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Annais of Economic and Social Measurement, 5/4, 1976 

ON A GENERAL COMPUTER ALGORITHM FOR THE 

ANALYSIS OF MODELS WITH LIMITED 

DEPENDENT VARIABLES 

BY Forrest D. NELSON* 

Several econometric models for the analysis of relationships with limitea dependent variables have been 
proposed including the probit, Tobit, two-limit probit, ordered discrete, and friction models. Widespread 
application of these :nethods has been hampered by the lack of suitable computer programs. This paper 
provides a concise survey of the various models ; suggests a general functional model under which they 
may be formulated and analyzed ; reviews the analytic problems and the similarities and dissimilarities of 
the models ; and outlines the appropriate and necessary methods of analysis including, but not limited to, 
estimation. It is thus intended to serve as a guide for users of the various models, for the preparation of 
suitable computer programs, for the users of those programs; and, more specifically, for the users of the 
program package utilizing the functional model as implemented on the NBER TROLL system. 

INTRODUCTION 

Economic relationships involving limited dependent variables are receiving wide- 

spread attention in the Econometrics literature. Much of the discussion has 

focused on methodology with only scattered application to real problems, the one 

exception being the qualitative variable problem frequently treated with logit and 

probit analysis. Since potential applications for these models abound, it is likely 

that the scarcity of computer programs and their limited dissemination is partly 

responsible for the infrequency of empirical studies using them. In turn, useable 

computer routines may be scarce because the models though similar in many 

respects are dissimilar enough so as to seem to require a separate algorithm for 

each model. 

The purpose of this note is to suggest a general functional model which is 

readily adap*able to computer coding and flexible enough to fit a wide variety of 

limited dependent variable problems.' It should be emphasized that the model 

presented here is functional as opposed to theoretical. That is, it is not advocated 

as the structural model underlying any limited dependent variable relationship. 

Rather we suggest that many of the theoretical relationships may be reformulated 

to fit this functional model so that a single computer program may be used to 

analyze all of them. 

The terminology “limited dependent variable”’ is used here to denote vari- 

ables endogenous to some underlying economic relationship which are not 

continuously measurable (or observable) over the entire real line either directly or 

even after some transformation such as logarithms. Thus it applies to discrete 

(ordinal) variables, qualitative (non-ordinal) variables and to variables subject to 

threshold constraints such as non-negativity. Such discontinuities may result from 

* Research supported in part by National Science Foundation Grant GJ-1154X3 to the National 
Bureau of Economic Research, Inc. 

Tom Johnson [1] presents a general discussion of many of the models but falls short of describing 
in detail a central model around which a computer algorithm can be constructed. 
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theoretical considerations, from physical constraints on the variable or simply 

from measurement difficulties. 

The effect of the discontinuities on estimation is that when such a dependent 

variable enters the usual sort of regression model the properties of the implied 

disturbance term cannot satisfy the assumptions needed for least squares estima- 

tion. The alternative estimation method generally proposed is maximum likeli- 

hood. After a suitable choice for the distribution of the disturbances is specified 

the distribution of the limited dependent variable is derived and the likelihood 

function is constructed. This typically involves both probability density and 

distribution functions and yields non-linear normal equations so that iterative 

maximization algorithms, generally Newton—Raphson, are suggested for obtain- 

ing estimates. These procedures are of course straightforward but they may 

become quite expensive and time consuming if computer programs do not exist 

for the particular model being examined. 

Section I of this paper presents a brief review of a number of limited 

dependent variable models. Such a survey will serve to motivate the types of 

models to be treated and highlight their similarities and dissimilarities. In Section 

II the functional model is introduced. It is of course possible to outline a 

completely general model but the 2im here is for a model which may be easily 

implemented in a single computer algorithm. With this goal in mind reasonable 

restrictions on the model are imposed and many of the details needed for 

implementation are discussed. A final section outlines features which should be 

included in a general computer algorithm. 

