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Annals of Economic and Social Measurement 5/4, 1976 

NUMERICAL ASPECTS OF MULTIVARIATE NORMAL 

PROBABILITIES IN ECONOMETRIC MODELS* 

BY J. E. Dutr 

The role of Multivariate Normal Probabilities in Econometric Models has in the past been somewhat 
restrictive because of the unavailability of useful computational formulas. 

Using the author’s recent integral representations for the Multivariate Normal Probability Integral, 
Dutt (1973) and (1975), highly accurate and efficient computational formulas are now available for 
computing normal probabilities of dimension up to 6. These formulas have direct application to the 
Maximum Likelihood procedures which are of interest in econometric modelling. 

1. INTRODUCTORY SUMMARY 

Prior to 1972 and after years of considerable effort, the only known general 

representation for multivariate normal upper and lower probabilities consisted of 

Pearson’s tetrachoric series (Kendall, 1941) which is well-known to be computa- 

tionally unattractive for dimension K >2. A reasonably complete bibliography 

relating to multivariate normal probabilities up to 1972 can be found in Johnson 

and Kotz (1972). Milton (1972) applied a method based on a multidimensional 

iterated Simpson’s quadrature to the customary iterated form for either an upper 

or lower probability integral. Milton’s computerized procedure, however, appears 

to be at least one order of magnitude in running time slower than what is now 

available. 

In the recent paper Dutt (1973), this author obtained an integral transform 

representation over (0, 0) for upper and lower multivariate normal probabilities 

using Pearson’s tetrachoric or orthogonal series, Kendall (1941), as a starting 

point. A simplified representation for the normal and an extension to the 

multivariate ¢ are given in Dutt (1975). The representations are for arbitrary 

normal and ¢ probabilities of arbitrary dimension and correlation matrix. 

The integral transform representation for multivariate normal probabilities is 

very useful when numerical evaluation is by the Gauss—Hermite quadrature 

method. A short table based on the integral transform representation for the 

quadravariate normal orthant probability P, which, except for nearly singular 

correlation matrices, is accurate to 7+ significant digits, is found in Dutt and Lin 

(1975). A more extensive table for P,, Dutt and Lin (1975a) and a short table for 

the trivariate normal, Dutt, Lin and Desai (1976) will be available shortly. 

Accurate computational formulas are also derived for the exponential, error and 

arcsin functions, Dutt, Lin and Tao (1973). Integral transform representations 

over (0, 00) for arbitrary upper and lower muitivariate probabilities with arplica- 

tion for computing bivariate and equicorrelated trivariate x’ probabilities is 

discussed in Dutt and Soms (1976). A table of the trivariate ¢ for unequal 

correlations is found in Dutt, Mattes, and Tao (1975). 

* Presented at the NBER-NSF Conference on Decision Making Under Uncertainty, University 
of Chicago, 16-17 May, 1975. 
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Attention here is focused on properties of the integral transform representa- 

tion over (0, 00) for multivariate normal probabilities which might be of interest in 

econometric models. Numerical results are discussed for several correlation 

structures and dimensions up to six. 

2. INTEGRAL TRANSFORM REPRESENTATIONS OVER (0,0) FOR UPPER AND 

LOWER MULTIVARIATE PROBABILITIES 

Integral transform representations over (0, 00) are here summarized for an 

arbitrary continuous multivariate distribution and in particular for the mul- 

tivariate normal. The integral representation follows in the general case from a 

slight modification of a theorem of Gurland, Gurland ‘1948), Dutt and Soms 

(1976). That such a modification was possible in general was only realized after 

the integral representation for the multivariate normal was derived from the 

tetrachoric series, Dutt (1973, 1975): Both approaches however, follow either 

directly or indirectly from the Inversion theorem. 

Let X;,...,Xx have the K dimensional cdf Fx(x) and corresponding 

characteristic function ¢x(t). For k=K, let ¢,.;,_, ;,(t) be the characteristic 

function corresponding to the marginal distribution of Xj,» ---, Xj, where 

Ji, ---+>Je iS a subset of the integers 1,..., K. 

