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Annals of Economic and Social Measurement, 5/4, 1976 

1, THE COMMON STRUCTURE OF STATISTICAL MODELS 

a OF TRUNCATION, SAMPLE SELECTION AND LIMITED DEPENDENT 

VARIABLES AND A SIMPLE ESTIMATOR FOR SUCH MODELS* 

BY JAMES J. HECKMAN 

This paper presents a unified treatment of statistical models for truncation, sample selection and limited 
dependent variables. A simple estimator is proposed that permits estimation of those models by least 
squares, and probit analysis. In an empirical example, it is shown that the estimator yields estimates close 
to the maximum likelihood estimates. 

” 

This paper presents a unified summary of statistical models for sample selection, 

5 truncation and limited dependent variables. The bias that arises from using least 

squares when such models apply is characterized as a simple specification error or 

omitted variable problem. A computationally simple estimator applicable to such 

models is proposed that amounts to estimating the omitted variable and using 

A least squares including the estimated omitted variable as a regressor. 

: The estimator discussed in this paper is not new. A grouped data version of it 

appears in papers on sample selection bias by Gronau (1974) and Lewis (1974).' 

This paper extends the analysis in those papers by developing the statistical 

properties of the estimator and demonstrating that the method is applicable to a 

wider class of models, and a more varied class of empirical settings, than the 

d original papers consider. 

The paper is in three parts. First, I discuss the common structure of models of 

sample selection, truncation and limited dependent variables. Then I discuss 

specific models based on the assumption of normal disturbances in the equations 

and propose an estimator for these models. Finally, | apply the estimator to 

reestimate a moce! of female labor supply and wages. In this example, I demon- 

strate that the consistent estimator discussed here closely approximates estimates 

obtained from optimizing a computationally more complicated likelihood func- 

tion. 

I. A Two EQuATION MODEL 

To simplify the exposition, I consider a two equation model. Few new points 

arise in the multivariate case, and the multivariate extension is straightforward. 

* This research was funded by a HEW grant to the Rand Corporation and a Department of Labor 
ASPER grant to the National Bureau of Economic Research. Neither organization is responsible for 
the contents of this paper. An earlier version of this paper appeared as ““Shadow Prices, Market Wages 
and Labor Supply Revisited: Some Computational and Conceptual Simplifications and Revised 
Estimates,” June 1975. I have received useful comments from T. Amemiya, Gary Chamberlin, John 
Cogan, Zvi Griliches, Reuben Gronau, Ed Leamer, Lung Fei Lee, H. Gregg Lewis, Mark Killings- 
worth, T. Macurdy, Biil Rogers, and T. Paul Schultz at various stages of this research. None are 
responsible for any errors that remain in this paper. Ralph Shnelvar performed the calculations 
reported below. 

The Lewis paper is an extended comment on Gronau’s paper. Thus credit for developing the 
method belongs to Gronau although Lewis’ paper considerably extends and clarifies Gronau’s 
analysis. 
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For a random sample of J observations, equations for individual i may be written 

as 

(1a) Yui = X16it Ui; 

(1b) Yj = X2iB2+ U2, 

where Xj; is a 1xK; vector of regressors, B; is a Kjx1 vector of parameters, 

(2) E(Uj:) = 0 

(3) E(UjUpi)=o7 f',f=1,2,  i=F 

=0 j’,j=1, 2, i#i’. 

These assumptions are consistent with random sampling. The joint distribution of 

U,;, Ur; is h(U;4;, U2;) which may be a singular distribution. Regressors are 

assumed to be of full rank so that if data on all variables were available, each 

equation couid be estimated by least squares. 

All of the models in the literature developed for limited dependent variables 

and sample selection bias may be interpreted within a missing data framework. 

Suppose that we seek to estimate equation (1a) but that for some observations 

from a larger random sample data are missing on Y;. In the case of a censored 

sample, we have access to the larger random sample, but we do not know Y;, for 

censored observations. In a truncated sample, we do not have access to any 

observations from the larger random sample except those for which data on Y;, is 

available. In both cases, there is a sample of J, complete observations. In 

investigating the bias that arises from using an incomplete sample to estimate B,, 

we must know why the data are missing. 

The population regression function for equation (1a) may be written as 

(4) E(Y¥,;|X\;) = XB, i=1,...,/ 

which under the assumptions postulated above would be estimable from a random 

sample. The regression function for the incomplete sample may be written as 

(5) E(Y;;|X,;, Sample Selection Rule) = X,,8, + E(U;,;|Sample Selection Rule) 

cad Ce FF 

where without loss of generality the first 7; observations are assumed to contain 

data on Y;. If the conditional expectation of U;; is zero, regressions fit on the sub- 

sample yield unbiased estimates of B,. 