I. REvieEw OF SOME LIMITED DEPENDENT VARIABLE MODELS 

A. Binomial Choice Models” 

In these models each measuring unit or individual is faced with the choice of 

one of two mutually exclusive alternatives and the choice made is thought to 

depend on some vector of exogenous variables. One way to formalize the choice 

mechanism is to view the decision maker as having associated with each alterna- 

tive some preference function, say 

Thi =f (Xi) + 01; 

Ty, = f(Xj) + v2, 

and choosing that alternative which yields the higher preference. Assuming 

f(Xj), 7 = 1, 2, is of the form f;(X;) = a;X;, alternative 2 is chosen if 

Ih, > 1h apX; — aX; + v2; — v1; >0 

> p'X;+u;>0 

? These models appear to have been first examined in the context of economics by Tobin [8] who 
outlined the method of estimation which he termed “probit regression analysis.” Theil [7], among 
others, treated the same problem with “logit” analysis. The distinction between the two lies in the 
assumptions made regarding the distribution of the underlying disturbance. 
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where B = a2— a, and u; = v2; — v,;. The model can be rewritten in the alternative 

form: 

Y; = BX, + uy; 

WwW, =0 if ¥;<0 

=1 tf Y,2=0 

where Y; is some latent (i.e., unobserved) variable and W, is the observed 

dependent variable which indicates the choice made. Maximum likelihood esti- 

mation requires some assumption about the distribution of u,. If that distribution 

is normal, i.e., u; ~ IN (0, a’), the likelihood function is given by 

Lip, o|W,X)= TI p(-2*) I »(2Xi) 

w= 

where P(x) represents the standard normal cumulative density function, P(x) = 

fi201/V2 exp (—u?/2) du. 

Unfortunately B’X;/a is observationally equivalent to (kB)'X,/(ko) where k 

is any positive constant so that o is not estimable and £ is estimable only up to a 

scale factor. Thus we estimate a = (1/a)B, say, which is equivalent to normalizing 

o at unity. 

An interesting related model is 

Y, = BX; + uy; 

W;=1 if Y¥;=Z, 

=0 if Y; >Z, 

where Z; is some observed variable. A concrete example might be the estimation 

of a wage expectation function for say new labor force entrants. Expectations ( Y;) 

are not observable but we might argue that when faced with a job offer (that is an 

offered wage of Z;) the entrant will accept the job (W; = 1) only if that offer meets 

or exceeds his expectation. The appropriate likelihood function, under the 

assumption of normality, is given by 

Liaolm.x.2)= M1 AZEX). 7) 1-r( PX) 

In this case a is estimable because observations on Z; provide information on the 

scale of Y;. 

In another variation on the same model Z,; is replaced by some constant 

threshold. If B'X, includes an intercept term then o is again not estimable since 

(c —By—B'X)/c is observationally equivalent to (c — a g— a'X)/(ko) where ag = 

kBo+(1—k)c and a = kB. If that constant is also unknown and to be estimated the 

identification problem is further compounded and estimation will require some 

normalization on either By or the threshold parameter. 
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B. Multinomial Choice Models* 

An obvious generalization of the binomial choice model is to allow for more 

than two alternatives in the set of possible choices. Such models fit a large and 

important set of problems encountered in economics and are mentioned here for 

that reason. Regretably the functional model to be presented here cannot be used 

to analyze these models. This is the one class of limited dependent variable 

models, however, for which there seems to be wide dissemination of suitable 

computer programs. The approach used in these programs is logit analysis, a 

choice dictated in part by the fact that a specification of the underlying disturbance 

distributions such that the selection probabilities are of the logistic form leads to 

tractable likelihood functions, while almost every other choice of distributions 

leads to nearly insurmountable computational difficulties. 

C. Ordinally Discrete Dependent Variables* 

Another extension of the binary choice model is to allow for more than two 

alternatives but to require that those alternatives be ranked in some well defined 

order. Such models might arise when the magnitude of the observed dependent 

variable reflects the magnitude but not the scale of some underlying but unob- 

served dependent variable. As an example years of schooling might be a proxy 

measure for accumulated human capital but it may not be reasonable to assume 

that twice as much education implies twice as much capital. Alternatively the 

observed dependent variable may have the scale relevant to a particular relation- 

ship being examined but it may be measurable only in coarse discrete units. 

In the case with unknown scale the model appears as: 

Y, = BX, + u; 

W=1 if ¥i<pi 

=2 ifwi=Yi<u2 

=5—~1 if ws_2S Y¥;<ps-1 

=S if w,_, = Y;. 

If the u;’s are independently and normally distributed with mean zero the 

likelihood function is 

Lewlx, w= 11 AM—E*). Ty AMEX) mB RX) 
Wwi=1 CT C 

RE) 1 fee W,=s-1 

As in the binomial choice model, a is not identifiable and the set of thresholds yu; 

and the intercept cannot all be estimated. After suitable normalization, for 

example o = 1 and 4, = 0 we can estimate 6 up to a multiplicative scale factor and 

3 Refer to McFadden [3] for a description of the most general multinomial model, an extensive 
bibliography of practical applications and a discussion of the estimation problems. 

