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Annals of Economic and Social Measurement, 5/4, 1976 

THE EVALUATION OF RESULTS FROM TRUNCATED SAMPLES: 

THE NEW JERSEY INCOME MAINTENANCE EXPERIMENT 

BY JERRY A. HAUSMAN AND Davip A. WisE* 

Estimates of the effects of tax and income guarantee values on hours worked by white males in the New 
Jersey income maintenance experiment are presented after developing a procedure to take explicit account 
of the “truncating” sampling procedure used to select participants in the experiment. The estimated effects 
of an income maintenance scheme like that imposed by the experiment are substantially larger than those 
obtained by other investigators. 

Two models are developed. The first deals with one endogenous variable, annual earnings. Our 
estimates reveal a negative experimental effect of about 6 percent on earnings. They alse lead to an 
estimate of the proportion of variation in income due to “permanent’’ factors of about 86 percent. This 
means that even if one were to use only experimental data, the truncation in the first period would lead to 
parameizr estimates with large bias. The second model decomposes earnings into two endogenous 
variables—wages and hours worked. Our estimates reveal an elasticity of hours worked with respect to the 
wage rate, or the tax rate, of about 14 percent, and with respect to non-wage income, or the income 
guarantee, about 2 percent. Because of the truncation, other investigators who did not correct for it often 
found a negative wage coefficient in equations similar to ours. These coefficients although small, suggest 
that for persons who elect to participate in an income maintenance scheme the effect on hours worked 
could be substantial, possibly as high as 16 or 17 percent. It is of interest that the results were surprisingly 
close to those obtained using pre-experimental observations only. 

The oft-touted power of controlled experiments derives from their theoretical 

ability to isolate the effects of specific actions, treatments, or more general 

policies. This theoretical ability is based on the assumption of careful randomiza- 

tion. Randomization, however, may be difficult to realize in practice. Retreat from 

such an optimal state may result from consideration of cost, convenience, techni- 

cal expertise, legal constraints, ethical bounds, or any number of other compelling 

reasons. In some cases, such factors lead to rather well defined deviations from 

random selection and assignment. The primary limit on randomization in the New 

Jersey Negative Income Tax Experiment, for example, was the restriction of 

participation in the experiment to families who earned less than one-and-one-half 

times the poverty level. That is, participants had to have been below this earnings 

limit in the year just before the experiment began. Although not a hindrance to 

some uses of the experimenta! data, this “truncation” does hamper their applica- 

bility for others. For example, any uses of the New Jersey data that treat earnings 

or components of earnings—hours and wages—as endogenous variables, are 

affected by the truncation. This is true of the other income maintenance experi- 

ments as well. 

* The research reported herein was performed pursuant to a grant from the Department of 
Health, Education, and Welfare, Washington, D.C. The opinions and conclusions expressed herein 
are solely those of the authors, and should not be construed as representing the opinion or policy of any 
agency of the United States government. 

The authors were supported by the above grant through MATHEMATICA, to whose staff we 
owe a considerable debt for assistance in the work. In particular, we thank Francis Drevers for helping 
to bring together the data used in the study. Several members of the staff, including R. Hollister, C. 
Metca!f, R. Moffitt, and K. Kehrer, provided helpful comments. Neil Goldman at Harvard provided 
valuable aid in checking our mathematical derivations. Wendy Gelberg at a: vard drew the graphs 
and typed the manuscript. 
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The problem and a method of “correcting” for it were discussed by Hausman 

and Wise in an earlier paper [1975]. A straightforward maximum likelihood 

procedure was proposed. The approach suggested in that paper, however, is 

strictly applicable only to observations that serve as a basis for truncation. In the 

New Jersey experiment, for example, persons were selected for the experiment on 

the basis of observations pertaining to the year prior to the experiment. This 

information was used to “truncate”’ the sample. Our earlier procedure is directly 

applicable to data for this year. We would like a procedure for dealing with 

information collected during the course of the experiment. The experiment lasted 

for three years. Once selected for the experiment, there was no further restriction 

on earnings. Family income could have been three times the poverty level in any of 

the three years of the experiment, for example, as long as it was less than one-and- 

one-half times the poverty level the year prior to the experiment. In fact, because 

earnings are so highly correlated from one year to the next, the effect of the 

truncation was almost as strong fer pre-experimental as for experimental data. 

This means that it is not possible to avoid the truncation problem by using only 

experimental data. We propose in this paper a method for treating experimental 

data, given the procedure used to select participants. As in our previous paper, we 

will “carry along” an empirical example to demonstrate the technique. 

The first section deals with the case of a single endogenous variable observed 

before the experiment began as well as during the experiment. Our example will 

be annual earnings. We are able to estimate, in particular, the average effect of the 

“treatment” on earnings. The second section extends the methodology to a 

simultaneous equation situation with two endogenous variables observed before 

and during the course of the experiment. These variables are the components of 

earnings, the hourly wage and the number of hours worked. This example is 

particularly relevant to the New Jersey and other income maintenance experi- 

ments. The primary goal of all of them is to assess the impact on hours worked or 

labor supply of various negative income tax schemes. Other methodologies (e.g., 

Hall [1975]) allow estimation of total experimental effects on hours worked, but 

do not provide reasonable estimates of income and substitution effects. Both are 

inputs into reliable estimates of the results and cost of negative income tax plans. 

To separate the experimental effect into income and substitution components 

requires a structural model. Such separation is important for evaluating a broad 

range of possible plans. The experiment allowed for eight possible income 

guarantee—marginal tax rate combinations. There are, of course, many other 

possibilities. One might suppose that relevant parameters could simply be esti- 

mated from non-experimental observations, and they have been; but under 

existing tax laws, no observations of low income families would be observed with 

the high marginal tax rates (as high as 70 percent) imposed in the experiment. The 

third section contains a short summary. Finally, computational considerations are 

discussed in an appendix. 

