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Annals of Economic and Sociai Measurement, 5/4, 1976 

SOME METHODOLOGICAL ISSUES IN THE ANALYSIS 

OF LONGITUDINAL SURVEYS 

BY BURTON SINGER AND SEYMOUR SPILERMAN* 

A central methodological issue which is presented by longitudinal surveys centers around techniques 
which can be used to assess whether or not the observations are consistent with one or more a priori 
plausible stochastic models. In addition the structural parameters characterizing particular models may 
not be identifiable, simply as a consequence of the observation plan. In this paper we review some of the 
literature dealing with widely observed empirical patterns in longitudinal survey data and plausible 
classes of stochastic models which are appropriate to describe them. In addition we present examples of 
strategies and techniques for discriminating among several classes of stochastic models fitted to the same 
longitudinal data. We place special emphasis on embeddability of multi-wave panel data in continuous 
time Markov models and the identification problem within that class of models. 

1. INTRODUCTION 

In recent years there has been a considerable expansion in the availability of 

longitudinal data files. Sociological theory has always had the study of social 

change as its core, yet the majority of quantitative empirical researches have 

involved the analysis of cross-sectional data. Longitudinal studies, in particular 

multi-wave panel studies, have not been very common. In part, this is because of 

the considerable cost involved in surveying a population sample at multiple points 

in time. It is also due to the fact that several years must usually elapse after the first 

interview for the longitudinal aspect of the data to become sufficiently detailed so 

that patterns of change can be detected and studied. However, stimulated by a 

recent concern with the development of social indicators and by a related interest 

in social experimentation, a number of large scal> studies have been funded, and 

sufficient time has elapsed for these investigations to have produced longitudinal 

files. Indeed, in comparison with even a decade ago, we appear to be moving into 

an era which wiil be comparatively rich in the existence of multi-wave panel data 

on large population samples. Important examples of currently available data sets 

of this sort are the Michigan Panel Study on Income Dynamics (Morgan and 

Smith, 1969), the National Longitudinal Study of Labor Force Experience 

(Parnes Study, 1972), the Sewell-Hauser Panel on Wisconsin Youth (1975), and 

files from several negative income tax studies (e.g., A. Rees and H. Watts, 1976). 

The expansion in availability of- these sorts of files raises questions about 

proper analytic methodology for exploiting the richness and unique properties of 

panel data, especially in instances where more than two waves of interviews have 

occurred. Sociologists frequently ask questions about distributional change and 

are interested in forecasting the evolution of a population among system states, as 

* The work reported here was supported by grants NSF-SOC-7607698 at Madison, and SOC- 
7617706, NSF-GP-31505X and NSF-GS-38574 at Columbia University, and by funds granted to the 
Institute for Research on Poverty of the University of Wisconsin by the Office of Economic 
Opportunity pursuant to the Economic Opportunity Act of 1964. The conclusions are the sole 
responsibility of the authors. 
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well as in understanding the structure of the dynamic process. The most common 

examples of such studies concern occupational mobility (e.g., Lieberson and 

Fuguitt, 1967; Hodge, 1966) and geographic migration (e.g., Tarver and Gurley, 

1965; Rogers, 1966). Some economists (e.g., Smith and Cain, 1967; McCall, 

1973) have viewed income dynamics from the same perspective. 

The mathematical framework that has been used in these investigations is 

discrete-time Markov chains. We shall discuss a number of limitations of this 

structure as a description of social processes; at this point, though, we wish only to 

motivate our investigation by focusing on one discrepancy between forecasts from 

a Markov model and observations on the empirical process. In applications of 

Markov chains to industrial mobility, Blumen, Kogan, and McCarthy (1955) 

(hereafter referred to as BKM) discovered an empirical regularity which has 

subsequently been observed in many other sociological investigations and which 

has motivated a rich and diverse research effort. In particular, they noted the 

tendency for the main diagonal entries of observed stochastic matrices to be 

underpredicted by the main diagonal entries in powers of one-step Markov 

transition matrices. This has led to the formulation of a variety of alternative 

stochastic process models which might plausibly account for the regularity. 

Furthermore, there has been a critical reevaluation of the substantive and 

statistical issues involved in estimation and comparison of several models fitted to 

the rather fragmentary longitudinal data which is usually available on an empirical 

process. 

The purpose of this paper is to review some of the methodological develop- 

ments which were an outgrowth of BKM’s pioneering investigation. Particular 

attention will be paid to parsimony of models relative to multi-wave panel data, 

and to the testing and identification of multiple models which may be compatible 

with a given set of observations. In Section 2 we review BKM’s study and describe 

some conceptual difficulties which can arise when discrete-time structures are 

applied to social processes that evolve continuously in time. Section 3 contains an 

overview of the alternative explanations which have been proposed to account for 

the empirical regularity observed by BKM; namely, the underprediction of 

diagonal entries in observed transition matrices by diagonal entries in powers of 

Markov transition matrices. Models of heterogeneous populations which extend 

BKM’s formulation to continuous time, and which incorporate more diverse 

forms of heterogeneity, are described in Section 4. In Section 5 we illustrate the 

companion issues of embeddability and identification for continuous-time Markov 

chains. This is the prototype of a set of methodological problems which are central 

to the analysis of panel data, and which have received remarkably little attention. 

Generally speaking, embeddability tests refer to the task of ascertaining 

whether or not an empirical process is compatible with the conceptual assump- 

tions (mathematical structure) underlying a particular class of models (e.g., 

general Markov, mixtures of Markov, semi-Markov). Where the answer is 

affirmative, identification procedures refer to techniques for recovering the . 

specific set of structural parameters from the model class which should be 

associated with the empirical process. One indication of the difficulties involved 

with identification is the fact that empirically determined stoch- .ic matrices 

based on data collected at evenly spaced time points may be embeddable in the 
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ciass of continuous-time Markov models, but a unique structure from that class 

may not be identifiable. 

Finally, Section 6 illustrates a rudimentary strategy for discriminating among 

four classes of sto'chastic process models using multi-wave panel data. That 

discussion is intended to illustrate the flavor of the kinds of strategies which are in 

serious need of development. Indeed this is the place where the greatest 

methodological challenges lie, and foremost among them is the specification of 

designs for panel studies which will facilitate discrimination among multiple 

plausible models. 

2. MOVERS AND STAYERS—A. REVIEW 

2.1 Model Specifications and an Empirical Regularity 

In attempting to describe the propensity of persons in particular age and sex 

cohorts to mo'e between pairs of industrial categories, BKM first fit a descrete- 

time Mari.ov chain with stationary transition probabilities to quarterly data on the 

occupations of persons listed in the Social Security Administration’s Work 

History File (1972). By a discrete-time Markov chain we mean a stochastic 

process {X(k), k =0, 1, 2,...} describing state transitions by an individual where 

the system states might be geographic regions, occupations, industries, or income 

categories, depending on the particular substantive problem. Probability state- 

ments about the process are governed by the analytical recipe 

Prob {X(k +n) = j|X(0), X(1),..., X(n—1), X(n) =i} 

(2.1) 

= Prob {X(k +n) =j|X(n)=i}=m? 

for k=0,1,2,...n=0,1,2,.... Thus, the fundamental assumption of a 

Markov process is that future system state is not a function of past history, once 

current state is specified. The element m{*) is the (i,j) entry in the stochastic 

matrix M“ (k-foid matrix multiplication of M). This specifies the k-step transition 

matrix under a Markov chain, i.e., P(0, k) = M*. M is itself a stochastic matrix 

whose entry m,; has the interpretation, 

m,; = probability that an individual in category / will 

move to category j‘in one unit of time. 

This mathematical structure describes the evolution of a homogeneous popula- 

tion, because it is assumed that all individuals evolve according to the same 

transition mechanism (namely, the. matrix M). 