In general, it is not the case that selection into the subsample is random. For 

example, in Tobin’s justly celebrated paper on limited dependent variables, we 

observe Y;, only if 

(6) Y¥y,2=C 

where C is a constant.” Y,,; may be interpreted as an index of a consumer’s inten- 

sity of desire to purchase a durable. If the intensity is sufficiently great (Y,; > C) 

the consumer expresses his desire and Y;; is observed. Otherwise, we cannot 

? Tobin actually assumes a separate known C;, for each observation. See Tobin (1958). 

476 



observe intensity and observed purchases are zero. Thus, in Tobin’s model the 

sample selection rule is given by (6), and we may write 

E(¥,;|Xi, Yi; =0) = X18, + E(Ui,| Yi; =0). 

As noted by Cragg (1971) and Nelson (1975), the rule generating the 

observed data neec not be as closely related to the model of equation (1a) as Tobin 

assumes. Consider the following decision rule: we obtain data on Y,,; if another 

random variable crosses a threshold, i.e., if 

(7) Y>,=0 

while if the opposite inequality holds we do not obtain data on Y,;. The choice of 

zero as a threshold is an inessential normalization. Also, note that we could define 

a dummy random variable d; = 1 with the properties 

(8) d;=1 iff Y2,=0, d; = 0 otherwise 

and proceed to analyze the joint distribution of Y,; and d;, dispensing with Y>, 

altogether. The advantage in using selection rule representation (7) is that it 

permits a unified summary of the existing literature. 

Using this representation, we may write equation (5) as 

(9) E(Y1|X1; Yo =0) = X18: + E(U;|U2; = — X2,B2). 

If U;; is independent of U2,, the conditional mean of U), is zero, and the sample 

selection process into the incomplete sampie is random. In the general case, the 

conditional mean of the disturbance in the incomplete sample is a function of X>,. 

Moreover, the effect of such sample selection is that X, variables that do not 

belong in the population regression function appear to be statistically significant in 

equations fit on selected samples.” 

A good example of this phenomenon arises in the Gronau (1974)—Lewis 

(1974) wage selectivity bias problem. In their analyses Y,; is the wage rate which 

is only observed for working women, and Y>, is an index of labor force attachment 

(which in the absence of fixed costs of work may be interpreted as the difference 

between market wages and reservation wages). If the presence of children affects 

the work decision but does not affect market wages, regression evidence from 

selected samples of working women that women with children earn lower wages is 

not necessarily evidence that there is market discrimination against such women 

or that women with lower market experience—as proxied by children—earn 

lower wages. Moreover, regression evidence that such extraneous variables 

“explain” wage rates may be interpreted as evidence that selection bias is present. 

For a final example, I draw on my own work (Heckman, 1974). Letting Y,, be 

the wage rate for woman i, and Y>, be the difference between market wages and 

reservation wages, a woman works if Y,; >0. Using results from the theory of 

labor supply, one can show that under certain simplifying assumptions working 

hours, h,, are proportional to Y>,. If this proportionality factor is 1/y(>0), we are 

* If the only regressor in X>; is ““1"’, so that the probability of sample inclusion is the same for all 
observations, only the intercept is biased. 
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led to the following model: 

(10a) E(Y¥u\Xi Y2;=0)= Xi 8, + E(U,;|U>; = —X iB2) 

(10b) d;=1 iff Y2,=0, d; = 1 otherwise 

Yj 
(10c) E(h;\|X>;, Y>; =>0) - E( Xi» Y>; = 0). 

Y 

Equations (10a) and (b) are as before. Equation (10c) exploits the information 

that we observe Y>; up to a positive factor of proportionality if Y>2; is positive. 

These examples are not intended as a complete literature survey. Yet they 

illustrate that the basic statistical models for limited dependent variables, censor- 

ing and truncation may be summarized in a simple general model for missing data. 

Regression estimates of (1a) fit on a selected sample omit the final term on the 

right hand side of equation (9). Thus the bias that arises from using least squares to 

fit models for limited dependent variables or models with censoring or truncation 

arises solely because the conditional mean of U; is not included as a regressor. 

The bias that arises from truncation or selection may be interpreted as arising 

from an ordinary specification error with the conditional mean deleted as an 

explanatory variable. In general, one cannot sign the direction of bias that arises 

from omitting this conditional mean.* 

A cruciai distinction is the one between a truncated sample and a censored 

sample. In a truncated sample one cannot use the available data to estimate the 

probability that an observation has complete data. In a censored sample, one can.” 

In the next section, I examine a technique that enables one to use this estimated 

probability to estimate the missing conditional mean for each observation. The 

estimated conditional mean may be utilized as a regressor in an ordinary regres- 

sion analysis so that estimators with desirable large sample properties may be 

derived from computationally simple methods. 

II. SIMPLE EsTIMATORS FOR THE CASE OF JOINT NORMAL DISTURBANCES 

Suppose that h(U;;, U2;), the joint density of U,; and U>;, is bivariate 

normal. Using well known results in the literature (see, e.g., Johnson and Kotz 

(1972), pp. 112-113) 

Bi 
1724i 

(a2) 
E(U,;| Y; > 0) = E(U,,;|U2; > — X2,B2) = 

oC 
E(U3,;| Y2; >0)= E(U};|U>; > —X2;82) = rm 72s 

22 

* Goldberger (1975) has shown that if the X,, and Uj, are normally distributed, regression 
estimates of Tobin’s model are downward biased in absolute value for the true parameters. Clearly in 
the case of a two variable model, or in a case of orthogonal regressors, one can unambiguously sign the 
bias if one has a priori information about signs of structural coefficients. 