1. ASINGLE ENDOGENOUS VARIABLE: EARNINGS 

To aid in exposition, we will begin by describing the situation where the 

analysis is restricted to pre-experimental data. These paragraphs and graphs are 
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borrowed from our previous work. We will then extend this heuristic discussion to 

the case where both pre-experimental and experimental observations are consi- 

derec. This latter situation is then described in a more formal manner. 

Assume that in the population the relationship between earnings and 

exogenous variables is of the form 

(1.1) Y,=XBte;, 

where Y is earnings; X is a vector of exogenous variables including education, 

intelligence, etc. . . . ; i indexes individuals; B is a vector of parameters; and ¢ is a 

disturbance term with expected value zero and variance a” for each individual. 

Thus Y; is distributed normally with mean X,8 and variance a”, N(X,B, a”). 

The sample we have is not, however, randomly drawn from the population, 

nor from some segment of the population defined by values of the exogenous 

variables, and therefore is not representative of it. Families were selected from an 

otherwise eligible population in four cities in New Jersey and Pennsylvania. Those 

families who were subsequently found to have incomes during the year preceding 

‘ the experiment, greater than one and one-half times the 1967 poverty line were 

eliminated from the study. The poverty line is dependent on family size; therefore 

the “cut-off” point varied from family to family. The truncation thus takes the 

form, 

(1.2) Y,<L, 

where L; depends on family size. [The reader will note that equation (1) pertains 

to individual income, while the truncation is based on family income. For the time 

being, we will act as if the two were the same and return to the problem when 

discussing the empirical example.] If we substitute for Y;, the final selection 

criterion for families considered for inclusion in the experiment could be stated as 

follows: 

(1.3) Y, = XB + €; = L;, included 

Y, = XB + €; > L;, excluded 

where Y; pertains to earnings during the year prior to the experiment. This 

formulation affords an explicit comparison with the “Tobit” situation. We discus- 

sed it in our earlier paper, but it may warrant re-emphasis here. In the Tobit case 

L; is equal to some L for all i (although this is not logically necessary), and Y; 

would be equal to L for Y; greater than L. Here we can think of a measuring 

device that misses all observations above L, rather than assigning them the value 

L. Both statistical modeis, however, are members of a wider class of models 

associated with truncated distributions. 

To fix ideas, consider the following graph, where the solid line indicates the 

“average” relation between education and earnings and the dots represent the 

distribution of earnings around this mean for selected values of education. 

Assume that family size is the same for each observation. All individuals with 

earnings above a given level L, indicated by the horizontal line would be 

eliminated from the experiment. In estimating the effect of education on earnings, 

using pre-experimental data, we would observe only the points below the limit 
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(circled) and would thus tend to underestimate the effect of education using 

ordinary least squares. In other words, the sample selection procedure introduces 

correlation between right-hand variables and the error term, which we know leads 

to biased parameter estimates. The estimated regression line is dashed in the 

graph. From the graph, it can be seen that the magnitude of the bias depends on L, 

B, o”, and the values of X,. 

gaa 

Earnings Estimated Line 

iL. 

Education 

Figure 1 

Thus for any given value of education (or in general X), the observed 

distribution of earnings during the year prior to the experiment can be thought of 

as truncated at L, where the “extent” of the truncation depends on the level of 

education. Graphically, for a given X; the distribution of Y; may look as foliows, 

with the right-hand tail eliminated. 

Figure 2 

Now assume that we observe earnings prior to and during the experiment. 

We would like to use both. Let prior observations be indexed by 1 and those 

during the experiment by 2. Then 

(1.4) Y,,=X,P8+e,; and 

Y2; = X28 + €2:, 

where €, and €, are jointly normal with zero expected values. Observations are 
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available, however, only for persons for whom Y), was less than or equal to L;. For 

given X,; and X>,, the joint distribution of Y,,; and Y>; may look like that in Figure 

3. The ellipses represent equal probability contours and X,8 and X,f are the 

means in the population of Y, and Y, respectively. The truncation on earnings in 

period 1 precludes observation of points to the right of L;. The idea is analogous to 

that depicted in Figure 2 except that we now need to consider the bivariate 

distribution of Y, and Y>. 

Figure 3 

More formally, we need to find the joint distribution of Y,; and Y, for values 

of Y, less than or equal to L. Let f be their joint density function. Assume that in 

the population, given X,; and X,;, Y,; and Y>; are jointly normal with mean 

vector (X,,8, X28) and covariance matrix 2 given by, 

012 Cc 
(1.5) z=[% “Yl. 

Then, 

0 if Y,,>L, and 

(1.6) (Yi Yoi) = HY ii, Yi) if Y,,<Li- 

Pr (Yj; =L;) 

In this formulation, ¢(Y,;, Y2;) is a bivariate normal density function with the 

mean vector and the covariance matrix shown above. Note that the probability 

that Yj, is less than or equal to L; can be written as ®[(L; — X,,8)/a]. We can now 

write the likelihood function for N observations on Y, and Y, as, 

we N +f HY, Y2i) (1.7) E= fw Ya)= Ml a.—-X.p)/e1 
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By writing 6(Y;;, Y2;) as the product of the marginal distribution vt } ,, and the 

conditional distribution of Y>; given Y,;, we can replace it with, 

. Y1;—XB\ .( Yo —pY i — (X01 — Xu) B\ (1 (1.8) #(Yi;, ¥2;)= 4 1 - UB) 4 2 Pri ( 2 Pp. wP)( 1 
e ) ; 

aVv1—p’ iXNe/ 

/ 1 

(a=) \ ow 1 —p > 

where #(-) represents a unit normal density function and pf is the correlation 

coefficient between Y, and Y>. 