BKM’s estimation method was simply to identify an average of the observed 

one-quarter (i.e., three-month interval) transition matrices with the matrix of 

one-step Markov chain transition probabilities ||m,;||. With this estimate in hand, 

they tested the model by comparing M“ with P(0, k), the empirically determined 
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transition matrix’ based on observations taken at the beginning of the initial 

quarter and at the end of the kth quarter. BKM carried out this comparison for 

k =4, 8, and 11 and found that 

(2:2) pi(0,k)>m,  k=4,8,11;1<i<r=number of states; 

that is, the main diagonal elements in the k-step matrix predicted by a Markov 

process under-represent the main diagonal elements in the observed k-step 

matrix. They also noted that the magnitude of the inequality increased together 

with k. 

BKM suggested that one plausible explanation for the discrepancy sum- 

marized in (2.2) was that a socially heterogeneous population was being treated as 

though it was homogeneous. They proposed an alternative model to accommo- 

date heterogeneity in which the population was viewed as consisting of two kinds 

of individuals. They assumed that a non-directly observable fraction s; of the 

individuals in industry category i—called stayers—never moved, and that their 

evolution was described by the degenerate Markov chain {X,(k), k =0, 1, Z,...} 

with one-step transition matrix given by the identity J. In addition, the evolution 

of a non-directly observable fraction, 1—s;, of the individuals—called movers— 

who were in industry category i at the beginning of the initial quarter was 

described by a discrete-time Markov chain {X,(k), k =0, 1, 2, ...} with one-step 

transition matrix M. The diagonal entries m, were not required to be zero, 

thereby allowing for within-industry job change. It was also assumed that the 

mover population evolved independently of the stayers, and that the same 

transition matrix M governed the evolution of movers who started in each 

category at the beginning of the initial quarter. 

The observable process {Z(k), k =0,1,2,...} describing the evolution of 

individuals who start out in each industry category in the initial quarter is thus a 

mixture of the components of the bivariate process (X,(k), X2(k)). Its transition 

probabilities are given by 

ne _, f-s)mP  fori¥j 
(2.3) Prob {Z(k) = j|Z(0) = i} eee ecini 

k=1,2,...;1<i, /=r=number ofstates. 

In matrix notation, this may be written as 

P(k)=SI+(1—S)M* 

2 OPA. °) 
where S (C eo 

' Empirically determined stochastic matrices will be designated by P(u, v) with entries 

agenans of individuals starting in state 

ni \ attime u who are in state j at time v 
OS ie nis green of individuals starting in state ' 

at time u 

where u <v. BKM’s estimate of M can thus be wiitten as 75 Yit, P(k, k + 1) where the unit of time is 
three months (= 1 quarter). 
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The formulation (2.3) has come to be known as the “‘mover-stayer” model, 

and a variety of simultaneous estimation methods for the structural parameters 

(s;,...,8,) and M are given in a paper by L. Goodman (1961), who improved 

considerably on BKM’s initial procedures. BKM found that this model of a 

heterogeneous population provided a better description of job mobility, as 

measured by the quarterly observations, than the original Markov chain model of 

a homogeneous population. Furthermore, the mover-stayer model accounted for 

much of the empirical regularity (2.2) and thus has motivated subsequent attempts 

to develop more refined models of heterogeneous populations. 

2.2 A Difficulty with Discrete-Time Models 

Despite the initial success of the mover-stayer formulation there are concep- 

tual difficulties with the basic strategy of fitting discrete time models to mobility 

data. In particular, when structural’ information about a population is the primary 

goal of an investigation, then the substantive interpretation attached to estimates 

of the matrix M—in either the pure Markov or mover-stayer model—is 

m, = probability that an individuai in state i 

will move to state j when a change occurs. 

If you regard M as a matrix of structural change parameters and fit discrete- 

time models to evenly spaced observations, then you are tacitly assunzing that the 

natural time unit between, say, industry or occupational changes coincides with 

the sampling interval (three months in the Social Security Administration’s Work 

History File). Since there is no substantive basis for such an identification, the 

parameters estimated by BKM cannot legitimately be interpreted as structural 

information about the population of workers; alternate choices of the sampling 

interval will yield different matrices M. Indeed, BKM were aware of this difficulty 

and noted that during a given quarter some persons will have moved twice, others 

will have moved three times, etc. For these unidentifiable persors you are really 

estimating M*, M®, etc. Nevertheless, even by dropping any attempt to identify M 

as a matrix of structural parameters and just fitting a discrete-time model to 

quarterly data, BKM found an empirical regularity of considerable importance. In 

fact, as we will indicate in Section 4, even when continuous-time Markov 

models—whose parameters can legitimately be interpreted as structural 

coefficients*—are fit to a variety of longitudinal data sets, the regularity observed 

by BKM still appears. 

The ambiguity in specifying an appropriate time scale for intra-generational 

mobility processes has also been pointed out by H. White (1970, pp. 319-320) and 

Singer and Spilerman (1974, pp. 360-362). However, a facet of this ambiguity 

which seems to have been overlooked by BKM, as well as by subsequent users of 

the mover-stayer formulation (e.g., McCall, 1973), is the fact that conclusions 

. By “structural information” we mean quantities which characterize a population, irrespective of 
the observation interval used for data collection. 

> As the reader will see, these parameters are independent of the sampling interval. 
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about compatibility of data with a discrete-time model can depend entirely on an 

ad-hoc choice of unit-time interval. To see this in the simplest possible setting, 

recall BKM’s initial fitting of a discrete-time Markov chain to quarterly observa- 

tions. 

Suppose, for illustrative purposes, that vou agree that a natural time unit for 

job mobility is a particular cohort is six weeks. Then an attempt to fit an observed 

one-quarter (12-week) transition matrix P(0, 1) to a Markov chain consists of 

asking whether there exists a stochastic matrix M such that 

P(O, 1)= 

An affirmative answer would require that P(O, 1) have at least one stochastic 

square root, Vv P(0, 1). That this is by no means automatic can be seen if you 

consider a two-state process with observed one-quarter transition matrix 

2 1/4 3/4 

(le 38) ~* 5/8 3/8 

This matrix has no stochastic square roots, and it is therefore incompatible with a 

discrete-time Markov structure if the natural time unit is believed to equal six 

weeks. However, if you use a four-week time unit then you find that P(O, 1) does 

have a stochastic cube root given by 

Vv 
50.1 = ‘rege mee 

0.7824 0.2176 

More generally, PO, 1) has no stochastic roots of any even order, while it does 

have a stochastic cube root, a stochastic fifth root, but no odd stochastic root of 

order greater than five. 

A consideration of high order roots (say, greater than four) is not really an 

issue with quarterly observations of job mobility; however, it certainly could be 

for annual observations or more widely spaced data. The essential point to be 

made here, however, is that for processes such as intragenerational occupational 

mobility which are both intrinsically nonsynchronous* and lack any substantive 

basis for a choice of unit time interval, a more natural strategy is to fit continuous- 

time models (in which the waiting times between moves are viewed as random 

variables) to the data, and carry out systematic discrimination among alternative 

models in that setting.* This kind of extension of the mover-stayer framework was 

first carried out by S. Spilerman (1972a) with further generalizations indicated in 

Singer and Spilerman (1974). These developments will be reviewed together with 

a variety of other models in Section 4. 