> In both truncated and censored samples, Y, may be a truncated or iimited dependent variable. 
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f(d;) 
(11) A= TF) 

Kee 
(o,)'"* d; 

and f and F respectively are the density and distribution function of the standard 

normal distribution.° The Tobin model is a special case with h(U,,, U2;) a singular 

density since U,; = U2;. 

“*A;”’ is the inverse of Mill’s ratio and is known as the hazard rate in reliability 

theory. There are several interesting properties of A;: 

(1) lis denominator is the probability that observation i has data for Y;. 

(2) The lower the probability that an observation has data on Y, the grea‘er 

the value of A for that observation. 

More precisely, using a result due to Feller (1968) and cited in Haberman’s 

proof of the concavity of the probit likelihood function, (Haberman, 1974, p. 

309), it is straightforward to show that 

dA; 
——>0, 
ag; 

and 

lim A; =© lim A;=0. 
dirx dh>—- 

Thus in samples in which the selectivity problem is unimportant (i.e., the 

sample selection rule ensures that all potential population observations are 

sampled}, A; becomes negligibly small so that least squares estimates of the 

coefficients of (1a) have optimal properties. 

Using these results, we may write 

_ Fi2 
Y2; = 0) = X18 + mae (12a) E(Y,;|X, >) 

(12b) E(Y>;|X2;, Y2; =0) = X2,B2 +7 — a 
O22) 

Thus if we know A,, or could estimate it, least squares could be applied to estimate 

’ the parameters in equation (12a). Similarly, if we could measure Y,; when 

Y,; >0, as in Tobin’s model, knowledge of Y,; and A; would permit direct 

estimation of B, and (>,)'’* by least squares without having to resort to 

optimizing likelihood functions. 

We may add disturbances to equations (12a) and (12b) to reach the model 

(13a) X1iBi+ Gee + Vi; 

(13b) Y3;= XuB2t 7 SSA. + V3; 
a) 

where E(V,;) = E(V2;) =0. 

© Note that f = h2(U>,/035”), the normalized density of U,,. 
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It is straightforward to demonstrate that the covariance structure is given by 

(14a) E(V3,) = o22(1+ A; —A?) 

(14b) E(V;V2;) = o12(1 +A; — A?) 

(14c) E(Vi) =01,(1—p?) + p7(1+ A; -A})) 

where 

2 

. V011922 

and 

(15) 0<1+¢A,-A2<1. 

There are several distinctive features of this covariance structure. Clearly, the 

error structure is heteroscedastic, if X,; (and hence ¢,) contains variables apart 

from “1”. Assuming that we know ¢; and hence A;, regression estimates of the 

variances of V,; and V2; based on the least squares residuals from equations (13a) 

and (13b) respectively are downward biased estimates of the true variances of U,, 

and U>; respectively. This is a consequence of inequality (15). Similarly, the 

standard estimator of the covariance of disturbances across equations based on 

the cross product of the least squares residuals from each equation yields an 

estimator of the population covariance that is biased towards zero. 

The heteroscedasticity present in the disturbances of each equation implies 

that a generalized least squares procedure (GLS) improves the precision of least 

squares estimates when they are possible. If data are available on Y,, Y, and A, 

GLS should be applied to the system of equations (13a) and (13b). Alternative 

estimators are possible if the information is utilized that the coefficients of A; in 

equations (13a) and (13b) are functions of the population disturbance covariance 

structure. However, asymptotic optimality for GLS cannot be claimed even if all 

available information is exploited because the resulting estimators possess a 

covariance matrix that does not attain the Cramer Rao lower bc und. 

The approximate GLS estimators possess the advantage of asymptotic 

normality. The unweighted estimators are also asymptotically normal but the 

expression for the residual variance is complex, and standard least squares 

formulae do not apply.’ 

The GLS estimators have an interesting interpretation. Unlikely observa- 

tions (i.e., those with a low probability of sample inclusion) receive greater weight 

than likely observations. This is a consequence of the readily confirmed fact thai 

each element of the covariance matrix for V,; and V>; is a monotonic function of 

; ; ’ ‘ 1 
’ Thus, the estimated residual variance for (14a) converges to o22—¥/!, (1+@A;—A?). Of 

1 
course, the summation term can be estimated so that the standard OLS variance formulae may be 
modified. But the GLS sampling variances for the parameters are lower and hence preferable. 
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@;, and as @; > 0, the probability of sample inclusion goes to zero, and 

lim E(V3,) =0 
i> 

lim E(V2;V,,;)=0 
di ae ©) 

jim E(Vi)=(1—p”)ou. 

