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METHODS OF| EFFICIENT PARAMETER ESTIMATION 

IN CONTROL PROBLEMS 

BY JOHN B. TAYLOR 

This paper examines the asymptotic efficiency of parameter estimates generated by single period optimal 
control rules ir: the multiple regression model. Several well known rules are shown to generate parameter 
estimates with unacceptably large variances which decline extremely slowly as the sample size grows. An 
alternative class of certainty equivalence rules is suggested in order to improve the efficiency of the 
parameter estimates with relatively little deterioration in control performance. For this class the larger is the 
number of parameters to be estimated, the poorer is control performance, thus indicating a trade-off 
between estimation and control. 

Recent research on multiperiod control theory in models with unknown 

parameters has primarily focused on optimization of target variable performance 

with little emphasis on properties of the parameter estimates. Consequently the 

parameter estimates which evolve when such control theory is applied, frequently 

have undesirable statistical properties such as large variances or fail to converge. 

Such poor parameter cstimates do not indicate that the suggested control rules 

are defective since their stated purpose is to improve system performance rather 

than estimate parameters which are irrelevant for control. In fact in some cases 

improving parameter estimates can only be accomplished by sacrificing target 

variable performance. 

However, in many practical applications of control theory it is necessary to 

obtain good parameter estimates. For example, a policy maker using an 

econometric model for control purposes might be interested in estimating struc- 

tural relationships even if these are not immediately used for control. Knowledge 

of these structural relationships would be useful should the loss function change in 

some unpredictable way in the future. 

The purpose of this paper is to examine the efficiency of parameter estimates 

generated by control rules in the multivariate regression model, 

(1) y; = B'x,4 uy, peh.Z... 

where y, is a scalar target variable with target y*, B is a vector of k unknown 

parameters, x, is a control vector’ with k components, and u, is a scalar random 

variable which is independently and identically distributed with zero mean and 

finite variance a”. The special case where k = 1 was discussed by Prescott (1972) 

from a Bayesian viewpoint and Taylor (1974) from a non-Bayesian viewpoint. In 

Section 1 we show that single period optimal control rules which have long been 

suggested for this model (sometimes as approximations to the multiperiod prob- 

lem) yield parameter estimates which are extremely inefficient. The direction of 

the vector x, for these rules is nearly orthogonal to the vector which minimizes the 

' This model assumes that all k exogenous variables are subject to control. Several different issues 
arise when not all variables are subject to control. Experimental results on this more general problem 
are reported in Anderson and Taylor (1975). 
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generalized variance of the estimate of the vector 8. Experimental results indicate 

that the variance of the estimates of the elements of 8 decline imperceptively if at 

all over sample sizes as large as 3,000. In Section 2 an alternative control rule is 

proposed and is shown to generate more efficient parameter estimates with 

relatively little deterioration in control performance. The primary measure of 

efficiency throughout this paper is the variance of the asymptotic distribution of 

the individual parameter estimates, though selected experimental results are 

reported to indicate the rate of convergence to these asymptotic distributions. As 

is usual with statistical results based on large sample theory, they should be used 

with caution in small samples. 

1. SINGLE PERIOD OPpTIMAL CONTROL RULES 

Many of the control rules which have been suggested for this problem have 

been derived using Bayesian methods and are either optimal Bayes rules or 

approximations to these rules. In the most common formulation of the problem, 

the criterion of performance is the sum ih (y,—y*)? with u, normally distri- 

buted. A control rule is then chosen so as to minimize the expectation of this sum 

with respect to the prior distribution of B and the distribution of u, Since the 

dynamic programming solution is intractable for large T, an approximate solution 

is suggested by truncating the problem at small! T. The most common approxima- 

tion is to set T=1. This single period solution has been referred to as the 

sequential updating solution by Zellner (1971) and the myopic solution by 

Prescott (1972), and is one form of open loop strategy suggested in th engineering 

literature. This is also the rule considered by Brainard (1967) where emphasis was 

on macroeconomic policy implications of uncertain B. We refer to this type of rule 

as a single period optimal Bayes rule. 

When o*~ is known and the prior distribution of B is uninformative, the single 

period optimal Bayes rule is given by 

ABy A 2 = = (2) X41 BA£,t07 f=k &4+1,.2.. 

where A, = le x,x;, and where 
z eae 

(3) B,=A, ; X Xiyi 

and where we assume that x,, X2,..., X,; are given such that es xx; is nonsingu- 

lar. It is well known that the optimal portfolic of instruments in the vector x,+, is 

such that those instruments corresponding to elements of 8 with relatively large 

variances will be relatively small in absolute value; and that negative covariances 

can be exploited by applying appropriate weights to some instruments. 