We can write the log-likelihood function using (1.7) «>, 

(1.9) ¢=>inD 

is : ¥ 30) gate 
—5 L U%ui- XB, Yoi— X28) = (YA 8 83: - Agpey 

“#i=1 

N 

— Y n®(L;-X;B)/o], 
i=1 

where D is the determinant of =~’, or, taking advants yf the lanoiusp (1.8), 

as 

(1.10) L=-N1n 2a-N In (a*V1—p’) 

N N 

—2 © (¥u-Xw)/oF— Y In O[(L;—X,,8)/o] 
=1 i=1 

=t py | ((% —pYyi)— (Xa; ~pX,,)B) / (ov 1- P| . 
i=1 

This is the form that we will use for estimation. 

We will find the values of B, a”, and p that maximize this function for a given 

specification of (1.4). (The maximization technique is discussed in the appendix.) 

Recall that p is an estimate of the proportion of the variation in Y, given_X, that 

results from “permanent” versus “transitory” com or nts of the random term e. 

If we write €;, aS £;, = u; + n,, Where t indexes time. and u is an individual specific 

effect; and we assume that E(u,n;,) = 0 and E(%.,;: ;,)=:0 for r# t’, then p is given 

by, 
p=a,/(o,t+e) 

An Example: One Endogenous Variable 

We will present an example analogous to the one used in our previous work. 

That example is extended to handle observations for two time periods. In 

addition, while the data for the earlier example covered both whites and non- 

whites, the data used in this case will be restricted to whites.’ 

The technique is demonstrated with empirica! estimates of the effect of 

education and “intelligence,” as well as the experimenta! “treatment,” on the 

' The attrition rate for blacks was considerably higher than for whites. See Peck in vol. 2, pt. c, 
chap. 1 of Watts and Rees [1974]. 
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earnings of workers in “low-level” jobs with relatively little education. The mean 

level of education of persons in the sample is 8.76 years. They are distributed 

among occupations (census classifications) as follows: 2.4 percent are profes- 

sional, technical, and kindred workers, or managers, officials and proprietors; 6.1 

percent are clerical or sales workers; 63.1 percent craftsmen, foremen, operatives, 

and kindred workers; 10.8 percent private household or service workers; and 17.6 

percent are laborers. The experimental treatment consisted of marginal tax rates 

and income guarantees assigned to the “experimental’”’ group, but not to “con- 

trols.” There were eight different tax rate guarantee level combinations. In this 

example we will test only for an “experimental effect,” and will not distinguish 

between the different combinations. In the simultaneous equation example 

below, however, we will take account of differences across individuals in marginal 

tax rates and income guarantees or non-wage income. 

The sample is comprised of male heads of households who participated in the 

negative income tax experiment, and for whom relevant information was availa- 

ble. The truncation point for each observation was taken to be one and one-half 

times the appropriate poverty level, less any family income other than the 

earnings of the male head. If the male earned more than this, given other family 

income, the observation would not appear in the sample. 

The variables used are defined as follows: 

Earnings in period 1: gross annual wage income during the year prior to the 

experiment. (Average reported earnings per week times the number of weeks 

worked.) Depending on the city of residence, this year ended between August 

1968 and August 1969. 

Earnings in period 2. average of weekly earnings over twelve weeks (one in 

each quarter) during the experiment, multiplied by the number of weeks worked 

in the previous period. 

Education: education in years. 

“TQ”: the number of correct answers, out of 50 questions, on the Ammons 

and Ammons Quick Test. 

Age: age in years. 

Experience : age, minus the age at which the individual reported obtaining his 

first full-time job. 

Union: takes the value one if the individual reported being a member of a 

union, zero otherwise. 

Training: months of training of a vocational nature. 

Illness: takes the value one if the individual reported that he had an illness 

that limited his workirg. 

Time: takes the value one for the experimental period and zero for the 

pre-experimental period. 

Experimental effect: takes the value one in period 2 if the individual is in the 

experimental group (not a control), and zero otherwise. 

The following variables are not used in the single endogenous variable 

example, but are used in the simultaneous equation example below. For com- 

pleteness, they are defined here. 

Hours in period 1: earnings during the year prior to the experiment, divided 

by an estimated wage. The wage was estimated by the average of earnings, divided 
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by hours worked during the weeks prior to the second through fifth quarterly 

interviews. Only those weeks for which positive earnings were reported were used 

in the average. 

Hours in period 2: average of hours worked over twelve weeks (one in each 

quarter) during the experiment, multiplied by the number of weeks worked in the 

previous period. 

Wage in period 1: average of earnings divided by hours worked during the 

weeks prior to the second through fifth qué. ce: ‘y interviews. Only those weeks for 

which positive earnings were reported we:e used in the average. 

Wage in period 2: same as above excep it st data for twelve quarters were 

used. 

Family size: the number of persons in the family. 

Coefficient estimates are presented in Table 1. The ‘epeindent variable is the 

logarithm of earnings. The independent variables dic entered linearly (not in 

logarithm form). The maximum likelihood procedure estimates B, a”, and p in 

equation (1.10), where the logarithm of earnings i: Y. 

Comparable results pertaining to the pre-e».perimental period only were 

discussed in our previous work. The primary resuit was that least squares 

coefficient estimates were found to be strongly biased toward zero in comparisoa 

with consistent estimates analogous to these. Here we will draw attention only to 

those estimates that pertain to the results of ‘ie experiment. The estimated 

experimental effect on earnings is 6 percent anc negative. It is interesting to note 

that the average change in the logarithm «: carnngs of the controls was 0.190 and 

for the experimental group, 0.134.” The dif -:e we of 0.056 is quite close to the 

difference estimated as the experimenta: ‘fect, 0.058, in the “behavioral” 

equation. This suggests that the two gronys w-re in fact selected randomly with 

respect to the variables in the equation. This ‘.. -«: course, what the experimental 

randomization was designed to do. 