By ‘“‘non-synchronous” we mean that persons do not all change state simultaneously. 
* In instances where a substantively meaningful unit time interval exists, a discrete-time model 

would indeed be appropriate (e.g., explaining presidential election outcomes). 
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3. OrHER EXPLANATIONS OF HIGH DIAGONALS 

BKM’s introduction of the mover-stayer model to explain “clustering on the 

main diagonal,” i.e., the empirical regularity® 

(3.1) pi(0,k)>mP, i=1,...,7; k=2,3,... 

has led to the development of a variety of qualitatively different kinds of models, 

all capable of accounting for (3.1). The five principal features of social processes 

which are not taken into account in univariate time-stationary Markov models’ 

and which have motivated the construction of alternative models are: 

(i) population heterogeneity 

(ii) time-varying propensities to change system states (e.g., income 

categories, occupations, industries) 

(iii) non-exponential waiting times between changes of state 

(iv) strong dependence on past history 

(v) latent variables. 

Features (i), (ii), and (iii) have received the most attention in attempts to develop 

stochastic process models which can account for (3.1) and which also mirror other 

widely observed empirical phenomena, such as the increasing propensity with the 

passage of time for persons in a particular occupation to remain there. For a nice 

empirical study of manpower flows in British labor markets where this behavior 

occurs, see Kuhn, Poole, Sales, and Wynn (1973). Since our primary concern in 

Sections 4-6 will be with specification, estimation, and identification issues 

involving models based on (i)—(iii), a few remarks about (iv) and (v) are in order. 

In a review of BKM’s study, W. Feller (1956) suggested that for processes 

such as job mobility, dependence on past behavioral patterns was probably so 

pronounced that it would be essential to develop detailed models incorporating 

past history in order to have a satisfactory description of the observed empirical 

patterns. Indeed, Feller suggested the use of higher order Markov processes for 

this purpose. As a strategy for understanding social phenomena such as mobility 

among occupation, industry, or income categories, this kind of program has never 

been seriously followed up and has in fact been criticized on several grounds. 

Coleman (1964a, pp. 9-11), in particular, has emphasized that the intrinsically 

heterogeneous nature of most populations is largely ignored by an introduction of 

higher order Markov models, and that such an exercise is more akin to blind curve 

fitting of successively higher order polynomials to irregular data. 

One might argue that models incorporating both heterogeneity and long 

range dependence should be introd:iced; however, the fragmentary nature of the 

data which can be collected in most surveys—particularly the small number of 

® 6, (0, k) is a diagonal entry in the observed k-step matrix, and m/f is the corresponding entry in 
the k-step matrix predicted by a discrete-time Markov chain. 

” We have replaced the usual mathematical terminology “‘time-homogenecus Markov chain” by 
the phrase “‘time-stationary Markov chain.” This change of terminology has been incorporated in 
order to avoid confusion with our use of the word “homogeneous” to describe a population of 
individuals possessing a common set of transition probabilities. It should also be emphasized that we 
do not assume that the initial distribution of individuals among system states is the equilibrium 
distribution for a Markov process. Such an assumption would imply that the Markov process is also a 
“stationary” process in the usual mathematical sense of the word. 
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time points at which persons involved in panel studies can Fz re-interviewed— 

makes judgments as to the relative importance of phenoni?na which are to be 

incorporated in parsimonius models essential. In fact, a primary reason for the 

emphasis on population heterogeneity and the neglect of long range dependence 

is the greater importance for the development of sociological theory attached to 

an understanding of the components of heterogeneity. The strategies of introduc- 

ing independent variables into Markov chain models developed by Coleman 

(1964a), McFarland (1970), and Spilerman (1972b) as well as the mixture models 

introduced in Spilerman (1972a) and Singer and Spilerman (1974) are all based on 

considerations of parsimony of models relative to the available data and on the 

judged importance of population heterogeneity. 

Concerning item (v), many of the observed attitudinal responses in panel 

studies, such as opinions about political issues, career aspirations, etc. are related 

to a variety of non-directly observable (or latent) social and psychological 

variables. In addition, there are often several competing theories about the 

relationships which may exist between latent and manifest (i.e., observable) 

variables. An important research objective with panel data is to discriminate 

among dynamic models incorporating a variety of latent and manifest variable 

relationships. Despite its importance, this aspect of the analysis of longitudinal 

surveys is largely undeveloped. The major attempts to consider both the substan- 

tive and methodological issues have been by Coleman (1964a), Lazarsfeld and 

Henry (1968), and Wiggins (1973). The last of these contains a superb collection 

of examples and lucid statements on the enormous range of unresolved 

mathematical, statistical, and social-theoretic problems. In the remainder of this 

paper we will concentrate on models which incorporate population heterogeneity, 

time-varying propensities to change state, and general classes of waiting times 

between moves. However, it should be noted that the same methodological issues 

arise in dealing with latent structure models but with a considerable increase in 

complexity. 

4. PARSIMONIOUS MODELS AND FRAGMENTARY DATA 

In the context of panel studies, J. Coleman (1964b) introduced continuous- 

time Markov chains as an initial baseline class of models. However, in fitting these 

models to observed data, he noted the same kind of empirical regularity—under- 

prediction of diagonals of observed matrices— which BKM and others had found 

using discrete-time models. This finding has motivated the development of a 

variety of formal models of heterogeneous populations which are both moder- 

ately realistic and simple enough so that parameters can be estimated and the 

models falsified using rather fragmentary data. The strategies for introducing 

heterogeneity have basically been of two distinct types: individuals (or sub- 

populations) are classified either according to the rate at which they move 

(Spilerman, 1972a; Singer and Spilerman, 1974) or according to their propensity 

to move between pairs of states when a transition occurs (McFarland, 1970; 

Spilerman, 1972b; Singer and Spilerman, 1974). These sub-populations are not 

always directly observable, and mixtures of Markov and semi-Markov processes 

provide simple, readily interpretable models of the observed population-level 
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processes. Explicit descriptions of models of these types, suited to intra- 

generational mobility studies, are given in sub-sections 4.1, a—d below. 

4.1 Model Specifications 

In order to illustrate some explicit models of heterogeneous populations and 

clarify the substantive assumptions which accompany their use, we first recall the 

basic mathematical structure of continuous-time Markov chains with stationary 

transition probabilities. In particular, consider a stochastic process with a finite 

number of states whose transition probabilities are governed by the system of 

ordinary differential equations 

aP (t 
(4.1) 4P()_ op), P(0)=1 

dt 

where P(t) and Q are rXr matrices. It is well-known (Coleman (1964b), pp. 

127-130; Chung (1967), pp. 251-257) that if Q has the structure 

(4.2) qi = 0 for i ¥j, qu = 0, Y gy =9, i=1,...,7r 
j=1 

then the functions P(t), t >0 which are solutions of (4.1) comprise the transition 

matrices of continuous-time stationary Markov chains. A typical element, p,;(t), 

of P(t) has the interpretation, 

pit) = probability that an individual starting in 

state i at time 0 will be in state j at 

time f. 

The Q-arrays, which are known as “intensity matrices,” represent structural 

information about the population: 

(i) . probability that an individual in state i 

“ will move to state j, given the occurrence 

of a transition 

ot ae , se ane 
(ii) ——= expected length of time for an individual 

in state i to remain in that state. 

We will denote the class of intensity matrices (arrays of the form (4.2)) by Q. 

Solutions of (4.1) are given by the exponential formula 

P(t)=e", t>0 (4.3) 

where the matrix exponential e* (A being an arbitrary r Xr matrix) is defined by 

eA =F A 
k=o k! 

(a) A simple factored representation of Q: The above general formulation of 

continuous-time Markov transition matrices has been used in numerous sociolog- 

ical contexts (e.g., Coleman 1964b, pp. 177-182; Bartholomew, 1973). However, 
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the analysis of social processes, particularly in a heterogeneous population, is 

greatly facilitated by an alternative formulation vhich provides the basis for a 

classification of individuals (or sub-populations) according to their rates of 

movement, their propensities to move to particular states, or both simultaneously. 