The sequential updating rule in (2) is not a certainty equivalence rule because 

it does not satisfy the equation y* = B',x,,.;. Basu (1974) has suggested a modifica- 

tion to (2) which will be referred to as the single period optimal certainty 

equivalence rule and is defined by 

_ Ad: 
(4) Mi = BA gy 
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Although both (2) and (4) are designed for the purpose of stabilizing y, about 

y*, one might hope that the sequence of parameter estimates that evolve when 

these rules are used have desirable statistical properties. This however is not the 

case. The resulting estimates of B have extremely large variances even for very 

large samples as is illustrated experimentally below. 

The reason for these poor parameter estimates can be seen intuitively by 

examining the single period Bayes risk 

(5)  El(yes1—y*)" [Xm Yo» - «X15 Yr) = O71 + x41 Apdeas) + (Bixras — y*)’. 

The single period optimal Bayes rule is chosen to minimize (5). The single period 

optimal certainty equivalence rule minimizes the first term on the right hand side 

of (5) constraining the second term to equal zero as has been pointed out by Basu 

(1974). The equality 

|A, + Xe41X5e11 

|Aj| 

indicates however that the first term on the right hand side of (5) is inversely 

proportional to the determinant of the conditional covariance matrix of B, +1 (that 

is the generalized conditional variance) given observations through time t. Thus 

the single period optimal Bayes rule maximizes the generalized conditional 

variance of Bist added to (B'X:41- y*)’, and the single period optimal certainty 

equivalence rule maximizes the generalized conditional variance of Bist subject to 

BX — y* =0. This suggests why the rules result in poor parameter estimates. 

The direction of x,,, is almost orthogonal to the direction which will give most 

information about B. This also suggests that obtaining better parameter estimates 

might necessarily result in a deterioration of the performance of the target 

variable. 

The experimental results reported in Tables 1 and 2 illustrate the estimation 

problem in a model with two unknown parameters and two controls. The 

parameter values for the Monte Carlo experiment reported here were 6, = 1, 

B2= 2,0° = 1, y* =1, and the initial values for the two control variables x;, and Xr, 

were X11 = 1, X32 =3,X21= 1, X22 = 2. The initial variances are therefore var(B;,) = = 

5, var (B2,)= = 10, and cov (Bin B>,)= = —7 when t = 2. Several models with different 

initial conditions (including smaller initial variances) were also examined with 

similar results. The estimated moments for this rule are calculated on the bases of 

100 replications of a 3,000 period time horizon. The term E(y*—'x,4;)° 

represents the expected one period loss minus oa’, and declines as t '. For t> 100, 

the estimate of E(y* — B’x,4,)° is within the 95% probability interval (computed 

using the x’ distribution) of ¢~'. Thus the asymptotic distribution of y* — B’x, in 

this model with more than one unknown parameier and more than one control is 

the same as that derived by Taylor (1974) in the case of a single control and a 

single unknown parameter. 

Note however that the variance of the parameter estimates generated by both 

rules has a very small decline after t= 10 and shows no tendency to converge to 

zero. Plots of the observed values of Bu, and Bo, are also illuminating and are 

found in Figure 1 at t = 100 (the small ellipse should be ignored for now) for rule 

(2). Rule (4) results in almost exactly the same picture. Although the variances of 
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Figure i Scatter of Parameter Estimates at t = 100 for Single Period Bayes Optimal Control Rule. 

B 1. and B2, do not seem to converge to zero, the variance of a linear combination 
of B 1, and B>, does converge to zero. This linear combination is determined by the 
initial conditions of the experiment. Its slope in the B ie Bo, plane is approximately 
equal to the slope of the characteristic vector corresponding to the smallest root of 
A. As our primary purpose is to illustrate the inefficiency of these parameter 
estimates, and to suggest a more efficient method, we will not pursue the 
properties of these limiting distributions. 
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TABLE 1 