The variation in earnings, given tl.» -n@.zpender? va. .ables controlled for, due 

to “permanent” versus “transitory” fact.:s, i <¢ maced by p at almost 86 

percent. This strongly suggests that the bias or !:ast .quaves estimates found in 

results based on the pre-experimental dats would persist even if experimental 

data only were used. 

Finally, the positive time effect of about 3 pe cont may be thought of as 

representing the effect of inflation, as weil as ~:uer factocs which may have 

influenced the trend in earnings of both controls sc experimentals from the first 

period to the second. 

2. Two ENDOGENOUS VARIABLES: W47;s AND HouRS 

The primary geal of the New Jersey experiment—and the goal of others, 

some still in process—was to determine the effect of “income maintenance” 

schemes on labor supply. Thus we would like to isolate the effect of the experi- 

mental programs on labor supply, while at the same time taking account of the 

? The average over both groups of the logarithm of earnings in the year prjor to the experiment 
was 8.275. It was 8.431 for the experimental period. 
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TABLE 1 

ONE ENDOGENOUS VARIABLE, RESULTS* 

Estimated Coefficient 
Variable (Standard Error) 

Constant 8.5778 
: (0.0343) 

Education 0.0343 
(0.0198) 

1Q 0.0042 
(0.0043) 

Training 0.0132 
(0.0109) 

Union 0.3248 
(0.1843) 

Illness —0.5497 
(0.2240) 

Age < 35 0.0209 
(0.0197) 

Age 35 to 45 0.0064 
(0.0058) 

Age > 45 —0.0317 
(0.0444) 

Time 0.0274 
(0.0185) 

Experimental Effect —0.0579 
(0.0305) 

Number of Individuals = 276 
Number of Experimentals = 156 S.E.E. = 6 =0:589 
Number of Controls = 120 Correlation Coefficient 6 = 0.859 
Number of Observations = 276 - 2 = 552 

* The three age variables beginning with the variable corresponding to age <35 are 
defined as follows: 

_ | Age, if Age=35 

‘35, if Age >35 

0, if Age =35 

A2= 4 Age—35, if 35<Age=45 

45-35, if Age >45 

_ )0,if Age =45 

: Age —45, if Age >45 

truncation introduced by the selection procedure. In addition, even if we were 

only interested in using the data to investigate the effect of “academic variables” 

on earnings, the above approach would have at least two shortcomings. 

it obscures the process by which earnings are generated; they result from a 

choice of hours of work made by the individual together with the hourly wage that 

he commands in the market. And, when investigating the relationship between 

personal attributes and “productivity” what we really would like to know is the 

wage per unit of time that an individual commands in the market, his “marginal 
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product.” This relationship is partly hidden when we look only at annual earnings. 

In addition, the variance of the error term in earnings, the product of hours and a 

wage rate, is larger than that of a wage equation. Thus the accuracy with which we 

can estimate the effect of I.Q., for example, should be greater if we break the 

relationship into its component parts. It would be possible in general to consider a 

wage equation separately, although at some expense ‘> efficiency, given the 

simultaneous nature of the wage-hour relationship. But in our particular case the 

truncation point is based on annual earnings, so that if we consider hourly wage we 

must also consider hours worked. 

Recall that Y = H - W, where H is hours of work and W is the hourly wage. 

Thus In Y = In H+In W. Assume that in the population In W and In H are jointly 

distributed with, 

(2.1) In W.,= X10 + €1; 

In H,; =In W,B+2Z,,0a+73; 

In WwW; = X50 + €5; 

Ii 5; = In WB +250 + 12i> 

where X and Z are vectors of exogenous variables, 5 and a vectors of parameters, 

and £B is a scalar parameter. We will let the hours equation depend on the wage 

rate net of taxes in practice. To simplify exposition, however, we will proceed with 

this model for the time being and make the appropriate alterations below. 

We assume that £,, 7), €2, and 2 are jointly normal with covariance matrix 

given by, 

&1 un E2 N2 
- 

Tee Cen Oe yer Cesn2 &1 

| 
9 ¥ Osn Fan | Fernz2 Fnim| 11 

(2.2) oo | Po ae ae to ee Se 
Geyer Fen | Cee Cen E2 

| 
[Ferm Fn n2 | Ten Onn | No 

Note that variances aiid covariances in the two periods are assumed equal (the 

upper left and lower © ght two-by-two matrices). We also assume that the 

covariance between € d 7» is equal to the covariance between ¢€, and 7. 

For some purposes, it is inforraative to think of the random terms in (2.1), and 

the corresponding variances ana covariances, as having both “permanent” and 

“transitory” components. The relevant components of variance can in fact be 

identified, given estimates of tlie parameters in (2.1). To see this, let 

(2.3) Ey =U te; 

My =O, +N; 

£2; = Uj + er; 

Na = Vj + Np; 
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a ee eee 7 _ ie where o2, = 02,5 Tn, =COnz» ANA Oye = Ton = eye. = Tne, = 0. Then, 

2 2 
(2.4) Ore =F, +e 

2 2 
Tun = Fo tOn 

Fen — Fuv + Fen 

2 
Ceye2 Tu 

2 
Omn Fv 

Cesena = Tum 

and we see that, given the above restrictions, the parameters of the variance 

components formulation are identified. 

To estimate the parameter of (2.1) and (2.2), we will use the reduced 

form of (2.1), given by: 

(2.5) In W,=X,6+e, 

In H,=X,5-B+Z,a+e,B +n, 

In W,= X,6+€, 

In H, = X26 -B+Z,a+€28 + n>. 

The reduced form covariance matrix is given by, 

@ 11 12) @i3 Wi4 

@12 @22!@14 @ 0, | 
(2.6) Q= |--2--#4--4--*_| = -|§ te 

@i3° Wig! Mi; Wi2 DQ, | , 
| 

@i4 W241 M12 W225 

where, 

Q -| o o-B +Oun 
be 2 2}> 

O.B+0., T-B+0.,2B +0, 

and 

ants Cua + Ocem 0, -| 1 ; 1£2 177 

Tere2P + Oem Fere28 +O e.n22B + Tn m 

Note that there are only six unknown 4° earwaes in the covariance matrix, giving 

it a rather simple structure. 