Now define J; ;;, gooey 

Te dee > k 
oa) § »=a/2m| f {Real [A,.;, os fi V i t,} dt, 

where Nee sja erin = Mele bx 5j,....(6)] and A,[f(t;,...,%)] is the kth central 

difference about 0 of f (t,,..., &) 

A.L f(t, ..-, I=. - «5 te) —F(—t, ta, --- 5 &) 

Pes Oe —t(t, to, ecg ik-1) —h)+f(-t, —h, ts, see t) 

+... +(—1)*f(—t,,...,—t). 

and @ is a continuity point of the distribution of x;,, . . . , x),. 

Then, from Dutt and Soms (1976, equation 2.3), if a=(a,,...,a,) is a 

continuity point of Fx, the integral transform representation over (0, 00) for an 

arbitrary continuous multivariate lower probability is 

(2.2) Fx (a) = @)* —@)*"* E Ii(a;) 

* oe * > 2, [,(a;, a;) 
i<j 

-o* »y > I,(a;, @;, ay) 
i<j< 

ae +Ix(a;,..., x). 
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For upper probabilities, the negative signs are simply changed to positive 

ones. In Gurland’s work, /,.;,_;, relates to the real part of 

(2.3) Omi) Sai $ el be.. it) / il | dt, 

where @ is a continuity point of the marginal distribution of X; jx ++ >> Xj, and for 

any function g(t), using the notation of Gurland (1948). 

p...$ 8) de= tim |... | g(t) dt. 

Tr? 6, <|e|<T; 
r=1.,..., k 

As they stand, the Cauchy principal value integrais in equation (2.3) are 

divergent. This can be seen in the case of the bivariate normal. One of the integrals 

in equation (2.3) is of the form 

T 

(2.4) | COS a(t; + te) Holt, fo: p) dt, dto/t,t, 
€ 

which as e > 0, T>© is divergent. On the other hand, using equation (2.1) the 

integrand is bounded at the origin and the integrals can be used in numerical 

integration. 

The integral representation over (0, cO) for the multivariate normal may be 

either treated as a special case of (2.2) or ubtained from the tetrachoric series in 

the following way. 

The K dimensional normal probability integral is defined as 

Leltiy...4%x:R)=| a nx(y|0, R) dy 
x1 XK 

for any real numbers x,,..., xXx. The integrand nx(y|0, Rx) denotes the K- 

dimensional standardized normal density with correlation matrix R. 

Consider the representation of Lx by the tetrachoric series (Kendall, 1941) 

co 
(2.5) Lx(x),..-,%K;R)= > eee y Agnes > shit) 

ji2=0 jux-1)K =0 

where 

K K 

Aj, peoey ji -1)K II eng 5 A II (mg) nl Xx ), 
k=1 man=l1 

m<n 

K K 
Me=) jxi (i#K), Y n,=2H, 

i=] r=1 
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say, and 7,,(x) is the mth tetrachoric function (Abramowitz & Stegun, 1964, p. 

934). 

(2.6) Tm (X) = Z(x)Hem—1(x)/(m!)'7,  =m=1,2,..., 

with 

Z(x) =(1/(2a)'””) exp (—x?/2) 

and He,,(x) is the nth degree Hermite polynomiai 

Mis (-0"/Z@)(2)'200, aD Sah 

From the integral representation of the Hermite polynomial (Abramowitz & 

Stegun, 1964, p. 786), an integral representation of the tetrachoric function r,,,(x) 

is obtained as 

(2.7) T(x) =(1/2(m!)'/”) |" exp (—s?/2)s™~' cos (xs —(m —1)2/2) ds, 

m=, 2...... 