A starting point for this development was S. Spilerman’s (1972a) extension of the 

mover-stayer formulation to continuous-time, with a more genezal classification 

of sub-populations than the simple mover-stayer dichotomy. The basis for this 

extension was simply the introduction of a factored representation for Q-matrices 

of the special form Q =A(M-—1), where A is a positive constant signifying the 

expected rate of movement, and M is the transition matrix that each individual in 

the population follows at a move. 

Classification according to rate of movement means assigning a number A to 

each individual (or sub-population), thereby designating what we will call type-A 

individuals. The value 1/A can be interpreted as an individual’s mean waiting time 

before moving (or before making-a decision to possibly move). Similarly, classifi- 

cation accordirg to propensity to transfer to particular states means assigning a 

stochastic matrix M to an individual, thereby designating what we will call type-M 

individuals. If persons are to be classified in both of the above ways simultane- 

ously, we would speak of type-(A, M) individuals. 

Using this classification scheme, the random variables {Y(t), t>0} which 

describe a type-A individual’s history may be constructed from two separate 

processes: (1) a sequence of independent positive random variables 7p, 7;,... 

describing waiting times between moves and satisfying 

Prob (7; >t)=e “, i=0,1,2,... t>0. 

and (2) a discrete-time Markov chain {X(k), k =0,1,2,...} having one-step 

transition matrix M which describes moves when they occur. You can then think 

of an individual whose transition probabilities are governed by e*““~” as evolving 

according to the following prescription: 

(i) Starting in state i at time 0, the individual stays there for an exponen- 

tially distributed length of time 7» with 

Prob (t>>t)=e ™, t>0. 

Thus, Y(t) = X(0) =i for Ost <rz,. 

(ii) At the end of this time he makes a decision to move to state j with 

probability m,;. (In general, m; #0.) Thus, Y(79) = X(1) =j. 

(iii) Now he waits in state j for an exponentially distributed length of time 7, 

which is independent of to, X(0), and X(1); especially, 

Prob (71 > t|X(0), To, X(1)) = Prob (T1 >t) = Boe: 

and 

Y(t)=X(1) for To St <7 +7}. 

(iv) Then he makes another decision to move to state h with probability my, ; 

hence, 

Y(to+71) = X(2) =h. 
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(v) The above sequence is repeated. In general, 

Y()=X(k) for nct<F 14, 
i=0 i i=0 

with 70, 71, . .. independent of {X(k), k =0, 1, 2, . . . }andof each other. 

S. Spilerman’s (1972a) extension of the mover-stayer model was a mixture of 

Markov processes of the above sort in -which individuals associated with the 

parameter A were assumed to occur in the total population with a frequency 

described by the Gamma density 

ke e PA 

T(a@) 
g(A) where a>0,B>0,A=0. 

Type-A individuals are considered to be non-directly observable, and all types of 

individuals are treated as having the same propensity to move among the states, 

prescribed by the matrix M. The population-level process {Z(t), t>0}, which is 

observable, then has transition probabilities given by 

= ©) 

(4.4) P(t) =| eX ™MD g(r) da 
0 

=(£)[1-M| . 
Br+t Br+t 

The choice of a gamma density in this specification is based on the ability of that 

functional form to describe a variety of unimodal curves, unimodality being a 

reasonable characterization of the frequency of occurrence of different types of 

persons, with respect to rate of movement, in heterogeneous populations (Palmer 

(1954), p. 50; Taeuber, Chiazze, and Haenszel (1968), p. 46). 

Two other mixtures of some importance for intra-generational occupational 

mobility are processes with transition probabilities governed by 

(4.5) P(t)=sI+(1—s) e®0™- 

and 

(4.6) P()=st+(1-s) | eM—Da(A) da 
0 

=sI+(1 -3( 4) [r-siom] 

Equation (4.5) is a continuous-time analog of the mover-stayer model in which 

the fraction of stayers is the same for all states, and 1/A is the expected waiting 

time between moves in the mover population. Equation (4.6) combines the 

mover-stayer model with the more general form of heterogeneity in the mover 

population which was specified in (4.4). Because this mixture adds a concentration 

of stayers to the gamma density, it is known as the spiked gamma (with vodka 

please). 

(b) A mcre general factored representation of Q. Fiom a substantive point of 

view, a principal defect of the iridividual-level description in (a) is the requirement 
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that a person’s waiting time distribution be the same in every state. It is desirable 

to eliminate this constraint and retain the flexibiiity of the full Markov model, 

since there are many instances in which rate of movement is a function of system 

state: for example, if the system states are industry categories we know that 

industries differ in their rates of employee separation (Blauner 1964, pp. 198- 

203). 

We therefore classify a person according to the diagonal matrix 

A, 0 : 
A=( ae A; =0, n't 2 oe cad 

0A, 

where 1/A; has the interpretation, “average waiting time in state i.” A type-A 

individual’s history { Y(t), t >0} is now governed by the transition matrices 

(4.7) P(s)=e"*™*, t=0 

and these individuals are viewed as occurring in the total population with a 

proportion specified by a joint probability density g(A,,...,A,). The previous 

construction of individual histories {Y(t),*>0} out of random waiting times 

To, T1, ..- and a discrete-time Markov chain {X(k), k =0, 1, 2,...} must now be 

modified by allowing the distribution of 7, to depend on the current state X(k). 

In particular, we define 

ke 

Y(t) = X(k) if } zst< ¥ 7; 

where 

(4.8) Prob (7; > t|X(0), to, X(1), 71, . .. X(k —1), te~-1, X(k) =i) 

= Prob (7, >t|X(k)=i)=e 

for 1sisr; k=0,1,2,.... 

It should be pointed out that this formulation requires more complicated estima- 

tion techniques than the simple factored representation described in the previous 

section. However, a full discussion of these issues in the context of panel studies 

lies outside the scope of the present paper. 

(c) More general waiting time distributions than exponential: Despite the 

more diverse form of heterogeneity which is formalized in (b), the increasing 

tendency of persons to remain in a particular state (occupation, geographic region, 

etc.) the longer they have been there is an empirical regularity which is not 

captured by any time-stationary Markov model. R. McGinnis (1968) refers to this 

phenomenon as cumulative inertia, and empirical evidence of its presence in 

intra-generational mobility is provided, for example, by Land (1969); Myers, 

McGinnis, and Masnick (1967); and Kuhn, Poole, Sales, and Wynn (1973). This 

phenomenon is also known in the demography literature as ‘“‘duration- 

dependence,” and a nice review of formal models which incorporate it is provided 

by Hoem (1972). 

In order to formalize duration-dependence and simultaneously classify indi- 

viduals according to rate of movement and propensity to transfer to particular 
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states, it is convenient to retain the decomposition of individual histories 

{Y(t),t>0} discussed in the previous sections. The only modification is the 

introduction of special non-exponential distributions, F;(t),1<i<r, which 

describe duration-dependent waiting times in state i. In particular, we define 

(4.9) ¥(t)=X(k) for = 1<t< y e 
i= i=( 

where 70, 71, .. . are positive random variables satisfying 

(4.10) Prob (7, >t|X(0), to, X(1), 71, ..., X(kK—-1), te-1, X(k) =i) 

= Prob (7, > t|X(k) =i) 

=1-F;(t) 1<i<r. 

To incorporate the notion of duration-dependence (or cumulative inertia) we 
restrict F;(t) to be of the form 

(4:11) F,(t)=1-—e fol (uu) du l<ix<r 

where h;(u) is a positive decreasing function such that 

| h;(u) du = +0, 
0 

The assumption that h; be decreasing implies that the longer an individual stays in 

state i, the less likely he is to move in the immediate future. In particular, the 

probability that an individual known to be in state i at time ¢ will exit from that 

state in the next df units of time is given by 

f(t) dt 
) dt=- h;(t) dt 1-Fo 

where f;(t) is the probability density corresponding to F;(t). 