The joint density function for the logarithms of wages and hours in the two 

periods, analogous to the development in section 1, is given by, 

0, if In W,,;+In H,; >In L;, and 

2-7) f=) gan Wy, In Hy,; In We, In Hp,) 

| Pr(ln W,,;+In H,; =In L;) 

Here, ¢ is a multivariate normal density function with mean vector given by the 

non-random terms in equations (2.5) and covariance matrix 1, shown in (2.6). To 
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evaluate the denominator in (2.7), recall that In W,; and In H,; are distributed 

bivariate normal with mean vector (X,6, X,58 + Z,a) and covariance matrix 0),. 

Then, the distribution of In W,,;+1In Hj; is given by 

(2.8) In W,,+1n Ai; ~N(X,6 +X,6B +Z,a; @i1 + @ o> +29). 

The likelihood function for N observations is thus, 

N =: 
(2.9) L= il o;(- )/P{d;], 

where 

4 -)= A(in W,,, In H,;; In W2,, ln H);), 

d, = (In 1, —(X,8 + X16B + Z,,a))/Vo,; + @22+2@42, 

and the log-likelihood function by, 

(2.10) f = y in b,(-)— x In ®[d;]. 

If we let, 

V:;.=In Wi, -— X16, 

Vi2, = In Hy, — X68 — Z,,0, 

V21; =In W,, — X26, 

V22; = In Ap; — X2,6B — Zp;0, 

and 

Vi =(Viiis Viz W21i, Vr2:), 

the log-likelihood function is given by 

N N N 
(2.11) 2=7In D-+¥ V,Q'V!i- ¥ ind]. 

i=1 i=1 

If, as in section i, we take advantage of the fact that d;( - ) can be written as the 

product of marginal and conditional density functions—both bivariate in this case, 

we can write (2.11) as, 

(2.12) ¢ =n (Det 0')+™ In (Det B ') 

N N 

—3 d V7! Vie > In D[d; | 
i=1 i=1 

N 

—3 ¥ (V23- CV) B'(V25 -— CV 2, 
i=1 

where B a Q, -02,0, ', oy = 0,9; ', Vi; = ( V; lis Vi2:)5 and V>; = (V1: V>;). 

We have chosen to use this form for estimation of the parameters of the model—6, 
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B, a, and the six parameters in the covariance matrix (2.2). The precise procedure 

used is discussed more fully in the appendix. We proceed now to an empirical 

example. 

An Example: Two Endogenous Variables 

Before presenting empirical estimates, we need to digress somewhat to 

describe more precisely the “world” that generated our data, and the concomitant 

problems of estimation. The discussion is directed in particular to the specification 

of the hours worked equations in (2.5). We will consider first the specification of 

these equations for “‘non-experimentals”’ (all participants before the experiment 

began—period 1—and controls during the experiment—period 2), and related 

estimation problems. The specification suggested for this case will then be 

extended to include the “experimental” group. 

Consider the graph in Figure 4, where the solid line represents an “after-tax” 

budget constraint and the dotted line the “pre-tax” constraint. Assume that, faced 

with the after-tax budget constraint, an individual chooses to work h hours. 

Assume that this point represents a tangency between the budget constraint and 

an indifference curve. Then this individual would work the same number of hours 

if faced with the linear budget constraint represented by the tangent to the true 

constraint at H = h. This “‘as if” constraint may be completely described by two 

values: its slope, W, and A “adjusted” non-wage income.* The point H* 

represents the number of ‘hours the individual can work before the marginal tax 

rate becomes greater than zero. Non-wage income Y, is, for our purposes, ali 

family income other than wage income of the male head of the household. 

The hours equations in (2.1) can now be specified as, 

(2.13) In Hy; =n(w,,(1—t,,) JB +In Y orieey +Zya+ni; 

In Hp; =In[W2,(1—t,)]B +1n Yori + Zr0 + Now, 

where f, is the marginal tax rate “faced” by the ith individual. The value In o.. can 

be thought of as one of the elements of the vector Z in (2.1). The reduced form 

equations in (2.5) now become, 

(2.14) In Hj; =[X,6 +In (1 —t,,)\p +In Youa +Zya+e,B+; 

In Hz; =[X26 +1n (1 —1,,;)]B +1n Yoria + Zp, + €2,8 + 12;. 

Note that Y, is taken, at this point, to be Y,=HW+Y,-T- HW = 

HWt + Y,-—T, where T is total taxes paid. We see that both X6 +1In (1—1t)=In W 

and Y, depend on hours worked and are thus correlated with the disturbance 

terms in the hours equations. We know which tax rate an individual faces for any 

given year, ex post—and for experimentals, whether or not they were “‘on” the 

experiment as described below—but it is endogenous, in that it depends on 

endogenous variables. To circumvent this difficulty we will evaluate ¢ and Yo at 

3 So far, this is a variant of a procedure used by Hall [1973]. His method, however, does not take 
account of the “endogeneity” of both W and Yo. Our method for handling this is taken up shortly. 
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the same number of hours for ail persons.* We have chosen 1,500 hours; this is 

about the average number of hours worked per year by participants in the 

experiment.” 

De le - =e ee ee . ie 0 +H 

Figure 4 

To assign comparable values of W and Y, to the experimental group, we 

need to consider the nature of the experimental “‘treatment.”’ Each family in the 

experimental group was assigned a tax rate, call it r, and a guaranteed income G. 

Family income would be at least G, even if no family members worked. 