* See McKelvey [4] for a detailed discussion of the models. 
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the difference between the thresholds up to the same scale. Estimates of the jx;’s 

would represent the relative scale among the values taken on by the observed 

dependent variable. 

When the scale of the variable W is known the model is the same except for 

replacing the unknown y,’s with appropriate known constants and in this case o is 

estimable. 

D. Truncated Dependent Variables° 

In many economic relationships the dependent variable is necessarily non- 

negative. Thus we might write the model as 

W, = B'X; + u; if RHS>0 

=0 otherwise. 

Alternatively we might conceive of an unconstrained latent variable Y; and 

reformulate the model as 

Y; = BX, + u; 

Wi=¥, if Y,=L, 

=[; if Y;<L; 

where the threshold of 0 has been replaced by a more general variable threshold 

and only X;, W; and L; are observed. For independent normal u,’s the likelihood 

function is given by 

Lip.olW,X,L)= 1] (=—E*) i ~7{ RB) Wi>L; F o 

where Z(x) is the standard normal density function (1 /N22) exp (—x*/2). 

Examples of problems to which this model might be applied include con- 

sumer expenditure on some class of goods, which is constrained to be non 

negative, and interest rates paid by commercial banks on savings deposits, which 

are constrained by regulation QO not to exceed a certain rate fixed by the Federal 

Reserve. Note that for purposes of estimation alone the particular value assigned 

to W, for limit observations is not used while the threshold value is. On the other 

hand for non limit observations the threshold value need not be known. Thus the 

model may under certain circumstances be utilized to estimate separately the two 

equations of the following disequilibrium market model: 

D=B\X,+u, 

S = B4X2+u2 

Q=Min(S, D) 

u, and u2 independent. 

The observed variables are O, X, and z. and we assume that X, and X;, are 

independent of u, and u2. For estimation of the demand equation D is the latent 

* These models were investigated by Tobin [9] and have come to be called “Tobit” models. 
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variable and S the threshold with the roles reversed for estimation of the supply 

equation. We must, for the truncated model to apply, know which observations in 

a given sample correspond to demand (i.e. excess supply) and which correspond to 

supply. Furthermore information on this sample separation must be exogenous.° 

Suppose that in the simple truncated dependent variable model the threshold 

is an unknown constant to be estimated with limit observations on W; somehow 

distinguishable, though not equal to the threshold. Then direct maximization of 

the likelihood function with respect to 8B, o and yw (the threshold) would lead to an 

estimate for yw of infinity. But this would be inconsistent with the model which 

specifies that the constant threshold must necessarily be less than or equal to the 

minimum observed value of W, over the set of non-limit observations. Thus the 

maximum likelihood estimate of ~ would be this minimum value of W; and the 

other estimates would be obtained by maximizing the likelihood with respect to 

the other parameters holding yw fixed. 

E. Doubly Truncated Dependent Variables 

Some dependent variables of interest may be truncated both at high and at 

low values. The model’ becomes 

Y, = BX; + u; 

W,=L,, if ¥;<Li; 

=Y, ifL,,= Y,;=L3,; 

=L,, ifL,,<Y; 

and the likelihood function is given by 

Lip.olW,X,L)= T] A=H—F*). I] aE) wi=Y, F 

nn 1-2 F 4), 

In some problems the intermediate or non-limit observations may also be 

unobserved. Provided the sample may still be separated into the three subsets of 

observations and the thresholds are known constants or observable variables, all 

parameters of the model are still estimable. The middle term in the likelihood 

function is replaced in this case by 

ee) ft 8) 

and the model is seen to be a specific case of the ordered discrete variable model 

with known scale. 

© See Maddala and Nelson [2] for a detailed discussion of disequilibrium market model estimation 
under these and other assumptions. 

7 See Rosett and Nelson [6] for a detailed treatment of this class of models. 
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An example of a problem to which this model has been applied is the demand 

for health insurance by people on medicare. A certain minimum coverage (the 

lower threshold) is provided to all participants. They may purchase supplemental 

insurance only up to some maximum which falls short of full coverage. 