The weighting implicit in GLS underscores the crucial nature of the assumption 

that all observations are drawn from the same population distribution. 

As a practical matter, we do not know @; and \; and hence we cannot estimate 

equations (13a) and (b) unless there is prior information on A,. In the case of a 

censored sample, it is possible to compute the probability that an observation has 

data missing on Y, and hence it is possible to use probit analysis to estimate ¢,; and 

A;. Thus, denoting d; as a random variable with the value of one when Y, is 

observed, the sample likelihood for the probit analysis is 

I 
L= VI [F(#)] “(1 - F(#) Id. 

i=1 

Subject to the standard identification conditions in probit analysis, it is possible to 

maximize ¥ to obtain consistent estimates of B,, d; and hence A;. These estimates 

of A; may be used in place of the true A; as regressors in equations (13a) and (b). 

When regression estimates of the coefficients in equations (13a) and (13b) are 

possible, they yield consistent estimates of the true parameters since A; estimated 

from probit analysis is a consistent estimator of the true A;, and Slutsky’s theorem 

applies. More efficient estimates may be obtained from the approximate GLS 

estimates which converge in distribution to the true GLS estimates by the Cramer 

convergence theorem (Cramer, 1946). Other estimates may be obtained from 

utilizing the information that the coefficients of A; are functions of the population 

covariance structure. Each set of estimates may be used as initial consistent 

estimates for estimation of the likelihood function. As Rothenberg and Leenders 

(1964) have shown, one Newton step toward optimizing the likelihood function 

produces estimates that are asymptotically efficient in the sense that they attain 

the Cramer—Rao lower bound.* 

Consideration of three special cases will help to focus ideas. First consider 

Tobin’s model which is presented in equation (13b) in the notation of this section. 

In Tobin’s original model, we observe Y> only if it is positive but for all 

observations in a random sample we know whether or not Y, is positive. In the 

two stage procedure proposed here, first estimate the probit model determining 

® The likelihood function is straightforward. Using the notation in the text for the case of Y; 
observed when Y,>0, Y, not observed otherwise, and Y> not continuously measured, the likelihood 
becomes 

LES xaygsh( Yai —XiB1» Ur) dU) ]4ic pay 
L= | Laseat ae 4] © xo M2(U>;) dU, ]*[fo*2"? h3(U>,;) dU2,]'™. 

a f xagpah2(U2;) dU; Fanaa) aul G ikuiaeun 

The likelihood functio.. for the other cases is straightforward. 
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the probability that Y, is positive. This gives an estimate of —(82X>,/(a22)'/*) = ¢; 

and hence A; for each observation. This estimate of A; may be inserted in equation 

(13b) and least squares estimates of the coefficients in (13b) may be obtained. 

Note that a weighted version of (13b) can be estimated to eliminate the hetero- 

scedasticity that arises from sample selection. 

For at least two reasons this procedure does not utilize all of the available 

information. The first reason is that the procedure ignores the information that the 

probit function estimates 6, up to a factor of proportionality. One could utilize 

this information to write (13b) as 

(13b’) Y>; = (@22)'/?(—; + Aj) + V2i- 

Estimates-of (13b’) are guaranteed to produce a positive estimate of (a2,)'’’, a 

feature not guaranteed in direct estimation of (13b) with the A; estimated from 

probit as a regressor.” One can estimate ‘both weighted and unweighted versions 

of (13b’) with the weights estimated from (14a). 

Still, these estimates are not fully efficient. Consider the weighted estimator 

of (13b’). The residual variance and the regression coefficient each provide an 

estimator of (c>7)'/?. One can use this information to constrain the squared 

regression coefficient in the weighted regression to equal the residual variance. 

Thus one can solve the following quadratic equation for (o2,)'/”, 

1 .! (¥2;—(o22)'/7(A;—$;))” _ 
2 

I, i=1 (1+ A; —A;) oe 

where, as before, the first J, observations are assumed to have Y>;>0, and 

estimated values of A; and ¢; are used in place of actual values. The left hand side 

of the equation is the error sum of squares from the weighted regression. This 

estimate of (a2)'/” is consistent and is guaranteed to produce a positive estimate 

of (a2)'/” if the quadratic equation possesses a real root, but is not necessarily 

more efficient than the previous estimator.'° 

® Note that the estimated A, — ¢; and the actuai Y,, are positive numbers. Hence the least squares 
estimate of (a 2) ’~ is positive. 

'° The equation for (a 2,)'/? is given by 

i —(¥2)0;-¢: \a-d)1 / : A —-&,)" a ( 2i A; $9 ,, 15 ada )) +(—r- Y3; 3)(1 1 . (A; $j) ) 

I, ~ 1+@A;-Aj I, ~ 1+ A;-A; I, 1+ @A,;-Aj 
1 i 2 

tt mor 

I, ~ (1+ A;—A;) 

“ he”'1+ bh, Ae! (o22)'/? = I, d; i i 

2 
for 1 Ps Ba #0. 