Associated with each family is a “break-even” point. It is defined as the number of 

hours that would lead to income under the experiment equal to income that would 

have been earned had the family not been in the experimental group. We let this 

value be H**. There is a kink in the budget constraint at this point.° Beyond H** 

the individual no longer faces the treatment tax rate; he is faced with the same rate 

as a non-experimental participant with his characteristics. The idea is demon- 

strated graphically in Figure 5. The guarantee is for the family and all family 

income is taxed at the rate 7. Because we are considering the labor supply of the 

“We have discovered that a comparable procedure was followed by Rosen [1974]. This 
procedure is, of course, rather ad hoc, and is limited by the fact that an endogenous variable, the 
observed wage rate, is used in the calculations. In planned subsequent work we will be more systematic 
in taking account of the “‘on’’—“‘off” decision. 

* For example, consider the “‘as-if” tax rate of a person whose wage is W and whose non-wage 
income is $1,125 and who has 5 dependents. He pays (in 1970) no federal income tax on income up to 
$1,100 + 5($625) = $4, 25. He then pays a marginal rate of about 18 percent up to $10,000. (Note 
that persons with income less than $10,000 who take standard deductions do not face a simple 
progressive margin«l tax rate, which for higher income families started at 14 percent in 1970. The 18 
percent figure is ta! en to represent the average for this group, if taxes are paid at all. Because all 
persons in our sampi> !i2ve low incomes, we will assume this marginal rate for everyone, after standard 
deductions are taki:.) fie will also pay social security tax at the rate of 4.8 percent up to $7,800 (1970). 
(We assume this rate for all income of persons in our sample.) If the wage rate of this individual is less 
than $2.00, his as-1{ tax rate is taken to be 0.048; if it is greater than $2.00 it wouid be 0.180+ 0.048 = 
0.228. The “as-if’’ non-wage income would be Y,=1,500Wt+ Y,—T, where ¢ is the tax rate 
calculated above and T is (1,500)(0.048)( W) + (federal income tax at H = 1,500). Federal income tax 
would be zero if ‘¥ were less than $2.00. otherwise it would be (1,500—H*)W¢, where H* is 
($4,125 —$1,125}/ W. Social security tax would be (1,500)(0.048)( W). 

© In fact. the urocedures of the experiment took account of federal income tax in the determina- 
ition of the break-even point, but not social security tax. This is presumably a minor discrepancy. 
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~ treatment 
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Figure 5 

male head of the family we will define a G=G- TY 9+ Yo where Yo is family 

income other than his wage income. 

We will define an “‘as-if” tax rate and a non-wage income level for this group 

analogous to those for the non-experimental group. Again, we ask what marginal 

tax rate the individual would be facing if he worked 1,500 hours. This rate is the 

marginal tax rate assigned to him.’ The value for Y, is defined as above. Note that 

Y, = G if the individual is assigned that treatment tax rate. If H** is greater than 

1,500 hours, the experimental tax rate 7 is assigned. If H** is less than or equal to 

1,500, the appropriate non-experimental rate is assigned.” 

The results for two endogenous varaibles are shown in Table 2. Again we will 

draw attention only to those estimates that are of particular relevance to the goals 

7 ‘ 
In planned subsequent work we will be more systematic in predicting whether or not an 

individual will be “‘on”’ or “off” the experiment. The problem is similar to predicting, on general, the 
tax rate an individual will face. : 

® Algebraically, the procedure for non-experimentals and experimentals is as follows: For 
non-experimentals, calculate 

H* =(i,100+F - 625— Y)/ W, 

where F is the family size. The tax rate is given by, 

0.048 if H*> 1,500, 

~ 10.048+0.18 if H* = 1,500. 

where 0.048 is social security tax rate and 0.18 federal income tax rate. The “as-if? 
given by, 

* non-wage income is 

Y, = 1,500Wt+ Yy—T 

where 

(1,500W(0.048) if H*> 1,500, 

# \ 1,500 W(0.048)+(1,500—H*)Wt_ if H*< 1,500 

For experimentals, H** is given by, 

_ {(G-Yo-tH*W)/W(r-1) if G+ WH*(1—7)> Yo+ H*W, 

~ \(G=Yo)/Wr if G+ WH*(1—7)< Yo+H*W 

Then, for H** < 1,500, the tax rate is tr and Y,) = G. For H** = 1,500, 
as for a “like” non-experimental. 

H** 

the tax rate and Y, are the same 
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TABLE 2 

Two ENDOGENOUS VARIABLES, RESULTS* 

Wage Equation Hours Equation 
Estimates Estimates 

Variable (Standard Error) (Standard Error) 

Constant 0.8294 7.4620 
(0.3093) (0.9897) 

Education 0.0155 — 
(0.0119) 

IQ 0.0045 — 
(0.0023) 

Training 0.0021 — 
(0.0011) 

Union 0.2625 — 
(0.0342) 

Illness —0.2614 —0.0397 
* (0.0522) (0.0248) 

Age < 35 0.0110 0.0077 
(0.0086) (0.0046) 

Age 35 to 45 —0.0050 —0.0002 
(0.0074) (0.0003) 

Age > 45 —0.0047 —0.0024 
(0.0032) (0.0018) 

Family Size — 0.0461 
(0.0286) 

Time 0.0340 0.0475 
(0.0028) (0.0274) 

Log Wage — 0.1401 
(0.0643) 

Log Non-Wage Income ~- —0.0233 
(0.0066) 

aw ip oe} re kom: a 

. 0.4946 0.1614 

* See footnote to Table 1, p. 429. 

of the experiment. The estimated coefficient on the logarithm of the wage is 0.140 

and that on the logarithm of non-wage income, —0.022. That is, a 100 percent 

increase in the wage is estimated to increase hours worked by 14 percent, and a 

100 percent increase in non-wage income, to decrease hours worked by 2.2 

percent. !t is worth pointing out that although the experimental selection proce- 

dures induced a negative correlation between wages and hours in this sample, 

taking explicit account of the truncation leads to a quite plausidle coefficient on 

the wage rate in the hours equation. We note first that these numbers are rather 

close to those estimated from pre-experimental data (0.095 and —0.024, respec- 

tively) in our previous work. This is so, even though the estimation procedures 

used in the two cases are substantially different. In particular, variations in 

marginal tax rates were not of substantial importance with respect to pre- 

experimental data, and we did not take account of them. 