F. Models of Friction 

Rosett [5] considered a model in which the dependent variable responds only 

to numerically large values of the exogenous variables. His model may be written 

as: 

¥,=B'X,+u 

W; = Y;-—a, if Y¥;<a, 

=0 ifa,< Y;<a, 

= Y;-—a, if a.< Y;. 

Denote the sample separation into the three subsets by three sets of integers V,, 

WV, and WV. The likelihood function is given by 

L(a, «>, B, o\W, X)= I”: 17(H te BX) Wy" p(%2 —B™)—p(% —F i) 

oC oC 

Lyi tg( Weta B%) 
Co 

The model provides for a different intercept in the two sets of continuous 

observations. One might assume no difference in the intercepts by setting W; = Y; 

in both extreme cases and deleting a, and a, from the corresponding terms in the 

likelihood. Going the other direction even the slope coefficients might be permit- 

ted to change between the two sets by appropriate modification of the model and 

the likelihood function. 

Examples of problems to which this model might apply are changes in the 

holdings of some asset in response to changes in its price or rate of return and 

changes in wage offers by a firm in respense to changes in market conditions. 

II. A GENERAL FUNCTIONAL MODEL 

Most of the limited dependent variable models may be specified, perhaps 

after reformulation, as 

(i) asingle regression equation relating a latent, i.e., not directly observable, 

endogenous variable to a stochastic function of some vector of exogenous 

variables, say Y; = f(X;, B, u;) and 

(ii) a discontinuous mapping from the latent variable Y; to an observable 

dependent variable W,, say W; = g(Y;,, Z;) 

The role played by the vector of exogenous variables Z will be discussed below. 

Observed variables include X;, Z; and W; and parameters to be estimated include 

the vector B and perhaps parameters of the distribution of u; and of the function g. 
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The functional form of both g and f must be known and constant over all 

observations. If the model is to conform to the various limited dependent variable 

models and be operationally feasible we will require certain restrictions on the 

form of these two functions. Consider first the function f. Since the estimation 

method to be used is maximum likelihood the distribution of the stochastic 

component must be specified. We will assume that the disturbance term u 

appears, perhaps after a suitable transformation, additively and follows an 

independent normal distribution with zero mean and constant variance.* Restric- 

tions on the degree of non-linearity of f may also be desirable. The iterative 

maximization algorithms used for obtaining estimates generally require at least 

first and perhaps second derivatives. Thus if nonlinear specifications for f are to be 

allowed implementation will require a computer system with analytic differentia- 

tion capability, numerical derivatives or user supplied derivatives. Restricting 

f to be linear would avoid this problem but we will not impose that constraint here. 

The regression equation to be used in the model is thus of the form 

(1) Y; =f(X;, B)+u;, u; ~ IN (0, o”). 

In the limited dependent variable models the mapping W; = g(Y;) is neces- 

sarily discontinuous with the discontinuities appearing at well defined points, to be 

called thresholds, in the range of Y;. Assume that there are S — 1 threshold points 

and partition the range of Y; into the S disjoint intervals. Then g(Y;, Z;) may be 

written as 

(2) g( Yi, Z;) = g(¥;) if tj-1= Y;<ty, j=1,...,S 

where ¢,;, j = 1,...,S—1 are the threshold points and fo and ¢,, are defined to be 

—oo and +00 respectively. The constraint f,;_;<,,, j= 1, . .., S must hold across all 

observations i but the threshold points need not be constant across observations. 

Any combination of the following specifications for the ¢,;’s should be permissible: 

(i) xmown numeric constants 

(ii) observable variables (i.e. one of the variables in the vector Z,) 

(iii) constant but unknown parameters to be estimated. 

The individual g;(Y;)’s, j=1,...,s are of two basic types, to be called 

continuous and mass point as determined by the distribution of the random 

variable W, within the relevant interval on Y;.’ A mass point g;(Y;) specifies that 

within the jth interval of the range of Y; W; is a constant function of Y; (i.e., 

independent of the level of Y;). Typical specifications for mass point g,’s are 

(i) g,( Yi) = t (where t, is one of the threshold points of the type (i) or (ii) as 

given above) 

® The choice of distributions may of course be changed but is an integral part of the analysis and 
thus must be held fixed for implementation of the model. Note that the normal distribution leads to 
probit analysis for the binomial choice model and is the distribution suggested most often for 
extensions of the limited dependent variable models. A choice of the logistic (sech”) distribution would 
lead to logit analysis for the binomial choice model. 