ESTIMATED MOMENTS FOR THE SINGLE PERIOD OPTIMAL BAYES RULE 

t E(y*—B'x,41) E(y*—B' x41)” Ep, Ev, 

10 1.4246(—2) 1.1871(—2) 1.6947(1) 6.7079( —2) 
50 1.2452(—2) 9.2865(—3) 2.7110(1) 6.7401(—2) 
100 1.2673(—2) 5.9180(—3) 3.9692(1) 6.7576(—2) 
500 2.7140(—3) 1.5648(—3) 1.4170(2) 6.7843(—2' 

1000 4.6860( — 4) 8.7835(—4) 2.7042(2) 6.7893(—2) 
2000 —3.3138(—3) 5.2660( — 4) §.2917(2) 6.7920( —2) 
3000 —6.7492(—4) 3.5588(—4) 7.8791(2) 6.7929( —2) 

t E(B,,) var (B1,) E(B>,) var (B2,) COV (Bin Ba.) 

10 1.2245 3.9665 1.6729 7.9716 — 5.5723 
50 1.2353 3.8011 1.6627 7.5589 — 5.3205 
100 1.2525 3.8571 1.6380 7.4839 — 5.3474 
500 1.2213 3.8040 1.6490 7.5462 — 5.3500 
1000 1.2174 3.7571 1.6477 7.4684 —5.2918 
2000 1.2189 3.7299 1.6332 7.3630 — 5.2368 
3000 1.2223 3.7606 1.6372 7.4221 — 5.2801 

TABLE 2 
ESTIMATED MOMENTS FOR THE SINGLE PERIOD OPTIMAL CERTAINTY 

EQUIVALENCE RULE 

t E(y*—B' x41) E(y*—B'X41)" Ep, Ev, 

10 —1.2828(-—3) 1.2658(—2) 1.9623(1) 6.7193(—2) 
50 3.0818(—3) 9.4183(—3) 2.7433(1) 6.7408( —2) 
100 6.3162(—3) 5.8517(-—3) 4.0211(1) 6.7581(—2) 
500 8.8642(—4) 1.5525( —3) 1.4288(2) 6.7844(—2) 
1000 —4.8982(—4) 8.7559(—4) 2.71932) 6.7893(—2) 
2000 —3.7995(--3) 5.2874(—4) 5.3102(2) 6.7920( — 2) 
3000 —1.0042(—3) 3.5575(—4) 7.8997(2) 6.7929( —2) 

t E(B;,) var (6;,) E(B2,) var (B>,) cov (B;», B2;) 

10 1.2246 3.9675 1.6729 7.9731 —5.5738 
50 1.2354 3.8011 1.6627 7.5581 —5.3207 
100 1.2525 3.8568 1.6380 7.4837 —5.3474 
500 1.2213 3.8037 1.6489 7.5454 —5.3496 

1000 1.2174 3.7571 1.6476 7.4682 —5.2918 
2000 1.2189 3.7300 1.6332 7.3632 —5.2369 
3000 1.2222 3.7606 1.6372 7.4221 —5.2801 

Tables 1 and 2 also present the estimated mean of the smaller root v, and the 

larger root yt, of A,. The smaller root increases extremely slowly as suggested by 

the direction of each x, while the larger root increases on the order of t for large t. 

2. PARAMETER EsTIMATING CERTAINTY EQUIVALENCE RULES 

In this section we consider some certainty equivalence rules which generate 

estimates of specified linear combinations of the vector 6 and which are consistent 

343 



asymptotically normal (using the Vf norm). Therefore the variance of these 

estimates will tend to converge to zero as ¢ ', which is certainly an improvement 

over the estimates just considered whose variances do not converge at all. For all | 

these rules B’x, is also consistent asymptotically normal (viewed as an estimate of 

y* and again using the Vtnorm), and therefore the mean square of y* — B’x, tends 

to converge to zero as f ', the same rate as the rules considered in the previous 

section. However, if more than one linear combination of parameters is to be 

estimated, then the variance of the limiting distribution of Vity* — B’x,) is larger 

than for the single period optimal rules. 

Consider first the case where interest is in estimating a single preassigned 

linear combination ¢ = c’B of the elements of B, where c is a specified vector of k 

elements with at least one element (assumed without loss of generality to be the 

first, c,) not equal to zero. Then a certainty equivalence rule for which this linear 

combination is consistent asymptotically normal is defined such that x, is an 

arbitrary but nonzero multiple of c and 

* 

(7) X1=—e-,  t=1,2,. t+1 do, 

where d; is the least squares estimate of @. Note that because y, = y*o/ di-1 +uU, 

and x;,= y*c;/@,-; we have 

“*9 

(8) bp = cy wip s=12...: 
Liei * 10 

The following two theorems give the asymptotic properties of @ and y* — B’x,. 

