lim I - I = 0,

under suitable regularity conditions.
By the strong law of large numbers, and consistency, we also have

H(s) I(y) 0. since Ell(y) EI(y)

(Note that it is not true that H(-)
verge to I-y), as we will see later.)

On the basis of this result, it has
rather than I(-) as an estimate of I(').
to this approach

i) Suppose that J() = }', and that = , so that I () is singu
ll() is not necessarily singular: in fact, let = 0, and p 2. Then

Whereas

log L

H() -

I(0) = 0

The form for H(0) is most easily derived by observing that here

I(y), in fact H(y) need not co,

been suggested that we use H(s)
We point out Some disadvantages

I. Then



uk.
(}', /J) 2f(1fl) /)(Y1 ønra/i

(Y1

aloL
I L 1 P11 I pj N 2(N l), (N

-- I-- I + pJ(

+ I(V1 p(V, fl)J( I)

(Y - /1) -. (V, /3)

(Y, 13) i- (Y, (I)

=(Y1-iJ)(y/3) Y -

and

so we see that

and

Clearly 11(0) does not cflvcrtie in pfl)hdhilily U) 1(0); however, under theassumption p = 0

Yl --- Y,, N(0,2),

a

L Y?
-2

I!

y12 - ,,
.. I) = Or (;).

In this case, however, 1(0) is the correct answer, SO WC Sec that /1(0) is notus good.

'[here is another approxinlution which is clearly superior to 1! (i):

'j 'v 'r o(4-I) 1/2')
(, o ,'

This is obtained by eliminating those components in (2-7) WhOse expecta-
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S
tR)l1 IS obviously 0. lor the exiniple we

/12(0) =

which is still ilot as good as 1(0). 112 also still sulkrs from
I) above: in fact, the lower right corner ol 112 is identica to that of//.

We conclude that the variance oF the (is (ARM A coellillelits) Sh()tiId
not he estimated from 11(), hut lron l(-), since the two .au difl
n ifican tly: a n U inerical exam pie follows.

We generated F nv taking 100 points from a nQrnia I (0.1) distrjhtn.
tion, so that V N(0, 1). mcli we fit the model (I - ) with n(Ø)

where /i is a scalar and ü (), so that we lit a fIrst order moving average

tirst order a utoregressive process. (i.e.. both 1' and '1' a Ic present, hut each
depends otily on one Parameter.) We fa und

=

.000826"

.345833

35()404

0 \\

3.16488

3.22633/

Since admissibility requires <. I, / I s I, this last expression
niea us that p a iid are essentially inestimable.

It is to he noted that the large observed variances for and are noi
accidental: if we had found .36, = - 36 then I (-i') ould have
been singular, and the variances would have been in hnite. In Fact. ii we lix

at - .36 and vary , we get a smooth progression trom reasonable
vanance estimates to absu idly large ones.

f)09J28 .000476

.347967

009319 0

31134

I 18

Istimated variance of

0 .0787
.2 .33
--.3 2.06



I

One might conclude from this example that the estimated variances givenby H 'G) are absurd.
In this context Wall (1973) has suggested looking at the estimatedcorrelation matrix for p arid , this is

I .99041 forH()

.99859\ for I().

This indicates at once that the estimates for p and are unreliable, since
they are so highly correlated. We could also look at the condition number
for the covariance matrix of p and . For H' the eigenvalues are
.0033505, .695021, the condition number 207: for I .00448, 6.33525 and
1,414. The condition numbers for the correlation matrices are 208 for H
and 1,417 for I. So we see that in fact the estimated covariance matrix
is nearly singular, for H' as well as /; this indicaics that the parameters
are "nearly inestimable". That is, we can reasonably conjecture that the
estimated variances given by H' are much too small.

This example points out that blind acceptance of variances estimated
from H', without examination of correlation coefficients, cigenvalues or
condition numbers, can be quite misleading for this class of problems.