I; 1 + oA; ge A i 

When the last condition does not hold, it is straightforward to develop the appropriate expression for 
(a2) ‘~. In either case consistency is readily verified. Nothing guarantees that d is positive. For 
example, if all observations have a probability of sample inclusion that exceeds 85 percent, d <0, and 
no real root need exist in a small sample although in a large sample, one must exist. It is interesting to 
note that nonexistence is most likely in samples with observations for which the probability of sample 
inclusion is high, i.e., precisely in those circumstances when least squares is an appropriate estimator, 
the range of variation in A; is small, and we would place little weight on the regression estimate 
of (a 22) ° 
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None of these two step estimators of (o>,)'/* attains the Cramer-Rao lower . 

bound so that use of the Rothenberg one step estimator is recommended when 

possible. An advantage of the multiplicity of estimators for B, and (a>)'/” is that 

they allow a check on the appropriateness of the model. For example, if the 

probability of the event Y>; >0 is not as closeiy linked to the equation for Y>, as 

Tobin assumed, the B, estimated from (13b) will not be proportional to the 

B2/(e22)'”” estimated from probit analysis. 

Finally, note that unconstrained estimates of equation (13b) are likely to be 

imprecise because A and its estimate are nonlinear functions of the X, regressors 

that appear in that equation. Since @ and A are positively correlated (often 

strongly so) multicollinearity may be a problera and for that reason constrained 

estimators can produce more reasonable results. 

The procedure for more general models is similar to that outlined for Tobin’s 

model. In our second example, suppose that we observe Y, only when Y, > 0, that 

we do not observe actual values of Y,, but we know whether or not Y,> 0 for all 

observations from a random sample. This is the modei of Gronau and Lewis. 

As before, we may estimate @ and A from probit analysis. The estimated A is 

then used as.a regressor in equation (13a). Regression estimates of the parameters 

are consistent estimators. To estimate the approximate generalized least squares 

version of (13a), we may use the residuals from this regression to estimate the 

weights given in equation (14c)."" 

An alternative procedure uses the information from (14c) in conjunction with 

(13a) to simultaneously estimate 8, p, and o,,. From the definition of p given 

below equation (14c) note that equation (13a) may be written as 

(13a’) Y1; = X81 + p(o1)'/7A, + Vii. 

The weighted estimator that utilizes the information that the coefficient of A; is a 

parameter of the population variance, chooses B;, p, and a, to minimize 

“ a (Yi — XiBi-ploun)'Ai)” 

7 I, 1+p°(pA;—Aj) 

with the A; estimated from probit analysis used in place of the true A;. As before, 

we cannot be sure that in small samples this estimator exists although in large 

samples it must exist. Asymptotically, this procedure yields estimators that are 

consistent but are inefficient compared to maximum likelihood estimators. 

As a final example that is the topic of the empirical work reported below, 

consider the model of equations (10a)—(10c) with normality assumed for U,,; and 

U,;, and censored sampling assumed. Y, is observed up to an unknown factor of 

proportionality when Y,>0, and Y, is observed only when Y,>0. This example 

combines aspects of the two previous examples. 

'! Simply regress each squared residual from the unweighted regression V2, on “A; —A?” and 
an intercept. The intercept estimates o,, while the slope estimates p~o,,. Under general conditions, 
these estimates are consistent for the true parameters and permit estimation of the weights required in 
the weighted regression. Nothing in the procedure ensures that the estimated variance is positive or 
that the estimate of p” lies in the unit interval. 
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For specificity, let Y,; be the market wage that woman i could earn were she 

to work. Y>; is the difference between market wages Y,; and reservation wages 

Y;;. Hours of work are proportional to the difference between market wages and 

reservation wages when this difference is positive with the factor of proportional- 

ity denoted by 1/y. This proportionality factor must be positive if the model is to 

accord with economic theory. 

In this model, the parameters of the functions determining Y3; and Y;,,; are of 

direct interest. The equation for reservation wages Y3; may be written as 

(15a) Y3,; = X3,83+ U3; 

(15b) Y,, = X1,8it Ui; 

hence 

(15c) Yo, = XiiB1—XouBs+ U,; — U3; = X2i82+ U2; 

where 

Xj = (X4,X3;) and U2; = U4; — U3). 

The hours of work equation is given by 

(154) hy ="(Yu Xa)" Us 

or, in reduced form, 

1 ,i 
(15e) a X3i83) ee U;;). 

U3; and U,; are assumed to be joint normal variates with zero mean and the 

covariance structure is unconstrained. 

Note that 

: 1 
E(Uj;)=o1, E(U Ua) = 012 = (ou — 013) 

> 1 
eee eit eae 

where 

E(U;,U3;) = o;3 j=1, 2,3. 