The process {Y(t), t>0} defined above is a special form of semi-Markov 

process’ whose transition probabilities 

Prob (¥(t) =/| Y(0) = 7) =p,(t) l<is<r 

are the unique solutions of the system of integral equations 

p(t) =61-—F(t)]+ & { fi(s)mupij(t —s) ds. 
k=1 40 

In this equation, 

(Llifi=j 
_ 

aes " Loitix 

and ||m;,\|=M is the one-step transition matrix governing the discrete-time 

* For a rigorous mathematical discussion of the special semi-Markov construction defined by 
equations (4.9) and (4.10), see Kurtz (1971). 
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Markov chain X(k), k =0, 1, 2,... used to specify Y(f) in (4.9).° Now classifica- 

tion of an individual evolving according to a semi-Markov process would mean to 

characterize him by the family of distributions F = {F,(t), .. . , F,(t)} describing the 

waiting times in any state, and by the stochastic matrix M describing his propen- 

sity to move to particular states. 

In specifying a population-level process {Z(t), t > 0} as a mixture of this kind 

of semi-Markov process, parametric families of distributions are usually used to 

define F;(t) and then a suitable mixing distribution is defined on the parameters. 

For example, 

F(t)=1-e "2 ~~ with y,:>0,0<y2.<1 

can be expressed in the form (4.11) with 

h(u)=yiy2u"? 

and a reasonable initial choice of mixing distribution can be defined by 

v1 f Y2 ¥; Q%,,%-1 ,—Bu Y2 

| | g(u, v) dudv = | eS Bes du - | dv. 
0 40 0 I'(a@) 0 

Thus y; and y2 are treated as independent parameters with y, being gamma 

distributed and y2 being uniformly distributed on [0, 1]. This mixture specification 

is meant to be only a suggestion of a reasonable starting point for the fitting of 

semi-Markov mixtures to multi-wave panel data. A series of empirical investiga- 

tions comparing a variety of mixture models remains to be carried out. 

A final point which should be mentioned concerning the semi-Markov 

models (4.9) is the basically regenerative nature of these processes. In particular, 

individuals evolving according to (4.9)-(4.11) have an increasing propensity to 

remain in each state the longer they are there. However, once a change in state 

occurs, an individual may be much more [ikely to move again in the immediate 

future than he was before the change occurred. Although the cumulative inertia 

behavior occurs in each state separately, it need not, according to these models, 

hold throughout a career involving changes of state (i.e., there is no explicit notion 

of individual aging). This raises the question of finding alternative models to the 

above semi-Markov forraulation in which the propensity to move in the 

immediate future decreases throughout an individual’s history. This is the subject 

of the next section. 

(d) A non-time-stationary Markov model: Consider a population in which an 

individual’s history { Y(t), t >0} is defined by 

k-1 k 
(4.13) Y¥(t)\=X(k) for Y n<t<b 7, 

i=0 i=0 

w' ce {X(k), k =0, 1, 2,...}is again a discrete-time Markov chain, governed by 

The specification of semi-Markov processes in equations (4.9), (4.10), and (4.12) does not 
describe the most general process of this kind as treated in the mathematics literature. In particular, the 
original semi-Markov framework allowed for waiting time distributions that could depend on the next 
future state as well as on the current state of the process. In order to utilize models incorporating this 
kind of detail, a more ¢.tensive data base would be required than is currently available in mest 
multi-wave panel studies. Hence, considerations of parsimony have led us to restrict our attention to a 
sub-class of semi-Markov processes which requires the estimation of fewer parameters. 
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M and describing moves when they occur. 79. 7;,... are waiting times between 

moves (or decisions to possibly move), and they satisfy 

(4.14) Prob (7; > t|X(0), to, ..., X(k —1), te-1, X(k)) 

= Prob (1%, >t\ro+. .. + 7-1) 

t+(to+...+7,,_ 4) ‘ 

=exp(—| h(u) du) 
(tot...+Tk—1) 

where h(u) is positive, decreasing, and satisfies 

7 

| h(u) du= +, 
0 

The specification (4.14) implies that after each successive move, an indi- 

vidual’s propensity to remain in his new state is not only greater the longer he 

stays, but it is also greater than at any time prior to his last move. In particular, this 

formulation captures the notion of cumulative inertia throughout a career, such as 

might result from aging, and seems moe appropriate than some of the previous 

semi-Markov models for investigations of intra-generational occupational mobil- 

ity. See, in particular, Kuhn, Poole, Sales, and Wynn (1973) for some empirical 

evidence supporting this position; also see S@renson (1975) for additional details 

on this sort of formulation. 

The stochastic process specified by (4.13) and (4.14) is a special non-time- 

stationary Markov process’? where 

(4.15) Prob (Y(t) =| Y(0) =i) =p;,,(0, t) 

(§6 A(u) du)(M—I) 
=(e ije 

In principle, heterogeneous population models could be constructed from mix- 

tures of this kind of non-time-stationary model of individual behavior. However, 

the fragmentary nature of the data which is usually available in nwlti-wave panel 

studies makes judgments about the relative importance of non-stationary vs. 

heterogeneity essential if parsimonious models are to be fit to the data. In terms of 

the discussion of high diagonals in Section 3, the difficult conceptual point which 

such judgments raise is that each of the following qualitatively different interpre- 

tations is capable of accounting for that empirical regularity. 

(i) A homogeneous population described by the non-stationarity model 

(4.13) and (4.14). 
(ii) A heterogeneous population described by mixtures of stationary Markov 

models sucli as the mover-stayer extensions (4.4), (4.5), and (4.6). 

(iii) A homogeneous population described by a semi-Markov model such as 

(4.9)-(4.11). 

(iv) A heterogeneous population described by mixtures of (i) and (iti) above. 

A strategy for discriminating among alternative conceptual models, such as 

these, in a panel study is outlined in Section 6. The discussion there is designed to 

illustrate a general strategy of fitting several models to the same data, each of 

10 For a nice mathematical treatment of non-time-stationary Markov chains, see Goodman and 
Johansen (1973). 
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which emphasizes a qualitatively different behavioral pattern. Highly structured 

residuals from such models usually represent the most suggestive information 

about factors which have not been formally incorporated in a model. (The 

empirical regularity found by BKM is a simple instance of residuals from a 

base-line model being suggestive about alternative descriptions of an empirical 

process.) One of the principal research directions which this approach suggests is 

the intensive development of fitting and identification procedures for a variety of 

realistic models using limited iongitudinal information. 

4.2 Fragmentary Data 

From the outset we have emphasized the limited number of time points at 

which panel data are usually obtained. It is important for a proper understanding 

of the estimation and identification strategies discussed in Sections 5 and 6 that 

some explicit instances of longitudiy ‘ data be described, together with an 

indication of precisely what, in each instance, is meant by the phrase “‘fragmen- 

tary.” 

Example 1: Let {Y“(t), 0<t<¢*, t* = duration of the study} represent the 

history of the ith individual in a panel study (e.g., occupational career pattern, 

succession of brand preferences, etc.), and let O=t)<t,< ... <4, represent the 

times at which the waves of the panel are scheduled (i.e., the re-interview times). 

Although changes of state can occur at any time f, the observed process is 

(4.16) {Y(t,), k =0, 1, 2,..., n}, 1<i<N, 

where N = number of persons in the closed population under study. Thus, the 

transitions between sampling instants as well as their times of occurrence are not 

observed. It is because of this missing information that we refer to data of the form 

(4.16) as fragmentary.’ It should be noted that this was precisely the sampling 

situation in BKM’s study where ¢,.., — ¢; = A=3 months, i=0,1,2,.... 