° The terms mass point and continuous will be loosely applied to the subfunctions 8}, to the 
corresponding interval on Y; and to the values taken on by W;. What is implied in all cases is that, 
within some intervals of the range of Y;, W; is defined by g; to be a constant so that its associated 
measure of probability is probability mass. In other intervals W, is a continuous function of Y; within 
that interval so that the appropriate measure of probability is its probability density. 

500 



(ii) g,(Y;) = Zs (where Z, is some observable exogenous variable) 

(ili) g;( Y;)=c (some known constant). 

Continuous g;(Y;)’s specify continuous and strictly increasing functions of Y, 

within the corresponding interval on Y;. The most common specification will be 

g(Y)= Y, 

We will in fact require that all continuous g;,’s be of this form, delaying for the 

moment a discussion of the advantages and disadvantages of such a restriction. 

Derivation of the likelihood function for the functional model is straightfor- 

ward. We need first to derive the distribution of W;. For mass point intervals we 

have 

Pr (W; = g)(¥;)) = Pr (t)-1 = ¥i <ty) 

= Pr (t;_,—f(X, B) =u; < tj —f(X;, B)) 

which under the Normality assumption on u; becomes 

Pr (W; = 9(Y;)) = pe E hk ) p(s oa KX, B ) 

where P(y) is the standard normal cumulative density function. A general 

derivation of the density function for W, over continuous intervals requires strong 

assumptions about the specification of continuous g;(Y;)’s. If these functions are 

strictly increasing (decreasing) over the relevant interval on Y; then the inverse 

function 

=g; '(W,) 

exists and is differentiable so that the p.d.f. of continuous W,, say h(W,), is given 

by 

h(W,) = j~2(& '(W,)- PhS" 

where J; is the Jacobian of the transformation, J; =|ag;'/@W,|, and Z is the 

standard normal density function. Construction of the likelihood requires know- 

ledge of the sample separation. That is for each observation on W, we must be able 

to determine the interval in which the corresponding unobserved value for Y; 

lies.° For notational convenience define the subsets Y; of integers 1,..., n, 

where n is the sample size, as 

ieW,; if t;-1= Y;<t,, i=1,...,n, j=l1,...,s 

The likelihood function is given by 

(3) L(@|W, X,Z)= [] Ain-> I] Aiz----- T] Ais 
ieV;, ieV2 ieW, 

*° Determination of the sample separation is made by comparing, for each observation, W, with 
each g,(Y;). For mass point g,’s a matching of W, and.g;( Y;) for some j determines that the observation 
corresponds to a value of Y; in the jth interval. This leaves only the continuous observations to be 
classified but, as will be pointed out later, so lung as we restrict continuous g,’s to be of the form 
g;{Y;) = Y; the knowledge that an observation on W, is a continuous one is all that is required; we need 
not know to which continuous interval it belongs. 
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where 6 is a vector of all parameters to be estimated and the A,;’s are defined as 

Ay = P(H=L%B)) _ p(s L268) 

if j corresponds to a mass point interval on Y; and 

Ay=J— 17(s. MW) f%_B
)) 

oT 

if j corresponds to a continuous interval of Y;. 

It should now be clear why the restrictive specification g,(Y;)= Y; for 

continuous intervals was imposed. Such a restriction makes it easy to distinguish 

mass point from continuous intervals and permits all continuous observations to 

be grouped into a single subset, for purposes of estimation, since they all enter the 

likelihood in exactly the same form (Jj = 1 and g; '(W,) = W, for every continuous 

interval j.) Thus we can avoid a good deal of perhaps messy computer coding and 

additional user supplied information. Note too that this restriction creates diffi- 

culty with only one of the limited dependent variable models reviewed in section 

I, the friction model. But even this problem is easily surmounted by judicious use 

of dummy variables. 

The friction model, with intercepts which differ in the two continuous 

intervals, is repeated here. 

¥,=B'X,+u, 

W, = Y;- a, if Y¥;<a, 

=0 ifa,= Y;=a> 

= Y;—a2 if a,< Y;. 

Reformulate the regression equation as 

Yj, = @,Dj, + @2D,.+ BX; + uy; 

where 

D;, =—1 when Y; lies in the lower continuous interval 

= (0 otherwise 

D2 = —1 when Y, lies in the upper continuous interva! 

= 0 otherwise. 

The threshold structure is then written as 

W, = Y; if Y;<a, 

=0 ifa,= Y;=a, 

=Y, if a,< Y;. 