Aithough these estimates may not seem very large, they do imply that for 

persons who “elect” to be ‘‘on”’ the experiment, the effects could be sizable. For 

some individuals, the experimental guarantee implies a sizable percentage 
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increase in non-wage income, and the tax rate a substantial reduction in the 

marginal wage rate. For example, consider an individual whose non-wage income 

increased by 700 percent and whose marginal wage rate fell by 50 percent. Hours 

worked by him would be expected to fall by over 22 percent. Similar calculations 

for all individuals in our sample who were on the experiment (observed to be 

below the break-even point) suggest an estimated average decrease in hours 

worked of 16.1 percent. The comparable number for persons predicted to be 

below this breakeven point at 1,500 hours of work was 17.6 percent. In subse- 

quent work we will take explicit account of individual decisions to be “on” or 

“off” the experiment. 

The time parameters should be interpreted as representing both the influence 

of factors that affected experimentals and controls, as well as differences in the 

methods used to obtain wage and hours worked data in the two periods. 

The specification discussed above does not distinguish between “‘experimen- 

tally induced”’ and other components of the wage rate and non-wage income. That 

is, the use of the net wage variable in the hours equation (2.14) constrains the 

coefficient, B, on the logarithm of the wage, X6, to be the same as that on the 

logarithm of the tax rate, In (1 — ¢); and, the single coefficient on non-wage income 

for the experimental group, Yy=G = G—TY + Yo, does not distinguish between 

income fixed by the experiment, G, and other non-wage income, Yo. To test for 

possible differences in response to these two components of the wage rate on 

non-wage income, we have separated the net wage into two variables In W and 

In (1—t), and non-wage income into two variables In (G—7Yo) and In Yo. Sepa- 

rate coefficients were estimated for each. The estimated coefficients on the 

logarithms of the tax and the wage rate were 0.1126 and 0.1567 1espectively. The 

coefficients on In(G—rTYo) and In Yy were —0.0161 and —0.0468. Using a 

likelihood ratio test, the hypothesis that the wage rate coefficient was equal to the 

tax coefficient and the coefficient on the experimental guarantee equal to other 

non-wage income could not be rejected, even at a significance level as high as 20 

percent. (Twice the ratio of the likelihood is 3.2 and is distributed as y* with 2 

degrees of freedom.) 

We also estimated a simple experimental effect in the hours equation, 

deleting the wage and non-wage income variables. The estimated coefficient on 

the dummy variable identifying the experimental group was —0.0375, with an 

asymptotic standard error of 0.0230. It is comparable to those obtained by others 

(e.g. Hall 1975 or Watts and Rees 1974). This estimate, of course, does not isolate 

the effect of the experimental treatment on non-wage income and the wage rate 

and thus does not deal with the biased estimates of these effects that the sample 

truncation induces. 

Finally, we also estimated the hours equation specification in table 2 using 

standard two stage least squares. The estimated coefficient on the wage rate was 

—0.382 with an asymptotic standard error of 0.224. The negative coefficient 

results from the sampling procedure that tended to eliminate from the sample 

persons with both high wage rates and high hours worked. Or, persons with 

relatively high wage rates who responded by working relatively long hours tended 

to be eliminated from the sample. 
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3. SUMMARY 

We have presented a maximum likelihood procedure for estimating 

behavioral equations from observations over two time periods when the observa- 

tions are selected by “truncating” on an endogenous variable during the first 

period. It is an extension of a procedure, developed in an earlier paper, that is 

strictly applicable only to data pertaining to the truncation period—the first time 

period in this case. In particular, the method of this paper has been used to analyze 

the effects of the New Jersey Negative Income Tax Experiment. 

Two models were developed. The first deals with one endogenous variahle. 

Our example was annual earnings. Our estimate revealed a negative experimcntal 

effect of about 6 percent on the earnings of white males. It also led to an estimate 

af the proportion of variation in income (given X) due to “permanent” factors of 

about 86 percent. This means that even if one were to use only experimental data, 

the truncation in the first period would lead to parameter estimates with large bias, 

as demonstrated in our previous work using pre-experimental data. The second 

model handled two endogenous variables—wages and hours worked. Our sample 

estimates revealed an elasticity of hours worked with respect to the wage rate of 

about 14 percent, and with respect to non-wage income, about 2 percent. (Note 

that because of the truncation, other investigators who did not correct for it often 

found a negative wage coefficient in equations similar to ours.) These coefficients, 

although small, suggest that for persons who elect to be “‘on”’ the experiment, the 

effect on hours worked may be substantial, even though it does not appear to be 

large on the average. It is also of interest that the results were surprisingly close to 

those obtained in our work using pre-experimental observations only. 

Subsequent work will systematically treat the tax rate—or, the decision to be 

“on” or “off” the experiment—as endogenous. The procedure used here appar- 

ently worked well, but did not allow explicit prediction of the “on’’—“‘off” decision 

for each individual. This is an important aspect of the evaluation of any income 

maintenance scheme of the type encountered in negative income tax experiments. 