Example 2: In Taeuber, et al.’s (1968) residence history study, observations 

are taken retrospectively on current residence, first and second prior residence, 

and birth place of individuals in particular age cohorts. This kind of data 

represents an instance of fragmentary information about a migration process in 

that gaps are present in the residence histories. 

Example 3: Let T‘(t) = {number of transitions by the ith individual between 

time 0 and time f}, and consider observations of the form{Y“(t,), T(t,), O<k < 

n, 1 =i =<N\}. This kind of information was obtained in the social mobility studies 

of Palmer (1954), Lipset and Bendix (1963), and in the much larger study of 

Parnes (1972). It is fragmentary due to the fact that the times of occurrence of the 

transitions are missing. 

From the perspective of estimation and identification with any of the 

mathematical models mentioned previously, the ideal situation would be to have 

complete histories of moves among states, as “ell as durations in each state, for a 

long time interval. However, because of cost considerations in conducting many 

‘t Another reason why we might consider data to be fragmentary is if the duration of the study is 
too brief for significant amounts of movement to have occurred. We do not address this issue in the 
present discussion. 
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re-interviews Over a long time span, and because of low response reliability when 

detailed retrospective questions are asked, only fragmentary data have been 

obtained in such major investigations as Blau and Duncan’s OCG1 Survey (1968), 

Hauser and Featherman’s OCG2 Survey (1973), Michigan’s Income Dynamics 

Panel, and the National Longitudinal Study of Labor Force Experience (Parnes 

Study 1972). This raises the question of what sorts of partial information to gather 

if the data are to be used to discriminate among alternative theories using formal 

mathematical models. For example, if the study concerns occupational mobility 

and the collection design is a retrospective survey, we might collect any of the 

following kinds of data: 

(a) A complete history of all jobs held and durations in the jobs. 

(b) First occupation and current occupation. 

(c) First occupation, current occupation, and number of intervening occupa- 

tions held. 

(d) First occupation, current occupation, and previous occupation (possibly 

together with duration times in each occupational state). 

Clearly, the combinations can be elaborated. What is consequential about 

this decision is that once alternative (a)—complete histories—is rejected as a 

research design, it becomes crucial as to which pieces of data one decides to 

collect. Different estimation procedures must be employed according to the kinds 

of information gathered, and some procedures will yield more efficient estimates 

of the parameters than will others. The choice of data collection strategy must also 

reflect the classes of mathematical models that a researcher intends to apply, since 

certain information which is not required to fit one model type is crucial to the 

estimation of another. 

The simplest setting in which to illustrate estimation and identification with 

fragmentary data is the fitting of continuous-time Markov chains to data of the 

form described in Example 1; that is, observations on individual’s locations at a 

few points in time. The essential steps are described in Section 5. 

5. EMBEDDABILITY AND IDENTIFICATION 

Suppose observations on a closed population have been collected at the 

evenly spaced time points tfo=0, ft), f2,...,%, where %4,;-=A>0, for k= 

0, 1,...,-—1, and assume that the number of observations on the population is 

small, say, n <8. Furthermore, consider the observations to include only informa- 

tion on current system states; namely, {Y‘?(t,),k =0,1,2,...,n} for 1<i< 

N, N = number of persons in the closed population under investigation. This is a 

standard data collection situation in mu!ti-wave panel studies (for example, BKM 

used this type of data), and it provides the simplest setting in which to illustrate 

embeddability and identification issues. 

Embeddability refers to the question of whether or not observations on an 

empirical process are compatible with the conceptual assumptions (theoretical 

structure) underlying a particular class of mathematical models (e.g., time- 

homogeneous Markov, mixture of Markov, semi-Markov). Where the answer is 

affirmative, identification procedures refer to techniques for recovering the 

particular set of structural parameters from the model class which should be 
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associated with the empirical process. Both issues are central to the analysis of 

panel data. Identification, in particular, can be difficult to accomplish due to the 

fact that qualitatively different sets of structural parameters may be consistent 

with data from evenly spaced observations. 

To fix the ideas in the simplest setting, consider fitting a continuous-time 

Markov chain with stationary transition probabilities to data of the sort described 

above. A procedure for carrying out this task consists of two »rincipal steps: 

(i) Form the stochastic matrices P(k A, 1A) with entries 

poner of persons in state i at time ioe 
(kA,1A) ny __ (who are also in state j at time /A 

n‘*4-) {number of persons in state i at time k A} 

and check that 

(5.1a) P(k,A, k2A) = P(k3A, k4A) 

for k,<k,=n; k3<kgsn with k,—k,=k,—k;, and that 

(5.1b) P(k,A, k2A) = P(k-A, 1A) P(IA, k2A) 

where 0<k,</1<k2,=n. 

Equation (5.1a) is a test of time stationarity; and (5.1b) is a primitive test of 

the Markov assumption (i.e., independence of future state from past history, given 

current state). Formal tests of this kind are described by Anderson and Goodman 

(1957) and Billingsley (1961). 

(ii) Compute 

<= -_ (5.2) = Tapa oe Pek, 1A), O<k<l<n 

and observe that if the data are compatible with a time stationary Markov model, 

then at /east one branch of the logarithm of any given matrix in the list (5.2) should 

be roughly equal fo some branch of the logarithm of any other matrix in the list. In 

addition, this common logarithm should be an intensity matrix (i.e., it should 

belong to the class Q={Q: 4; =0, q, =0 for i#j, Y;_, qj =9}). 

The process of verifying that P can be represented in the form e° for at least 

one Qe Q is a test for embeddability of the data in a continuous-time Markov 

model. Although this step is seemingly straightforward, it should be pointed out 

that some surprisingly subtle phenomena are involved in the embeddability test. 

In particular, due to the multiple valued nature of the logarithm function, it is not 

immediately apparent that one can find an effective computation algorithm to 

check for the existence of even one branch of log P which is an intensity matrix. 

Indeed, it would appear that infinitely m..1:y branches of the logarithm might have 

to be checked to decide on embeddability. 

Fortunately, however, any matrix which can be represented as e° with 

QeéQ must have eigenvalues of a rather restrictive nature. In fact it is the 

existence of sharp upper and iower bounds on the eigenvalues which lead to a 
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practical computation strategy for deciding embeddability. The explicit eigen- 

value restrictions and associated computation scheme are outlined below. How- 

ever, for a detailed discussion of this point and further indication of its role in the 

analysis of panel data, the reader should consult Singer and Spilerman (1976). 

Closely related to the problem of deciding embeddability with a finite 

number of tests is the fact that in the course of such a computation, there may be 

several branches of the logarithm of a stochastic matrix which are intensity 

matrices. Identification refers to the task of deciding which of these intensity 

arrays should be associated with the empirical process. In particular, it is possible 

to have 

(5.3) P(kA, 1A) = e!-®4: 

and 

P(kA, lA)=e"""82 =< k <I <n 

where Q, # Q, but O, € Qand Q,€ Q. (See Singer and Spilerman, 1975, 1976 for 

explicit examples of this behavior.) The phenomenon (5.3) is an instance of 

aliasing for Markov transition matrices, and it is entirely analogous to the aliasing 

of structural coefficient matrices in continuous-time econometric models (see, in 

particular, P. C. B. Phillips, 1973). In this situation, the set of underlying structural 

parameters (i.e., the unique intensity matrix which should be associated with an 

empirical process) is not identifiable. A researcher confronted with matrices such 

as Q, and Q, would either have to adjudicate between them on substantive 

grounds or collect additional data at a time which is not a multiple of the sampling 

interval A. Then the underlying transition mechanism could be identified since 

only one of the matrices (Q; or Q,) could be consistent with the non-evenly 

spaced observations. 