The direct substitution of 7,,,(x) given by (2.7) into the tetrachoric series (2.5) 

yields after considerable manipulation Dutt (1973, 1975) 

(2.8) Lx(x1,.--,XK;R) = 

K K K 

@*-@*" Dit er L D3,,+@*~* > 6Digt... 
i<j=1 i<j<k=1 

The D* functions are defined by 

fe) oo) ; K 
(2.9) D(x; R)=20n)* | ds,...| ds, e**!* dk(s;x;R)/ T] %, 

0 k=1 0 

where, for the first few, K, 

df =sin, =sin (x,8,), d} = €_12 COS\-2— €12 COS} 42, 

BF = € 12413423 SiN} 4243 — €—12~-13+23 SIN_ 14243 — €—12+13—23 SIMy~243 — € 12-13-23 SIN} 42-3, 

dj= ©124+13+234+144+244+34 COS} 424344 + € 12-13-23-14-244+34 COS_1-24344 

+ €_12413-23-144+24-34 COS_ 142-344 €_-12-134+234+14-24~34 COS1-2-344 

— €_12-13423--144+244+34 COS_ 1424344 — @-124+13-234+14-24+34 COS}—-24344 

— € 12-13-23+14+24—34 COS} +2-34+4 — © 124+13+23—14-24—34 COS} 4243-45 

and Dé.;,... .= D(x), . . ., X;,)- For notation, 

on. | ao oS a + FonanSraSan) fs 

SiN,,+..+p. = SiN (X_,5,,+ ... +Xp_Sp.), 

COSy, +...4+pn = COS (X,,5,,+ ... +X 

where R = ((r;;)) 

Pm Pm ) ’ 
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A negative sign on the index p,q, corresponds to +1,,4,5,,5,, and —p; 

corresponds to — x,,5,,. 

The k dimensional normal cumulative probability is defined by 

° x 

(2.10) Oe(1,..-5%43 R)=| oa] n,(y|0, R) dy. 
- —a 

In terms of the upper tail probability L,.,. 

(2.11) ®, (x1, -.., X35 R)= 14 (—%1,.-., —Xe5 R) 

3. PRoperTiES oF Df FUNCTIONS 

Consider again the integral representation over (0, ©) for L, 

A k 

(2.8) Le=@"-G" Y Dist @" Y Diy+...+Dis 
i<j=1 

It is noted that in particular 

(3.1) D#(x) =} erf (x/V2) 

with 

(3.2) | D#(0)=0 

and 

(3.3) D# (co) =}. 

Since D(x) for k odd, is a sine transform with argument x's then equation (3.2) 

generalizes to 

(3.4) D} (0) =0, for k odd. 

Moreover, it can be shown easily with equation (2.8) that by mathematical 

induction on k, equation (3.3) generalizes to 

(3.5) Di («) = (—}*, for any k > 1. 

From a practical point of view, equations (3.5) means that to at least 3 digits of 

accuracy 

D}(4) =(—}, for any k > 1. 

In general, Df'(x), for k >-1 is non-negative and monotonically increasing for 

k even and, non-positive and monotonically decreasing for k odd. There is a slight 

inconsistency for k = 1 in that D7(x) is defined in equation (3.1) as a positive 

function for positive x. 

For the orthant case (i.e. x = 0) in addition to identity (3.4), it was previously 

noted, Dutt (1975) that 

(3.6) D#(0, 0; r) =(aresin r)/27. 
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If P, = L,(0,..., 0) and D¢°= D7 (0, . .. , 0) then from equation (2.8) 

Pe=Q*+@*? ¥ (arcsinr,)/2e 
i<j=1 

1\k—4 . 0 
+ (3) »» Di; rizisia 

i1<i2<i3<iq=1 

+...+ DP. 

3.1 Transfer of Sign Changes from x; to pij 

For k = 1 it is clear that 

(3.1.1) D¥(-x) =—D7 (x) 

For k > 1, attention need be focused on only dj. For k = 2, consider 

d¥ = e*"2***2 cos (x18; —X282)—e "'**? cos (x18, +X282) 

for a single sign change (i.e. either x, or x2) and then for a double sign change (i.e. 

both Xi and X2). 

For a single sign change 

(3.1.2) D3(—x1, X23 M12) = DF (x1, —X23 f12) = —D3 (x1, X23 —r12) 

while for the double sign change 

(3.1.3) D3 (—x1, —X23 P12) = DF(X1, X23 p12). 