Theorem 1. In model (1) with c'B #0 and the sequence x, defined by (7), d, 

converges to @ with probability one and B'x, converges to y* with probability one. 

Proof. From equation (8) 

(9) $= +c, epee 
le X1i 

Using the results of Theorem 1 of Taylor (1974) the second term on the right hand 

side of (9) converges with probability one. This implies from (7) that x,, does not 

converge to zero and therefore that ar xj, diverges with probability one. This 

implies that the second term on the right hand side of (9) coverges to zero with 

probability one, which completes the proof of the theorem. 

Theorem 2. Under the assumptions of Theorem 1, Viid,—) has a limiting 

normal distribution with mean 0 and variance a ¢’ /(y*)’, and Vt y* — B'x,) has a 

limiting normal distribution with mean zero and variance o~: 

Proof. From (9) we have that 

- = *1i4ij 

Lint X1i : 

Using the result of Theorem 1 above and Theorem 2 of Taylor (1974), the right 

hand side of (10) converges in distribution to the normal with mean zero and 
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variance equal to cjo’(plim,...0 ) 2 xj,/t) '=0°"/(y*)’. The second result 

follows from the equality 

Vily* — B' X41) pe Vty*(¢, —)/d,. 

Theorem 2 indicates that the estimate of # generated by this rule has 

acceptable statistical properties, its variance declining approximately as t '. Note 

also that the asymptotic variance of y* — B’x,,; is equal to that of the single period 

optimal rules examined experimentally in Section 1. In this case no sacrifice in 

asymptotic control performance is necessary to get this efficient parameter 

estimate. Note also the special case of this rule where c’B = B;. Then only B;, the 

first element of B, is estimated. 

To obtain estimates of more than one linear combination of parameter 

estimates, the following procedure can be used. Suppose H =< k linear combina- 

tions of the elements of 6 are to be estimated. Let these be #, =c)8, h= 

1,...,H, where each of the c, are vectors with k elements with at least one 

element of each (assumed to be the hth element of c,, labeled c,,,) not equal to 

zero. Partition the set of integers into H sets /,,... , J; such that J, contains the 

integers jH +h, j=0,1,2,.... Let I,(t) be the intersection of each of these sets 

with all integers less than or equal to ¢. Then a control rule for which the estimates 

of ¢;, are consistent asymptotically normal is given by x;, . . . , x4, each an arbitrary 

nonzero multiple of c,,..., cy and 

C ; 
(11) nae, if (t+Ieh, t=HH+1,..., 

ht 

where Dn: is the least squares estimate of @,. Because y, = d,y*/dy:-1 +, and 

Xn = Chay" / a: , for t€ I, we can write this least squares estimate as 

? Lier (t) Xni¥i 12 = C,,—— >, h=1,...H. 
(12) Pr = Cun ) ee 3 

Theorem 3. In model (1) with the sequence x, defined by (7) if c,B #0 for 

a] 1,..., H, then dy, each converge to zero with probability one and B'x, converges 

y* with probability one. 

Proof. From equation (12) we have that 

z i X nitti (13) bn = on + cy isan 

ieIp(t) ¥ hi 

Since the number of elements in each J,,(t) diverges to infinity as f>0o, the 

arguments of Theorem 1 can be used to show that the second term on the right 

hand side of (13) converges to zero with probability one. Thus Dns + d,, and from 

(11) B’x, > y* with probability one. 

Theorem 4. Under the assumptions of Theorem 3, Vids. —?1), 2. Vibe — 

oy) have a_ limiting normal distribution with means 0, variances 

ao’ Hoi /(y*)’, ..., 7 Hby/(y*)”, and covariances 0. In addition Vtly* —B’x,) has 

a limiting normal distribution with mean zero and variance Ho”. 
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Proof. To establish the limiting distribution we must show that z,= 

vt sad 1 Onl One — ¢,) has a limiting normal distribution with mean zero and 

variance 

(14) vate F 620? 
OF ie, 

for any set of real numbers aj, ..., @,. Using equation (13) and the method of 

Theorem 2 we find that the difference between z, and 

(15) Al i (asd dictate) “) 

y* h=1 vi 

has a zero probability limit. Each of the H terms in (15) converge in distribution to 

the normal by the central limit theorem, and each of these are independent since 

they contain no common random elements. Thus (15) converges to the normal 

distribution with mean 0 and variance V given in (14). The limiting distribution of 

Viy* — B'x,) then follows using equation (11). 