The computation scheme outlined below recovers all -branches of. the 

logarithm of a stochastic matrix P which are intensity matrices, provided P has 

distinct eigenvalues. This is clearly the situation in most applications. However, it 

should be noted that repeated eigenvalue matrices do play an important role in 

sensitivity analyses, and they can be associated with a continuum of intensity 

matrices (i.¢., a stochastic matrix P may be within error distance of the observed 

array P and be representable as P = e® for an uncountably infinite set of matrices 

in Q: see Singer and Spilerman (1976) and Cuthbert (1973) for details on this 

point). This raises difficult questions of both interpretation and reliability of 

estimates of structural parameters based on evenly spaced data. Extensive 

re-analyses of data from a variety of panel studies would be necessary in order to 

assess whether the possible instability described above is in fact a frequently 

occurring empirical phenomenon. 

A Computational Strategy to Decide Embeddability 

Step 1: Compute the eigenvalues of P and check whether or not they each 

satisfy 

(5.4) o(5++) <ar (lo a)=a(5-*) 
- ‘wT oO ND 
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where r = order of the matrix, and A is an eigenvalue of P. (The inequalities (5.4) 

were established by J. Runnenberg, 1962.) In particular, he used the inequalities 

of F. I. Karpelevitch (1951) 

(5.5) a{5+-) <arg(A-1)= --*) 

-—which restricts the eigenvalues, A, of an arbitrary rr stochastic matrix— 

tegether with the representation P(t) = e’? for Markov transition matrices, to 

obtain (5.4) as a restriction on the eigenvalues of e°. The shaded zone in Figure 1 

depicts the region defined by the inequalities (5.4) and exhibits a typical set of 

logarithms of the eigenvalues associated with an embeddable matrix. 

Im log A 

Re log A 
(The logaritiim of 
each eigenvalue of an 
embeddable matrix must iy 
lie inside or on the Ip 
boundary of the shaded y 
zone in the complex 
plane.) 

Figure 1 Eigenvalue restrictions for embeddable matrices 

Step 2: If all eigenvalues of P are real and positive, then their logarithms are 

real and negative and they automatically satisfy (5.4). In this situation there can be 

at most one branch of, log P in Q. To compute it—and thereby check 

embeddability—reduce P to diagonal form (i.e., represent P as P=HAH™' 

where 

A, 0 

a= (0-4) Q-A, 

and H is a nonsingular similarity transformation). Then calculate 

(5.6) log P= H log A H™' 
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log A, 

log A= log A2 

* Joga, 

If the matrix (5.6) is in Q, then P is embeddable in the unique continuous-time 

Markov model with intensity matrix given by (5.6). If (5.6) is not in Q, then P is 

simply not em'»eddable in any continuous-time Markov model. 

Step 3. If P has complex eigenvalues they must occur in conjugate pairs. For 

each such pair (A =p ed = pe "°) determine all branches of their logarithms 

which satisfy (5.4); especially, 

o(5++) <ar (lo A)sa(5--) 
2 ee ee Tp 

where r = order of the matrix P, 

6 +2k\ 
arg (log, A) =tan™' ( = 

and k specifies a branch of log, A according to 

(5.7) log, A = log p +i(0+27k); k=0, +1, +2,...0<0<7. 

Now select one of the branches for each complex conjugate pair, and compute 

log P using (5.6). Check the resulting matrix for membership in Q. Then repeat 

this calculation for all branches satisfying (5.4). The basic importance of Runnen- 

berg’s inequalities (5.4) is revealed at this step, because they guarantee that only 

finitely many branches need be checked. Furthermore, all intensity matrices 

sompatible with the data (the aliases mentioned in (5.3))‘are recovered in these 

calculations. If multiple matrices QO € Q have been found, the researcher should 

collect additional information to discriminate among them in the manner 

described in conjunction with (5.3). 

6. STRATEGIES FOR DISCRIMINATING AMONG COMPETING MODELS 

Many of the issues involved in attempting to discriminate among competing 

models can be illustrated in the relatively simple setting of testing data for 

compatibility with one of the following four classes of models: 

(i) time-stationary Markov chains 

(ii) a restricted class of mixtures of (i) 

(iii) a restricted class of non-time-stationary Markov chains 

(iv) a restricted class of semi-Markov processes. 

To fix the ideas, assume that observations 

(6.1) {Y(t,), T()}, Si sN,OSk<n 

have been collected at the evenly spaced time points 0 = fp<t,;< ... <t, where 

te+1—t, =A=(spacing between successive observations) >0; k =0,...,n-~-1; 

Y“(t,) denotes the state of the ith individual in the survey at time ¢, ; and T“(t,) 
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equals the total number of transitions by the ith individual in the time interval 

(0, t,). This is precisely the data collection situation described in Example 3 of 

Section 4.2. 

Now introduce models in which individual histories are represented in the 

form 

(6.2) Y(t)= X(T(t)), t=0 

where X(k) is a discrete-time Markov chain with stationary transition prob- 

abilities having one-step transition matrix M, and T(t) is one of the four kinds of 

stochastic processes listed below. 

(A) a time-stationary Poisson process with parameter y >0 [special case of 

(i)] 
(B) a mixture of (A) [special case of (ii)] 

(C) ancn-time-stationary Poisson process with expected number of jumps 

in the time interval (st) given by {{h(u) du where h is a continuous, 

positive, decreasing function such that {> h(u) du = +00 [special case of 

(iii)] 
(D) a renewal process defined by 

n—1 
T(t) = max {n: Y n<th if T)> St 

i=0 

T(t)=0 if To>>t 

where {7;};-o 1,.. are independent identically distributed positive random 

variables such that 

Prob {7; > t} = e Soh(u) du 

and h satisfies the same hypotheses as in (C) [special case of (iv)]. 

In each of these models mobility between states is governed by a single 

stochastic matrix M. The models differ only in the assumptions which are made 

about the waiting times between moves. It should also be observed that the 

representation (6.2) provides an alternative description of some of the models 

presented in Sections 4.1 a, c, and d. 

In particuiar, when T(f) is a time-stationary Poisson process with parameter 

y>0 (model A), then X(T(t)) is simply the time-stationary Markov chain 

described in Section 4.1a where the intensity matrix Q has the factored represen- 

tation Q = y(M—J). The advantage of the representation (6.2) in the present 

context (i.e., with fragmentary data of the special form (6.1)) is that it explicitly 

describes the relationship between the observable quantities (Y(t;), T(t;)), i= 

0,1,2,...,m and the non-directly observable process {X(k), k =0, 1, 2,...}. 

The latter process describes transitions when they occur, and is governed by the 

matrix of structural parameters M. 

When 7(f) is a mixture of time-stationary Poisson processes (model B), then 

X(T(t)) can be any one of the mixtures (4.4)-(4.6) depending on the choice of 

mixing distribution. Population heterogeneity is introduced only through a clas- 

sification of persons according to their rate of movement, and T(t) describes the 
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number of moves by a type-y individual. Such individuals are assumed to occur in 

the total population with a probability specified by the mixing distribution. 

When 7(t) is a non-stationary Poisson process (model C), X(7(t)) is the 

non-stationary Markov chain constructed in Section (4.1d). The following intui- 

tive description is intended to clarify the manner in which this kind of process 

evolves. 

Consider a homogeneous population in which an individual starting in state i 

at time zero stays there fo~ a random length of time 7, with 

Prob (7, >t) =e 6) a, 

The assumption that h be decreasing implies that the longer an individual stays in 

state i, the less likely he is to move in the immediate future. At the end of the initial 

waiting time, the individual moves to state j with probability m,;. Then he stays in 

his new state for a random length of time +, whose distribution depends on 7; 
according to 

Prob (t2>t\|r, = s) = ets hu) du 

Since h is decreasing, the propensity of the individual to remain in this new state is 

not only greater the longer he stays, but it is also greater than at any time prior to 

his first move. At time 7,+72, the individual moves again eoennding to M, and 

wai’s there a length of time-7, governed by 

Prob (73>¢t\7; + T2 = s) = eos hw) du 

This process is repeated, and with each change of state the individual has less and 

less propensity to move than at any previous time. 