Therefore, for a single sign change a negative sign is transferred from either x, or 

X2 to r;2 with a negative sign in front of D¥. A double sign change of x, and x, 

leaves D} unchanged. 

For k = 3 and considering a sign change of x, to —x;, 

(3.1.4) D3(—x1, X2, X33 F125 Piz, T23) = —D3 (x1, X2, X33 Tia, M13, P23). 

The sign change is transferred to the correlation in which one of the subscripts 

ie the double sign change x, > —x,, X2> —X2 

(3.1.5) D3(—x1, —X2, X33 712, 113» '23) = D3(X1, X2, X33 F12, —M13» Tas) 

and the triple sign change 

(3.1.6) D3(—x1, —x2, — X33 hia. M135 r23) = — D3(x1, X2, X33 F125 1135 P23) 

From equation (3.1.3) and (3.1.6) it should be clear that in general 

Di (x; ry) =(—1)*DE(—x; 7). 

Moreover, for any r and k if x =(x;,,..., x;,)' then 

DE(—Xjs « - «'s Xin theese - + +9 HK My) 

= (—1)' DES; —Paggs - - - s Tide tHligears «+>» Hyp) 

provided 1<i<k,i#j,, and 1=m <t. In other words, a change of sign occurs 

only among the r,; for which one subscript is from the set j,, . . . , j;. 
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3.2 Symmetry Considerations 

For k = 2, observe that 

D}(x;, X23 12) = D3 (x2, X13 112) 

which implies that for fixed x, and x2, there are two equivalent probabilities 

L(X1, X23 P12) = Lo(X2, X13 P12)- 

For k = 3, there are the following six equivalent D?’s: 

D3 (x), X2, X33 Tia, 113, T23) 

= D3(x1, X35 X23 Piss 7125 P23) 

= D3(X2, X1, X33 M12 1235 M13) 

= D3 (x2, X3, X15 F235 F125 113) 

= D3 (x3, X1, X23 F135 F235 T12) 

= D3 (x3, X2, X13 F235 1135 M12)- 

The six equivalent D}’s lead to six equivalent L,’s. 

For k = 4, the general pattern is readily apparent. For a fixed x,, x, x, and x, 

and fixed {r,;}, there are 4! = 24 equivalent D?’s relating to the permutations of (1, 

2, 3, 4). However, for a given set of the six correlation coefficients there are 

6! = 720 corresponding D?’s which taken together with the above mentioned 24 

yields a total of 30 distinct D7’s with each occurring in 24 equivalent ways. The 

permutations of {p,;} yield, therefore, the total number of probabilities and the 

permutations of {x;}, the subset of equivalent probabilities. 

3.3 Mixed (Upper and Lower) Probability Integral 

If the mixed probability integral is defined as 

=|" my [ ke ny (y/o, {r}) dy 
- —o “x Teed 

then 

J =1,(—x,,, coog  & jo Xj Jew? °° 9 Xin (3.2.1) 
—Tijy> e2eg ~Tisss19 cee Tij,) 

provided 1<i=<k,i#j,, and 1=m<t. 

The results of Sections 3.1 and 3.2 would apply also to the mixed case. 

4. SUMMARY OF COMPUTING ForRMs FOR L; 

There are a variety of different options in computing the D? functions 

depending on the primary needs of the user. There may be, for example, interest 

in high accuracy (of the order of 7-8 digits) for a relatively small list of prob- 

abilities (less than 100), or moderate accuracy (of the order of 3—4 digits) for a 

large number of iterations (1,000+), or interest in dimensions greater than five 

where overflow can be a problem. Clearly, the more specific the case of interest 
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the greater would be the advantages in computer running time and accuracy. 

Moreover, it would not be prudent to use the geneal form of L, for the 

equcorrelated case or for one of the orthant cases. 

A summary of the computing formulas for L; are therefore presented in their 

most general form with the integration coefficients specified so as to anticipate 

overflow in the higher dimensions. 