Massachusetts Institute of Technology 

Harvard University 

Appendix on Estimation 

Parameter estimates for both the one- and two-endogenous variable models 

were obtained using a generalization of the Guass-Newton maximization 

sigorithm suggested by Bernt, Hall, Hall, and Hausman [1974]. It uses only first 

Gerivatives. In both cases we maximized the likelihood function obtained after 

\ iting the appropriate multivariate normal density functions as the product of 

marysinal and conditional density functions, as in equations (1.10) and (2.12). We 

hac noped that this transformation would simplify computation. However, after 

having derived first order conditions with and without the transformation, one 

approach did not seem to recommend itself over the other. First order conditions 

fer ine single endogenous variable case are straightforward, but those for the 

simultaneous case require somewhat more explanation. 
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We can write the first-order conditions for maximization of (1.10) as: 

: aL 1% j N 
(A.1) a6, o Rd (¥::-XiB)Xiy + y X,,6(d;)/aP[d;], 

j i= i= 

> - ne - 
+a —p) » (Y; —-X,B)X;;, 

a? .-N..1. 2 : 
3 = tog Lb (Yu —- X18) 
0a C £0 j=1 

. 2 + L (Li-XB)b(d;)/Pld;) 
Oo i=1 

at — N ry s 2 
=" 5, ¥ (¥,-Xp) 
dp oa (1—-p’)y i= 

1 i ae ee 
+3 2 d ( t- BY: — XB) 

CT (l-p Vint 

+ : 
(1—p*) 

where d; =(L;— XiB)/o, ¥; = Yoi— PY 1 Xi = Xvi — PX 
Estimation of the parameters in the simultaneous equation case requires 

maximization of the likelihood function (2.12) with respect to to 6, B, a, and the six 

parameters in the covariance matrix 2 (2.6), three in (,, and three in (,. For 

convenience, equation (2.12) is reproduced here as, 

N cs ee 
(A.2) f= > In (Det 0,") += In (Det B™') 

1 
2 

N 

ViiQ) : VMiu- > In P[d;] 
i=1 iz 1 i 

(V2;-CV;,)B'(V2; —CV},’. oe 
< 

\ imz 

recall the foiiowing definitions: 

Vig =In Wi, - X16 

Vi2; = In Ay; — X16B — Z 0 

V2; =In W2; — X26 

V22; = In Hz; — X25B — Zz; 

V;=(Viris Vizie Voiis V22i) 

Vii =(Viais Vi2i) 
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»2i = (Vo1i, V22i) 

d; = (In L; -—(X18 + X18B + Z12))/Vo 11 + @23 +2012 

c=0,0;' 

B=0,-0,0;'0). 

We see that elements of 2 show up in C and B‘, as well as in Q~*. We need both 

to account for the relationships between these matrices and to insure that 2, B, 

and 2, will be positive definite, since they are covariance matrices. To do this we 

let: 

0," =Tar" 

C=0,0;'=(T"')'AT" 

BY =(0,-9,0;'0))"' =T(A'-A)"'T, 

ry Tr r=| 11 oe 

Pa, P22 

A, 0 

a 0 Az 

with A, and A, constrained to be greater than zero. 

We maximize (A.2) with respect to 5, 8, a, and the six elements of [ and A. 

We then rely on the invariance theorem to recover the elements of 12. 

Before taking derivatives, we need to make a few calculations and some 

additional definitions. Note that: 

Det P=, ,022—-Ty2P 1, 

o;'=rar=| AWD +ADi2 sabe ted Sut ee 

AWD Pa: +AaP 20 22 AiD3, +A2P 22 wo” w”) 

Det OF! =A,AV 703. +A Aa pol 31 — 2A Al VP ail 20 22 

where, 

and 

=\,A,(Det T)’, 

o\= 1 A D2, +A03. Beat Wi. i) 

A,A2(Det ry’ —A DP a1 -AaP 2A 2 AW +A 12 

=|°" oe) 
— > 

®i2 W22 

2 
C. = @141;+@22+2@ > 

1 
; 

= Tane
r AW an + AaV Ga) + OP + AD ia) 

1 

— 2A PP 21 +A 20 22)], 
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i =1at—ayr=[ yiliit yI?2 wat ee bel? ia 

WP Poi + yal P22 vil; + yal - oe 

where y; =A,/(1 —Aij) and y2=A2/(1 —A3), 

Det B= y,y20},T32+ MYT al 31 — 21 Val al 22 

= y1y2(Det I)’ 

C=0,0;' 

E (AP yP22-AD PF 2:)/Detl (AP 240 22—A2T 2,0 22)/Det T 

(—AWD yPy2t+AP iP i2)/Detl (—A WD y2P 2, +20) ,022)/Det T 

=| Cu oa] 

Cr, Cr» 

CV’ — [Ci Vin + gts - aE 

LCo1 Vir + Co2 Viz S12 

where the last term defines S,, and S,>, 

V,07'Vi = 0" Vi, +20" Vi2Vi, to” Vi2 

(V.—CV})B'(V2.— CV)’ = b'"(V3, —2V21$11 + Si) 

+2b'*( V2, V22— V21S12— $14 V22 + $11S42) 

+ b?*(V3.—2 V22S 19 + Sir) 

=b"'f,+2b"f. +b” fs, 

where the last term defines f;, f2, f;. Finally, if we let (@,, +@ .+2@,,)'/* =a,, the 

relevant first order conditions are given by: 

OL _ = 11 12 12 22 
a6 _— Y [w Vii;,+@ Vio,+@ Vibro Vi2B IX, 

jy i=l 

+ = $(d;)(X;, + Xi,B) 

i=1 P[d; Jo. 

N 

+2 b""[V21,X2, — V2(CiX1, +C\2X;,B) 
1 

—$1)X2, +Si(C.X1, +Ci2X1,8)) 

+b'[V21Xo,B + V22X2, — V2i(Cr1X1, + Co2Xi,B) 

—$12Xo, —$11X2,8 — Vo2(CiX1, + Ci2X1,B) 

+$13(Cy Xi, + Cr2X1,P)+$12(Ci Xi, +C2X,,B)] 

+b”[ V22X>,8 — Vo2(C2 Xi, + C22Xi,B) 

—$ 12X28 + $12(Co1X1, + C22X1,8)] 
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