In this notation, 

(15b’) E(Y,;|h; >0) = = X,,B,+ oa 
(a> 

(1Se’) E(hu|h>0)=— (XB. XsiBs) +7 — G,,) 2% 
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Av 

—_ Ww 

or, equivalently, 

(15d) Ehi|h,>0)=—(E(Yulh, >0)— X83) -~ 22 
Y Y (@22) 

The two stage procedure applicable to this model is (1) to estimate the probit 

function determining whether or not a woman works. This yields an estimate of A,. 

(2) Use the estimated A; as a regressor in (15b’), and (15Se’). Alternatively, the 

hours of work equation may be estimated from (15d’) using the predicted value 

from wage function given by (15b’) as a regressor. The advantage of this procedure 

is that it permits estimation of a unique value of 1/y whereas if the model is 

overidentified, equation (15e’) leads to a multiplicity of estimates for y. Note that 

the usual rank and order restrictions apply for identifiability of :y. For example, if 

X,, contains one variable not contained in X;,, and the rank condition applies, y 

and hence the vector 8, are estimable parameters. 

As in the other cases, approximate GLS estimators may be developed. The 

procedure for developing such estimators follows exactly along the lines discussed 

in the simpler models, and so will not be elaborated here. 

The analysis for truncated samples is identical to the previous analysis for 

censored samples provided that an estimate of A is available. This estimate may 

come from other data sets or from subjective notions. Clearly the quality of the 

resulting estimator depends on the quality of the estimate of A. Amemiya (1974) 

has proposed an initial consistent estimator for the Tobin model that is applicable 

to the case of truncated sampies. Moreover, a straightforward extension of his 

estimator leads to initial consistent estimators for the Gronau—Lewis model, and 

the expanded model just discussed. The advantage of Amemiya’s estimator is that 

it is based on sample evidence. While Amemiya’s estimator is more cumbersome 

to apply, it is clearly an alternative to the one proposed here, and has the 

advantage that it can be used in truncated samples. 

Ill. EmpiricAL PERFORMANCE OF THE ESTIMATOR 

In this section, I report the results of an empirical analysis of the joint model 

of labor force participation, wages and hours of work presented in the last section. 

Elsewhere (Heckman, 1976) I present a more extensive empirical analysis of this 

model and demonstrate that the proportionality assumption of equations (10c) 

and (15d) and (15e) may be inappropriate because of worker and employer fixed 

costs. Here, I assume this model is correct and report the results of using the 

computationally simple estimator to estimate the parameters of the sample 

lik :lihood function.'* As we shall see, the initial consistent estimator proposed 

here locates the optimum rather precisely. This exercise is of more than 

methodological interest. In an earlier paper (Heckman, 1974) I estimated this 

model using data on female labor force experience that was erroneously coded by 

the primary data source. Thus the analysis here permits an examination of the 

effect of this coding error on the estimates presented in the earlier paper. 

'2 A derivation of the sample likelihood function for this model is provided in Heckman (1974). 
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The data source is the National Longitudinal Survey tape of women 30-44 

interviewed in 1967. From an original sample of 5,083 women, a working sample 

of 2,253 white, married spouse present women with usable data was constructed. 

The reasons for sample exclusion are given in Appendix A-1. Sample means for 

the data used in the empirical analysis are reported in Appendix A-2. The 

measure of labor supply used in this paper is annual hours worked defined as the 

product of weeks worked with average hours per week. A woman works if she has 

nonzero hours of work in 1967. 

Estimates for the probit model predicting the probability that a woman works 

are given in Column 1 of Table 1. The variables used in the analysis are self 

explanatory. These estimates are to be compared with the estimates of this 

probability derived from the sample likelihood function. The agreement is rather 

close. 

TABLE 1 
. PRoBIT ESTIMATES 

Original Probit Estimates of 
Estimates from 

B2/(o22)'”” the 
(“‘t” stat. in parentheses) Likelihood Function 

Number of children less than 6 —0.44968 (—9.987) —0.4410 
Assets —0.6880x 10° — (-3.01) ~0.7157x 10° 
Husband’s hourly wage rate —0.01689 (—1.16) —0.0366 
Wife’s Labor market experience* 0.07947 (16.67) 0.0774 
Wife’s education 0.0302 (2.306) 0.0406 
Constant +£.1553 (7.569) —1.1331 
Log likelihood: — 1186.8 wo , 3 
Probability that a woman works is: [ patuien)'” ¥ e dt 

701 women work of a sample of 2,253 women. 

* The number of years the woman worked full time since marriage. 

Next, I report estimates of the parameters of equations (15b) and (15c) 

obtained from regressions with and without “A” variables to correct for sample 

censoring bias. The natural logarithm of the hourly wage rate jis used for Yj,. 