For k = 1 in equation (2.8) 

(4.1) L,(x,)=3-D?, 

where ia 

D*, =(1/7) | sin (x,s,) e**’? ds,/s. 
0 

Application of the Gaussian quadrature formula (Abramowitz and Stegun, 

1964, p. 924) yields the computing formula for Di., as 

N 

Di, = (V2/2) 2X y; sin (A;x,) 

where y; = w;/A;, A; = z;V2, {w;} are the Christoffel weight factors, and {z,} are the 

zeros of the Mth degree Hermite polynomial. With M even, N = M/2 so that N 

denotes only the positive zeros. The {y,;} and {A;} are used for all D?. The {z;} and 

{w;} are found in Stroud and Secrest (1966). 

For k = 2, equation (2.8) yields 

(4.2) L(x1, X23 P12) =4-AD Ft. + Dt.2]+ D312 

where N N 

D3.12=(1/2") z > yiy; 42 
i=1 j= 

a = exp [912A :A2] cos (x,A2— x2A2) 

—exp [—p12A,A2] cos (x,A,+x2A2). 

For k =3 

(4.3) L3(X1, X25 X33 P12» P13» P23) = 1/8—i[D*., + D¥..+ D*.3] 

+D¥..2+ D¥..3+ D¥.23 

+ D¥.123 

where 
, NNN 

D¥,23=(1/V2a ) » y 2 ViVi Yr dj. 
i=1j=1k=1 

For k =4 
L4(X1, X2, X33 Pi2,---, P34) 

(4.4) 
= 1/16-a{Df., + D}..+ D¥.3+ Dt.) 

+ [D312 + D313 + D323 + D314 + D3.24+ D334] 

+4 D¥.123+ D3,124+ D3.134+ D¥.234] 

+ Diéi1236 
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where 
N N N WN 

D¥.1234 = (1/22*) x 2 2 y ViYjYuYr dj. 
i=1j= =lr= 

For k =5, 

(4.5) L5(X1, X2, X3, X45 X53 P12 - + - » Pas) 

- 1/32-i Dt. + D¥..+ D¥.3+ Dt.4+ Dts] 

1 
+@[D3.12+ D3.13+. . .+D3.45] 

a 
10 terms 

+4 D¥.123 + D¥.124+ D3.134+ D¥.234+ Dh.125 

+ D3,135 + D3.235 + D3,145 + D3.245 + D345] 

+4 D¥.1234+ Di.1235 + D3.1245+ Dh.1345+ Di.2345] 

+ D3.12345 

where 
Cee eR: OS 

Dé 12345 = (1/2V20°) 5 © LY LY LT yoy. d? 
i=1j=1k=1r=1s=1 

d3 (Aj, Aj, he As, Aes Ba, Ba» Be» Bae Ba) 

=e [ = —--—-—- === ]sin(+++++) 

-exp[++—+-——+-—-—--]sin(—++++) 

—exp[+—+-—+-——+-—-—]sin[+—+++) 

~exp[—-++—-+—-—+—-]sin(++-—++) 

—exp[—-—-+++-—-—-—+]sin(+++-+) 

—exp[— -—-—--—--—++++]sin(++++-) 

+exp[—++++—++-—-—]sin(——+++) 

+exp[+—++—++-—+-—]sin(—+-—++) 

+exp[++-——++-—++-—]sin(+—-—++) 

+exp[++—-—-+++-——+]sin(—++-—+) 

+exp([+—++-—+-—+-—+]sin(+—+-+) 

+exp[—++++-———++]sin(++-—-—+) 

+exp[++-—+-——-—+++]sin(—+++-) 

+exp[+—+-—+—-—+~-++4+]sin(+—++-) 

+exp[—++—-——+++-—+]sin(++-—+-) 

+exp[—-—--—-++++++-—]sin(+++--—)} 
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where the order of correlation is 

P12> P13> P23> P14» P24 P34> P15» P25> P35> Pas- 

5. NUMERICAL RESULTS 

As was mentioned in the Introduction, a variety of tables and numerical 

results are now available based on integral transform representations of mul- 

tivariate probabilities. In the normal case, these evaluations cover primarily L;3, 

L,4, P, and P; and, are probably far more accurate than necessary for most 

statistical applications. An accuracy of four significant digits seems reasonable 

particularly for higher dimensions. It is also clear that for higher dimensions 

excessive computer running time becomes a serious problem and some alternate 

approach is needed. 