Finally, we consider processes of the form X(T(t)) where T(t) is a renewal 

process (model D). With this specification, X(T(t)) is a special semi-Markov 

process as defined in Section 4.1c. In order to clarify the manner by which these 

processes evolve, consider a homogeneous population in which an individual’s 

initial move is regulated exactly as in the non-stationary Markov model described 

above. However, his waiting time 7, is assumed to be independent of 7; and 

governed by 

Prob (7, >t) =e oh 4, 

After each successive move, the individual’s new waiting time is governed by the 

same probability law as 7, and 72. The assumption that h is decreasing still implies 

that the longer the individual remains in a particular state the less likely he is to 

move in the immediate future. However, in contrast to the non-stationary Markov 

model, each time a move is made the propensity to move agai: starts over at a 

high value and then decreases. In particular, the continual decrease in propensity 

of the non-stationary Markov model no longer holds for the present semi-Markov 

processes. Thus, while the former process may be identified with “aging of an 

individual,” the latter is akin to “cumulative inertia in an occupation,” as 

described by McGinnis (1968). 

In attempting to identify which of the above four kinds of models—if any—is 

compatible with data of the form (6.1), the following strategy may be utilized. 
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Figure 2 Cumulative number of moves versus ¢ for data consistent with models (A), (B), and ( D)* 

* The cross above t; reports the median number of moves by all persons in the panel study during 
the time interval (0, ¢;). 

Plot cumulative number of moves vs. f and check whether this is approxi- 

mately linear (Figure 2) or concave downward (Figure 3). It is the case that models 

(A) and (B) are consistent w:th the linear picture where the principal trend is 

described by a regression line trirough the origin. Model (D) is consistent with the 

linear picture but with the main trend—(away from t = 0)—described by a straight 

line having a possibly non-zero intercept. Only model (C) is consistent with a 

pattern of the form described by Figure 3. 

Number 
of moves 
in the 
interval & 
(0, t) 

ry 

line fitted to medians 
3, aa of the empirical 

distributions; consistent 
& with model (C) 

T 2. T 
th bt ft; t 

Figure 3. Cumulative number of moves versus f for data consistent with model (C)* 

* The cross above t; reports the median number of moves by all persons in the panel study during 
the time interval (0, ¢;). 
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If the empirical picture corresponds to Figure 2, then the slope, b, of a straight 

line fitted to the linear pattern would have the following alternative interpreta- 

tions on the basis of the above data: 

(1) b= y=time-homogeneous Poisson parameter 

(2) \f y du(y)=6 for the mixture of Poisson models” 

3) b= 1 ea 1 

ee Sm \o (ce **™ *) dt (expected waiting time between 

moves in a renewal process) 

If this linear picture is observed, we would solve—using numerical inversion 

formulas—the following equations for M: 

(1) PO, t,) =e", 

Call the solution M;; it corresponds to model (A). 

@ 

(2) P(0,t,) -| et™M—D du (y), 
0 

Call the solution M}{; it corresponds to model (B). 

(3) PO, n)= 
n 

(Fi, (t1) — Fn+i(t1))M". 
0 1018 

Call the solution M7; it corresponds to model (D). (Note: F,,(t) denotes the n-fold 

convolution of the waiting time distribution F(t) = 1 —e fo 4 with itself.) 

Now check whether the M-matrix obtained in each case is a bonafide 

stochastic matrix. This is really an embeddability test for all three model types. If 

any one of the above calculations yields a matrix which is not stochastic then that 

model is inconsistent with the data P(0, t,). If one or more of these calculations 

yields a stochastic matrix, then we test its ability to predict the observed matrices 

P(O, t2), P(0, ts)... using the appropriate equation. In particular, prepare tables 

of the form 

> (1) PO,t)—e2" BO, t,)—e8™-,... 

fe) co 

e's? duly), PO, )-| e's? duly), ... 
0 

(2') PO, )-| 

3’) PO, t.)—¥ (Fate) — Fasi(t) (M", 

P(O, ts) —¥ [Fa(ts)—Fasi(ts) MP)", . .. 

which represent residuals of observed matrices from predictions based on models 

(A), (B), and (D), respectively. One instance of the informative nature of such 

12 When the density function '(y) exists, this expression reduces to the familiar formula for a 
weighted average, [> yu'(y) dy. By the text expression, however, we mean integration with respect to 
a general probability measure. 
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comparisons is the fact that many data sets reveal a discrepancy in comparison (1’) 

in that the diagonal entries in the observed matrices P(0, t2), P(0, fs), ..., etc., are 

substantially larger than the time-homogeneous Markov predictions. Both of the 

model classes (B) and (D) can account for this kind of discrepancy, despite the fact 

that they have very different substantive interpretations. Further discrimination 

requires a more detailed consideration—on both substantive and numerical 

grounds—of the residual matrices. 

Finally, if the concave picture, Figure 3, occurs, then prepare the compari- 

sons 

PO tp) — eh h(u) duyim,,—D PO ts) — phi h(u) duyiM,,—D 

where M, is a solution of the equation 

PO t)= e (Sol h(u) du)(M—D) 

Sharp discrepancies here might be revealing about alternative classes of models 

which should be added to the original list as candidates to describe the empirical 

process. 

We emphasize that the preceding discussion is by no means complete, and is 

designed only to communicate to the reader, in concise form, the flavor of the sorts 

of considerations which seem appropriate for the analysis of multi-wave panel 

data. 

7. CONCLUSIONS 

We have described a number of issues which arise in fitting models of 

distributional change to fragmentary data, and in attempting to discriminate 

among alternative structures fitted to the same fragmentary data. The univariate 

Markov framework has been applied to advantage in the physical sciences in 

situations where the notion of population heterogeneity is not especially perti- 

nent, and where the number of observations in time available to a researcher is 

reasonably large. However, both of these factors are crucial considerations in 

modeling social phenomena, and we have therefore focused on some variants of 

the univariate Markov framework that were developed for the expressed purpose 

of incorporating assumptions about the nature of social processes into mathemati- 

cal models. 

There are additional important issues, closely related to the ones we have 

discussed, which must be addressed if a routine methodology is to be developed 

regarding the applicatiun of these model types to social processes. These issues 

have not been considered in the present review because they are largely unde- 

veloped research areas. 

(i) The introduction of substantive theories into Markov models and their 

variants via restrictions on the structural parameters, such as by prohibiting 

certain transitions (e.g., occupation or industry shifts) from occurring directly. 

Some exploratory work on this issue may be found in Coleman (1964a, 1964b). 

(ii) Strategies for sensitivity analyses to assess the nature of the dependence 

of parameter estimates on small perturbations in the data. This topic is discussed 
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within the context of time-stationary Markov models in Singer and Spilerman 

(1976), but must be extended to other model types. 

(iii) Specification of formal error structures, and the development of tech- 

niques for setting confidence limits on parameter estimates which derive from 

fragmentary data. 

(iv) The specification of data collection designs for panel studies which will 

facilitate discrimination among several models fitted to the same fragmentary 

data. This should include a detailed consideration of the reliability of retrospec- 

tive interrogation versus the cost and time delays attendant upon reinterview in a 

panel study. Furthermore, an investigation of the optimal frequency of reinter- 

view in a panel study is required in order to optimize the amount of useful 

information about change collected per research dollar. 

Columbia University 

University of Wisconsin 
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