Note that the two continuous intervals on Y; are not properly defined in this 

formulation but recall! that for continuous intervals the threshold points do not 

appear in the corresponding terms in the likelihood function. Thus with regard to 

estimation the inconsistency is only transparent. The inconsistency could in fact be 

502 



removed by redefining the two intervals as Y; <0 and 0< Y;. But this would make 

the model more difficult to implement since then, without specifically accounting 

for the specification of f(X;, B), the intervals on Y; wouid appear to either overlap 

or fail to exhaust the entire range of Y;. Several other points are worth noting. In 

this model B’X; should not include an intercept term or identification problems 

among Bo, a, and a2 will arise. The friction model is unique in that threshold 

parameters and parameters of the function f overlap. Finally, similar use of 

dummy variables can provide for slope coefficients which differ in the two 

continuous intervals while if all intercept and slope coefficients are the same the 

restriction on the specification of the continuous g;,’s is satisfied without a 

reformulation using dummy variables. 

III. FEATURES OF A COMPUTATIONAL ALGORITHM 

In this section we will discuss the specific details invoived in a suitable 

computer program for the functional model. First the model is restated. 

The functional model is defined as 

(1) Y; =f(X;, B)+u; 

(2) W; = 9,(Y;) if §;.= Y;<t,j=1,...,$ 

u; = In (0, a”) 

Y; is a latent variable and W,, the vector X; and perhaps some vector Z; are the 

observed variables. Parameters to be estimated include 8 and perhaps o and/or 

some of the 4,;’s. The threshold points fj) and 4, are defined as —0o and +00 

respectively for all i=1,...,m where n is the sample size. The remaining 

threshold points ¢;;, . . . , t,.; may be any of the following: 

(i) known numeric constants 

(ii) observable exogenous variables (one of the Z,,’s) 

(iii) constant but unknown parameters to be estimated 

The g;(Y;)’s define W; to be either a mass point observation or a continuous 

observation when the unobserved Y; falls in the corresponding jth interval. 

Continuous g;(Y;)’s must be of the form 

g( Yi) = Y; 

while mass point g,(Y;)’s may be either 

(i) known constants, i.e., g,(Y;) = C 

or 

(ii) observable exogenous variables, i.c., g;(Y;) = Zx 

Furthermore the mass point g,(Y;)’s must be such that a comparison of W; for 

each observation with each mass point g; will determine uniquely a sample 

separation defined by the following subsets of the integers 1,...,n 

ieWV;, iff W,=g(Y;) for mass point interval j 

ieV, iff W,#2,(Y;) for any mass point interval j. 

Note that VY; will be empty for any continuous interval j. 

The components of the likelihood function were presented in Section II. 

Estimation involves maximization of the logarithm of the likelihood function. The 
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normal equations obtained by setting the derivatives of log L with respect to each 

estimable parameter equal to zero will be nonlinear so that some iterative 

maximization algorithm is required. Experience has shown that the Newton- 

Raphson algorithm’’ works quite well on these models with fairly rapid con- 

vergence when starting from reasonable initial estimates. This algorithm does 

require both first and second derivatives which, though messy, are fairly easy to 

derive. Table 1 presents the components of the likelihood function corresponding 

to each type of interval on Y; and the associated terms in the first and second 

derivatives of the log likelihood function. Several points should be noted. First the 

parameters to be estimated are denoted by the vector @ with elements @,. 

Secondly, the derivatives presented there make the following use of the chain 

rule: The terms in the log likelihood function involve the functions P(A) and 

Z(B), where A and B are representative arguments, and have the following 

derivatives: 

aP(A)_Z(A) aA, 9Z(B)__ ap). yp  oB 

a0, P(A) 26, 3, 36, 

We have carried the differentiation only this far, since the arguments A and B 

involve the unspecified function f(X;, 8), and assume that the derivatives of these 

arguments can be readily obtained by some combination of user supplied 

derivatives, restrictions on the functional form of f and internal differentiation 

capability.'* Finally, note that lower and upper mass point intervals have been 

distinguished in that table from interior mass po‘nt intervals since recognition of 

their simpler structure generally will achieve significant economies in computer 

time. ; 

As was suggested by the discussion in Section I, not all parameters in the 

functional model are necessarily estimable. In particular o can be estimated only 

if the observed variable W, contains some information regarding the scale of the 

latent variable Y;. In general any one of the following conditions on the model will 

be sufficient to permit estimation of c. 