Annual hours worked are used as the measure of labor supply, / 

The top portion of Table 2 records the empirical results for the coefficients of 

the hourly wage function. Column 1 records the results of esti 

function by least squares on the subsample of working women without correcting 

for censoring bias. Column 2 records the result of estimating the same function 

entering the estimated A; as a regressor. Note that in this sample wé¢ cannot reject 

the null hypothesis that sample censoring for wage functions is ai} unimportant 

phenomenon. This result stands in marked contrast to the empirjcal results in 

Gronau (1974) who found significant selectivity bias. \ 

Generalized least squares estimates of the wage equation fre given in 

Column 3.'* The weights for the GLS estimator were derived from r¢gressions on 

'3 These estimates only use the information available on the wage equation, and d not exploit the 
interequation covariance structure. 
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the first stage residuals using the procedure reported in footnote 11 in the previous 

section. Note that the GLS equation is very similar to the least squares equation 

reported in Column 2. The R* shown in Column 3 is the R? for the regression 

using weighted variables. 

Finally, estimates of the wage function obtained from optimizing the likeli- 

hood function are reported in Column 4. Note that the GLS estimates closely 

approximate the maximum likelihood estimates. 

The results in the bottom row. of Table 2 are less reassuring. Column 1 

records estimates of reduced form equation (15e) that ignore the possibility of 

selection bias.'* Column 2 records estimates of this equation with A; included as a 

regressor. Note that the coefficient on A; is statistically significant and negative, 

and that this result remains in the GLS estimates, so that there is considerable 

evidence that there is pronounced selection bias in estimating hours of work 

functions on sub-samples of working women. 

The estimated negative coefficient on A; is disturbing since if the model of 

equations (10a)—(10c) is true, this coefficient yields an estimate of the standard 

deviation (>,)'// y (see equation (15e’)) and should be positive. Further, the 

negative coefficient on the wife’s labor market experience, taken in conjunction 

with the positive effect of experience on her wages, implies that the estimated 

value of y is negative, contrary to the premises of the model.’° Finally, inspection 

of Column 5 shows that the maximum likelihood estimates do not correspond to 

the estimates of Column 2 or Column 4. 

These empirical results have led me to develop a more general model in 

which the hours of work equation is not as closely related to the participation 

equation as it is postulated to be above. Such a model arises naturally when there 

are fixed time and money costs of work and child care, and is reported in another 

paper. (Heckman, 1976). 

An alternative estimator of the model under discussion that avoids an 

embarrassing confrontation with data is obtained by noting that if the model were 

true, probit coefficients for the work-no work decision would estimate the 

coefficients of 8B, in the hours of work equation (15c) up to a factor of proportion- 

ality. In the notation of this section, the factor of proportionality is simply given by 

o3;’/y. In an obvious way, we may adapt the estimator for the Tobin model 

proposed in equation (13b’) and write 

otf? V fj 
(16) h, = —-(-—, +A,;) +—, f= 1, .>.. 4 

Y Ef 

where 

_ __B2Xp; 

+ (o247/y) 

'* The labor supply equation is just identified because the only variable that appears in the wage 
function that does not appear in the reservation wage equation is labor market experience. Hence the 
choice between estimating equations (15d’) and (15e’) is immaterial. 

'S The estimate of 1/y is obtained by dividing the coefficient for experience in the female wage 
equation (0.0203 in the GLS estimates) into the coefficient for experience in the hours of work 
equation (—79). The resulting estimate is —3891.6. 
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Probit analysis yields estimates of #; and A;. Hence we may estimate (a)'/*/y by 

regressing h; on(—¢; + A;). This estimate is guaranteed to be positive.'° Thus, we 

can estimate equation (15c) and hence we can estimate the effect of experience on 

hours of work. Using the coefficient on the experience variable from the wage 

TABLE 3 
MAXIMUM LIKELIHOOD ESTIMATES AND INITIAL CONSISTENT ESTIMATES OF THE 

HECKMAN (1974) MODEL 

Annual Hours 
(“‘t”’ statistics in parentheses) 

Initial 
Likelihood Estimates in Consistent First Step 
Optimum Original Paper Estimates Iterate 

Natural Logarithm of 
Market Wage Equation Yj; 
(Coefficients of B;) 

Intercept —0.412 —0.982 —0.435 —0.593 
(5.28) (8.93) (8.70) 

Education 0.0679 0.0761 0.0686 0.0688 
(13.58) (10.15) (17.20) 

Experience 0.0200 0.048 0.0205 0.025 
(10.00) (12.00) (1.14) 

Natural Logarithm of 
Reservation Waze Y3,; 
(Coefficients of B3) 

Intercept —0.1151 —0.623 —0.103 —0.0964 
(1.77) (32.28) (2.10) 

Effect of hourson 0.152x10°* = 0.63x 10° 0.9x10°° 0.148 107° 
reservation wage (7.96) (12.60) (1383.18) 
(y) 

Husband’s wage 0.00946 0.051 0.00418 0.0238 
(2.49) (7.29) ; (4.76) 

Wife’s education 0.0574 0.0534 0.061 0.0548 
(10.14) (7.63) (13.70) 

Assets 0.185x10°° = 0.135x 10° —-0.1702x 10° —-0.285x 10° 
(3.14) (2.45) (0.41) 

Nbr. children 6 0.114 0.179 0.115 0.116 
(6.48) (52.63) (7.25) 