The implication of Theorem 4 is that when the certainty equivalence rules 

given here are used, the estimates of several linear combinations of the elements 

of B can have variances which decline approximately as ¢ '. Further each of the 

linear combinations have equal asymptotic “‘f-ratios,” since the asymptotic 

standard deviation of each estimate is the same proportion of its true value. 

However, the larger the number of linear combinations that are estimated the 

larger is the asymptotic variance of y*—'x, which is our measure of control 

performance. Thus, using this method of analysis, there is a tradeoff between 

parameter estimation and control. Only one parameter combination can be 

estimated without cost. 

A special case of the parameter estimating control rule in (1) is when each of 

the k parameters of B are to be estimated. In that case the procedure is simply to 
use only one instrument at a time, setting the other to zero, and switching to a 

different instrument each time period. 

Table 3 presents the results of the use of such a rule’ in the model introduced 

in Section 1. Comparing Table 3 with Tables 1 and 2 we can see that there is an 

enormous improvement in the efficiency of the parameter estimates. As predicted 

by the above asymptotic theory the variances of Bi, and B>, are approximated by 

2/t and 4/t respectively so that the ratio of the estimated coefficient to the 

standard error is close to (20) / * for both. In addition the mean square of y* — Bx, 

is approximated by 2/t as is predicted by Theorem 4. Since two parameters are 

being estimated this value is larger than that in Tables 1 and 2. Finally in Figure 1 

the ellipse centered at (1, 2) contains all the 100 estimated values of B,, and Bo, at 

T= 100. 

3. CONCLUDING REMARKS 

This paper has been concerned with the problem of efficient parameter 

estimation in a regression model where the dependent variabie is being controlled 

? Since the initial conditions of this model do not conform to those of rule (11), the experiment is 
run as a sensitivity test of the asymptotic theory to more general initial conditions. All estimated 
second moments reported in Table 3 for t>100 are within the 95% probability interval of the 
asymptotic approximation. 
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TABLE 3 

EQUIVALENCE RULE 
ESTIMATED MOMENTS FOR THE PARAMETER ESTIMATING CERTAINTY 

E(v* — B'X41) E(y*—B'x41) Ep, Ev, 

10 —7.0609(—2) 9.9945(—2) 3.1970(1) 4.6497 
50 1.2063(—2) 1.5823(—2) 5.1968(1) 1.2744(1) 
100 1.5570(—2) 1.1417(—2) 7.6562(1) 2.0422(1) 
500 2.2346(—4) 3.1722(—3) 2.7543(2) 7.2874(1) 
1000 —2.1217(—3) 2.0152(—3) 5.2571(2) 1.3575(2) 
2000 —4.3591(—3) 1.0202(-—3) 1.0276(3) 2.6198(2) 
3000 —2.4752(—3) 6.2541(—4) 1.5290(3) 3.8809(2) 

t E(B;,) var (Bis) E(B2,) var (B2,) cov (Bip Ba) 

10 1.0460 1.3183(—1) 1.9909 2.1271(-—1) —1.197X{—1) 
50 1.0085 3.1645(—2) 2.0577 7.1733(—2) —1.5749(—2) 
100 1.0035 1.2683(—2) 2.0544 4.5837(—2) —3.3406(—3) 
500 1.0067 3.6111(—3) 2.0068 1.2760(—2) —6.4295(—4) 
1000 1.0034 1.7229(—3) 1.9997 7.8874(—3) —2.6985(—4) 
2000 0.9851 9.8709(—4) 1.9933 3.8351(-3) —4.0770(—5) 
3000 1.0016 6.7184(—4) 1.9963 2.4927(—3) 8.1619(-—5) 

by all the independent variables. Some well known single period optimal rules 

were shown to give unacceptable parameter estimates. As an alternative to these 

rules, a class of parameter estimating certainty equivalence rules were proposed 

and shown to have much greater efficiency as parameter estimators with relative 

small reduction in control efficiency. For these rules the more parameters that are 

estimated the lower is the control efficiency. This suggests a tradeoff between 

estimation and control. 

Columbia University 
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