(i) At least one continuous interval. 

(ii) At least one threshold is an observable, varying threshold. 

(iii) At least two threshold points are known constants. 

If none of these conditions are met then estimation may proceed only after 

normalization of o, e.g., 7 = 1. If the model includes both threshold parameters to 

be estimated and an intercept term in the regression equation there will generally 

be an identification problem among this set of parameters—only the difference 

"! As was noted earlier the constraint t;-1 =, must hold for j=1,...,s and alli=1,...,n. If 
these thresholds include parameters to be estimated the constraint should be taken into account in the 
maximization algorithm. This is awkward to do however, in the general model since not all problems 
will require estimation of threshold parameters. There is no danger that straightforward application of 
Newton’s method will produce estimates which violate the constraint since this would require taking 
logarithms of negative numbers. We therefore suggest using Newton’s method with the provision of 
allowing some user control in the iterative process for handling those occasional problems in which the 
constraint causes difficulty. 

‘2 The TROLL system on which the author has implemented the functional model does have 
the internal capability of obtaining analytic derivatives. This feature is extremely useful for such simple 
functions as the arguments like A and B in that it renders unnecessary further restrictions of f or 
alternatively, heavy user input. On the other hand it cannot be used to avoid the programming of 
derivative calculation to the level presented in Table I without resulting in prohibitive computer time. 
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between each pair of parameters in the set can be estimated. Again a normaliza- 

tion is required on one parameter in this set. 

The iterative maximization algorithm will require starting values for the 

parameters to be estimated. We have not been successful in obtaining a 

straightforward routine for selecting good starting values for all parameters in the 

functional model. Tobin [9], in the context of the Tobit model, suggested 

approximating the non-linear terms in the normal equations by some simple 

functions to allow analytic solution of those equations but this approach becomes 

quite difficult to implement in the more general functional model, especially if the 

regression equation is itself non-linear. Similarly some expansion of the normal 

equations with a low order truncation is also difficult to implement. In lieu of a 

generai solution we offer the following suggestions for implementation on a case 

by case basis. 

(a) If the model includes continuous intervals, least squares regression of W, 

on X; over just the subset of continuous observations will often provide 

satisfactory, though biased, starting values for the regression coefficients 

and for o. 

(b) For threshold parameters choose starting values such that the spacing 

between adjacent threshold points is proportional to the percentage of 

observations falling in each interval. 

(c) In models with no continuous intervals and values for W; which corres- 

pond ordinally to Y; try a straightforward least squares regression of W,; 

on X; for starting values for the regression coefficients. 

(d) for many data sets and if the iterative maximization algorithm is fairly 

stable, zero starting values for many of the parameters will generally 

suffice. 

Generally parameter estimation is only part of the analysis to be performed 

on a given model. The remainder of this section discusses various other analyses 

which may often be desired and which are reasonably easy to implement in the 

functional model. 

It is often quite informative to examine simple descriptive statistics, such as 

mean, variance and range, of various variables in the model both over all 

observations and over the subsets of observations corresponding to each interval 

on Y;. Furthermore while such information may be of use by itself it can as well 

serve to detect or explain failures in the estimation process. To see this consider a 

simple binomial choice model with a single regressor variable. The likelihood 

function is given by 

L(a, B|W, X)= |] P(-a-BX;)- [] [1-P(-a-BX;)]. 
Ww, =0 Wi=1 

Suppose that in a given set of data the obser- 

vations are as pictured in the figure to the 

right. It is easy in this case to find values for a 

and 6 such that whenever W, = 0 (—a — BX;) 

is positive and when W,=1(-—a-BX;) is +sacqceenex 

negative. All observations can thus be per- Xx 

fectly classified on the basis of the mean 
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value (a + BX) for such a and £. In fact the likelihood is maximized as a and B 

tend to negative and positive infinity respectively. This failure in the estimation 

process could easily be predicted, in this simple model, by comparing the range of 

X; within the two sets of observations. The same problem arises in this model with 

more than one exogenous variable and all the other models as well, suggesting that 

as a prelude to estimation one should always critically examine simple statistics, 

especially the range, of the exogenous variables within each subset of observa- 

tions. In addition, even if the individual exogenous variables do overlap, there 

may be some combination which provides perfect classification of the observa- 

tions. Such a situation is often difficult to detect until after the estimation process 

has failed. Performing the same analysis on Y,= = f(x;, B) where B is the vector of 

regression coefficient estimates when the iterative maximization procedure began 

to diverge may often reveai the source of the problem. 