Std. Deviation in 0.329 0.452 0.320 0.253 
Mkt. Wage Equation (32.90) (37.36) (23.00) 
F11 

Std. Deviation in 0.363 0.532 0.351 0.259 
Reservation Wage Eq. (24.20) (28.00) (26.16) 
733 

Interequation Correl. 0.725 0.6541 0.353 10-* 0.317 
(11.69) (14.22) (4.23) 

913 

VO11933 

Log Likelihood —5,778 —6,414 —6,102 
Log Likelihood under —5,783 

null hypothesis of no 
selection bias 

‘© Either weighted or unweighted estimators may be used, and as discussed in Section II, a more 
efficient estimator exploits the information that the regression coefficient is the square root of the 
population variance. 
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equation divided into the experience coefficient for the hours of work equation, 

we may estimate 1/y, and hence (o>,)'/”. For these data these estimates are 

positive. 

Unweighted estimates of equation (16) are used to develop the initial 

consistent estimate of the natural logarithm of the reservation wage function that 

are displayed in Column 3 of Table 3. The estimates of the population wage 

function are taken from the estimates reported in the second column of the first 

row of Table 2."” 

The initial consistent estimates displayed in Table 3 are to be compared with 

the coefficients displayed in Column 1 obtained from optimizing the likelihood 

function. For most coefficients, the agreement between the two estimates is rather 

close. The only exceptions come in the estimate of y and in the estimate of the 

interco’relation between the disturbances of the market wage equation (U,,;) and 

the reservation wage equation (U3;). Note that a comparison of Columns 1 and 

2 suggests that the coding error “that appeared in the original Parnes tapes 

introduced considerable error in the estimated coefficients. In particular, the 

effect of experience on wages was overstated in my previous paper while the effect 

of wages on labor supply (1/y) was understated. Finally, note that the first step 

iterate of the initial consistent estimator, an asymptotically efficient estimator, is 

numerically close to the maximum likelihood estimator but for most coefficients is 

not as close as the initial consistent estimator. 

SUMMARY AND CONCLUSIONS 

This paper discusses the bias that arises from sample selection, truncation and 

limited dependent variables within the familiar specification error framework of 

Griliches and Theil. A simple estimator for censored samples, due to Gronau and 

Lewis, is discussed and applied to reestimate a model of female labor supply, 

wages and labor force participation. The estimates compare quite closely to the 

estimates obtained from maximum likelihood. 

The estimator discussed here is viewed as a complement to Amemiya’s 

estimators (1973, 1974) for related models. No comparison of relative efficiency 

has been performed. Neither estimator is efficient compared to maximum likeli- 

hood, but both are computationally more flexible than maximum likelihood and 

for that reason both are more useful in exploratory empirical work.'® 

University of Chicago 

"7 Estimates of the covariance structure are obtained from the inter-equation residual correlation 
between the residuals from equation (16) and the wage function (15b’). Note that the estimate of 

1/2 i. . : ; 
a> /y taken from the regression coefficient of equation (16) is 583.01. 

8 An example of the potential in cost saving may be useful. It/ cost $700 to produce 
estimates of the likelihood function reported in Table 3 and $15 to produce the initial consistent 
estimates and the GLS estimates. 
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APPENDIX A-1 

Sample Seiection Criteria 

In the original National Longitudinal Survey tape of women 30-44 inter- 

viewed in 1967, 5,083 observations were available. The following rejection 

criteria were employed to reach the working sample of 2,253 total women, 701 of 

whom are working in the survey year. For a description of the data source, see 

Shea, et al., 1970 

(1) Nonwhite (1,552) 

(2) Nonmarried spouse present (1,971) 

(3) Husband has no income (194) 

(4) Wife has a job, but not working in survey week (107) 

(5) Wife’s work experience not available (357) 

(6) Education of wife not available (7) 

(7) Unknown wage rate for working woman (177) 

Note that observations may be rejected for any of the seven reasons listed. Assets 

were assigned in 176 cases from the equation fit on the subsample of working 

women. 

Assets (1967) = —9,205 + 171.80 (husband’s wage rate) 

— 53.29 (wife’s experience) + 2,034 (wife’s education) 

APPENDIX A-2 

DESCRIPTION OF DATA ° 

(1967 National Longitudinal Survey of Women 30-44) 

701 working women; 2,253 women 

Mean for Mean for 
Working Women ail Women 

Nbr. of children 0.252 0.5512 
less than 6 

Assets ($) 12,466 13,963 
Husband’s income ($) 6,531 6,924 
Wife’s annual hours 1,527 — 
Weekly wage ($/wk.) 75.92 _ 
Weeks worked 41.2 — 
Labor force experience (years) 11.5 7.75 
Wife’s education 11.3 11.33 
Husband’s wage rate 3.02 3.16 
Log of wife’s weekly wage * 4.12 — 
Hours per week of wife 36.3 -- 
Selection factor (A;) 1.033 1.585 
Participation rate 1.0 0.373 
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