The value of N, the number of positive Hermite zeros, needed for a specified 

accuracy depends to a large degree On the determinant |R| of the correlation 

matrix R and the limits {x;} of the probability integral. A guide for choosing N 

based on |R| and max x; so as to achieve 4 digit accuracy (i.e., four correct digits 

after the decimal point) in D{ is available in Table 5.1. Any rule based solely on 

|R| would not be completely adequate. However, for a given accuracy, the 

required N does not seem to vary significantly for D3, .. ., Dé although larger x; 

require higher N. Somewhat larger N are needed for D? while generally smaller N 

would be more satisfactory for D¢ than for Df, and more satisfactory for D? than 

for Df. 

In the four variate orthant case, a table of P, is available for the 21 correlation 

sets of Bacon (1963) as a function of N and |R|, Dutt (1973). An enlargement of 

that table to include ®, for x; = 1, 2 and 3, as a fwaction of |R| and the N which are 

sufficient for four digit accuracy appears in Table 5.2. The required N appears in 

parentheses. It is also noted that a given N is satisfactory for both +x; and —x; so 

that the ®,’s could be replaced by a corresponding set of upper tail probabilities, 

L4’s. 
TABLE 5.1 

A GUIDE BASED ON |R| AND max x; FOR CHOOSING N IN 
D#(k >2) FOR Four DiGit ACCURACY 

ae max X; 
IR| o* 1 2 3 

0.7<|R|<1 > : ae cee 

05<|kj<0.7 23 23 434 £546 

03<|RI<05 24 #34 34 £546 

02<|RI<03 34 34 46 546 

O.1<|RIs02 36 46 48 68 

0.05<|R|I<01 46 46 48 #&68 

O<|R|<005 412 412 412 6412 

* For the orthant case (x; = 0), D¥ = DF = 
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Work is now in progress to complete the computer routines for D¥ and Df 

which would then permit computation of the general normal probability L, for all 

k =8 and for the orthant probability P, for all k =9. The approach then would be 

to look for simple approximations for D?, ..., Df which would be accurate to 

about three or four digits and which would be generally useful in iterative 

maximum likelihood procedures. Numerical properties of D},...,D% are 

examined graphically :\ an appendix available on request from the author for four 

correlation matrices which are identified as Equicorrelated, Markov, Toeplitz and 

Nested. The corresponding probabilities L2, . . . , L. for the first three matrices are 

available in that paper. 

6. APPLICATIONS 

Two applications where computational formulas of multivariate normal 

probabilities would be useful are briefly discussed. The first application relates to a 

model of contraception discussed by Heckman and Willis (1973) in which the 

mathematical details are here presented in a slightly more general way. The 

second application pertains to the multivariate probit problem, Ashford and 

Sowden (1970). Other applications might be inferred from McFadden (1974). 

The maximum likelihood method is used for illustration purposes although other 

estimation methods are available, Amemiya (1972). See also Tobin (1955, 1958) 

for an application in economics. 

6.1 Application #1—A Model of Coniraception 

Consider a set of continuous dependent random variables S,, S,, .. where 

the index refers to time. Specifically, let S; denote a woman’s “level of contracep- 

tion” at month j and consider M relevant economic variables E,, . . . , Ey. E; may 

relate to education level, E, to income level, etc. The event that a woman becomes 

pregnant in the jth month and leaves the sample is defined under this model by 

S; <A, where A = at mE m and {a;} are unknown parameters relating to 

for example, first pregnancies only. The {a;} would presumably change for second, 

third, etc. pregnancies. The inequality is reversed when she does not become 

pregnant, and hence remains in the sample. 