V. VARIANCE OF FORECASTS

The results of section II and lii are easily extended to the forecasting
case, if we take the view that the forecasts merely use additional unknown
parameters to be estimated via maximum likelihood. We maintain the
notation of section 1, but we now assume that

'

are unknown, and to be estimated. Formally, the expression 2-3 still
holds, hence 2-4 and 2-5 are still correct, with the understanding that

must be used in the computation off(f).
We now have the additional t normal equations

V'(0)f() = 0, q 0... I - I:
Jn-q

[Note that from i-i (0,0... q I
entries
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/ The additional second derivative terms are given by
. //1 (53)

2 IogL ÔJT($) Ilf(,fl)

- q L$1 d'
(54 a2 log L ô.f'i) fl''(0)

9V - q Orn
c' dOn, -

(55) a2 log L
V '(0)a,, -- q c9y., -, - q -

We note that (5-4) has expectation 0, and (5-3) and (5-5) are not Sto-chastic. In particular, recalling (5-2), we see that

(5-6) a log L
=dYn - qaj' -,

The expression (2-9) must now be modified to take into account the factthat we have only n - t observations; essentially this means that theestimates for and y are only based on Y, .....t',,_,, and, with thisproviso, (2-9) is still correct, so we have

2
trace

ao o)

0

0

For simplicity, we now assume that nz(fl) = 0, so the variance of a fore-cast is given by inverting the appropriate segment of V'.
In particular, for the pure autoregressive case, l' pTp so we seefrom 1-5 that

Var() = a I,
if z = I. That is, the one step ahead asymptotic prediction variance isalways 2,

regardless of the order of the process. This result follows atOnce from (1-3), since,
asymptoticay, we know Pi .....p exactly.Similarly, the two step ahead

asymptotic covariance matrix is givenby

120

if
f'J TV'f' 0 tf1v

(5-7) I(-') = 0

II ajT

L-.q I/_'[f'J



So the two step ahead variance is a2(I + pf). This also follows at oncefrom (1-3).
Similar results can be obtained for the moving average case, hutthe expressions quickly become more corn Pl icated,
One drawback of the asymptotic formula (5-7) is that tIi variance oFthe estimated y parameters is not taken into account. We may use the ômethod (see Rao (1965)) to derive approximations which include the I/nterm due to the variability of and which are conditional on VWe illustrate the general approach with two examples. In the first orderautoregressive case we have

P =
and hence

(4-8) - v1) = - ;'1- - = .v,-( - p) -
Since y is not observed, it Is not used in estimating , and so and , areindependent. Thus

Var (j, - y) = a2 + y_ Var (a).
From the results of section 3, we have

(5-9) Var(91 - y) = a2

+ (a - l)_+ (a - 2)p2 + (n - 3)p4 + + p2(fl_2

If p = 0, this reduces to

(5.10) Var($1 - y) = a2 + Yi
'3 - I

For the two step ahead predictor we have

= PY-.
and hence

(5-Il) (5 - .v1) = 11Y-2 - $2Y1-2 - Pci-i -
So

(5-12) Var(1 - y) = a2(1 + p2) + y_2Var(2 - p2).

Since 2 converge to p2 in probability at rate 1/', we may write the
expansion

= p2 +(p )2p O(l/v').
So

(3-13) E(2 - p2) = Var (2 - p2) = 4p2 Var (p).

121



//
Substituting (5- 3) into (5-12), and uSing the results oi Section 3,

Var(, - y) a2(J + p2)

-f 241)
(,1 - I) . (n -. 2 + , fp27

If p = 0, this reduces to

(5-14) Var(, - r1) = ff2(l +

and we note that the I/n term does not appear. This Occurs because ,
converge to p2 at a rate greater than l/v5 if p = 0.

Similar results can be derived in more general cases, by appropriatelinearization and substitutions, but the more general expressjo,is arc dif-ficult to interpret, and are not presented here.
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