Estimated classification probabilities (i.e., Pr (W; = g,( Y;)|X;, Z;) or alterna- 

tively Pr (t;_, = Y; <j |X;, Z;)) are often as important to the analysis as estimates 

of the parameters themselves. The expressions for obtaining them are given by the 

components of the likelihood function for mass point intervals and similar 

expressions for continuous intervals. In addition to their independent use they 

serve an important role in an examination of the estimation results analogous to 

residual analysis in least squares regression. They provide, for example, one 

measure of classification error. Let j* be the interval in which an observation falls 

and j be the interval with largest associated classification probability. An observa- 

tion may be viewed as being misclassified if j* 4 7."° 

A variety of measures of “residuals” may be readily obtained. Using esti- 

mated coefficients to compute Y, = = f(X;, B) we can obtain directly 4; = W; — Y; for 

continuous observations, For mass "a observations the estimated residual may 

be “bracketed” by ¢,; — Y, and Y,- -;- Another indicator of misclassification i is 

given by 3 a comparison of j and j mothe j the interval in which Y, falls and, as 

before, j* is the observed interval. 

An important part of the analysis for a given problem might be the calculation 

of mean values for the observed dependent variables. These might be needed, for 

example, for prediction purposes or for the calculation of elasticities.'* The 

expected value of W;, for given X; (and Z,;) is 

E(W,|X,, Z;) = { + (2 BAoB) LAPD) acy) ay 
Ln & 

'? Whether this is an appropriate measure of misclassification will depend on the model being 
examined. For example it may be a useful measure for the binomial choice model while in the ordinally 
discrete model, since the frequency of misclassification under this measure is easily altered by 
arbitrarily collapsing adjacent intervals, it may not be at all appropriate. 

* If the prediction or elasticity is for a single individual or observation then the appropriate value 
for W to be used should be W, = g(Y;). On the other hand if we need the mean predicted value or 
aggregate elasticity the appropriate value is E(W;|X;, Z;) as is given here. 

507 



For mass point intervals g;(y) is a constant so that the corresponding term in the 

expected value of W,; is 

Ay= (Yi): [p(e-AB) — p(s LSP) 

For continuous intervals, integration over the relevant range yields’* 

Ay=f(X, 6): | P(4-LX2 BD) _ p(u-r— LP) ) o a 

f
e
t
)
 

One ‘could compute similar expressions for the variance of the deserved 

dependent variable,*® but it would not be of much practical use. It is not useful, for 

example, in constructing confidence intervals about individual or mean predicted 

values of W;. For these, one must return to the regression equation, if the model 

contains continuous intervals, and make probability statements about intervals 

around f(X, B) or f(X, B)+u as would be done in the usual regression model but 

taking care to account explicitly for the threshold points. For mass point values, 

estimated selection probabilities themselves provide concise probability state- 

ments about occurrence or nonoccurrence. 

Regarding tests of hypotheses about estimated coefficients, the use of max- 

imur* likelihood estimation provides straightforward solutions. The matrix of 

second derivatives of the log likelihood with respect to the coefficients being 

estimated, or at least an approximation to it, will generally fall directly out of the 

iterative maximization algorithm. Minus one times the inverse of this hessian 

matrix may be used as an asymptotic approximation to the covariance matrix of 

coefficient estimates. Square roots of diagonal elements provide estimates of 

standard errors and these as well as submatrices of variances and covariances can 

be used for a variety of hypothesis tests and confidence intervals. 

5 We have 

4 1 —f(X, t2 
Ay={) y2z(2- PP) ay = [ “Lyx, 8)+0x)ZW0 dx 

G-1 oc o Li 
L, L, 

=1x,6)| ZW) dx +o | xZ(x) dx 
Li Li 

where 

L,=(§-1—-f(X, B)/o and L,=[t, —f(X, B)]/o. 

Since 

xZ(x) = —dZ(x)/dx, | xZ(x) dx = -—Z(x) 

and we obtain 

Aj = f(X, B) - [P(L2)— P(L,)]— of Z(L2)— Z(L,)]. 

© Such an expression for the ‘““Tobit’’ model with a lower threshold of zero, for example, would 
have the variance going to o for large, positive f(X,, 8) and to zero for large, negative f(X;, B). 
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