The probability of a woman becoming pregnant in the kth month is 

(6.1.1) P[S,>A,...,Sp-1 >A; Sy <A] =p, (A) 

If now there is an independent sample of such women with different birth 

intervals, the method of maximum likelihood in principle may be used to estimate 

Qo, @;,. .. by choosing those parameter values which maximize the joint probabil- 

ity of observing the sample distribution of birth intervals. To carry out the ML 

method, it is necessary to specify a probability distribution for S,,... , S,. 

To put this in a somewhat more general framework, let S; be represented as 

the sum of two independent random variables S; = U; +e, where (U,,..., U,) is 

distributed as the multivariate normal n, (w|0, {o;;}) and € as n,(e|0, 72). It then 

follows that (S,,..., S,) is distributed as the multivariate normal n,($|0, {oj + 
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o2}). In particular the correlation coefficient between S; and S; is given by 

Py = (oy +02)/V (oy +0 Noy +02) 

=i Gy/ FG; 

In this context then the probability in equation (6.1.1) would be conditional 

on € and interest would be in the probability 

| px (Ale)ny(e) de 

which in terms of the L, notation takes the appearance 

(6.1.2) { Ly (1, -- - 5 Xk-15 ~Xe i (€) de 

with x, =(A—e€)/o; for i=1,...,k. 

6.2 Application #2-—-Multivariate Probit Model 

Consider k response systems S,, . . . , S, in which the reaction of system S; is 

defined to be of the form 

Yi = Xj(Z)— oj fori=1,...,k 

where x;(z) is a suitable response and y; is referred to as the tolerance for system 

S;. In other words, if x;(z) > ;,a toxic effect occurs. 

It is reasonable to assume that the tolerance vector # =(W,...,%)' is 

distributed as multivariate normal. The response functions x;(z) are so chosen 

that all univariate marginals associated with yw are standardized normals. 

Let ®,(x,,...,%~)=Ly(—%1, ..., —x,) where the subscript is dropped for 

k = 1. Then the probabilities of quantal response (+) and non-response (—) for 

system S; are 

pi (z)= ®[x,(z)] 

pi (z) = O[—x,(z)] = 1— P[x;,(z)]. 

The probabilities that systems S; and S; both have positive responses is 

pi (z)=P{x,(z), x;(z)]. 

In the bivariate case the other three probabilities of interest are 

pi, (z)=®2[x;(z), —x)(z)] = pi (z)— pi *(z) 

py (z)=®2[—x;(z), x;(z)] = pj (z)— pi *(z) 

and 

py (z)=1-(py" + Py +Py’)- 

For the k dimensional case, interest is in an expression of the form 

PY". '¢ =®,[+x,(z), ..., +x, (z)]. 
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Now, let each response function x;(z) be of the form 

x(z)=B;CG fori=1,...,k 

where C, is a k-dimensional vector of known constants and §; for i fixed, is a 

k-dimensional vector of unknown parameters. Let r{""; denote the number of 

organisms in which the systems S,, . . . , S, exhibit the responses (+,..., +). The 

parameter vectors B;, ..., 8, can then be estimated by the log likelihood function 

of a given set of independent samples, 

= BD cog + Bases 
L call > 3 4 log P1.,...,.k+consiant> 

(all groups) all sets of 
ok 

7. CONCLUDING REMARKS 

The computational formulas based on integral transform representations 

over (0,00) for multivariate normal probabilities have been summarized with 

specific emphasis given to properties of the D* functions in the representations. In 

an appendix available on request from the author, numerical aspects of 

D3, ..., D§ are examined for four important correlation matrices identified as 

Equicorrelated, Markov, Toeplitz and Nested. The general curve shapes of Dj in 

these four cases suggest the possibility of obtaining simple approximations in 

more general cases. 

A variety of numerical results, most of which were previously unavailable are 

given for the multivariate normal probabilities L>, ..., L., in an appendix avail- 

able on request from the author. Two specific applications to econometric models 

are noted. 
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