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Annals of Economic and Social Measurement, 5/3, 1976 

CAUTION, PROBING, AND THE VALUE OF 

INFORMATION IN THE CONTROL OF UNCERTAIN SYSTEMS* 

BY YAAKOV BAR-SHALOM AND EDISON TSE 

This paper discusses the control of nonlinear stochastic systems and, in particular, linear systems with 
unknown parameters. It is shown how the optimal policy utilizes preposterior analysis to obtain the control 
values. The stochastic nature of the problem leads to the probing and caution properties of the control. 
Explicit expressions of the probing and caution terms in & stochastic control problem are presented. These 
terms are obtained by a closed-loop approximation of the stochastic dynamic programming equation. An 
approximate value of information can be evaluated and the benefit to be derived from probing 
(experimentation) can be traded off against its cost. The interplay between caution and probing is 
illustrated by an example. The performance of the closed-loop control obtained from the above 
approximation of the stochastic dynamic programming is compared with several other suboptimal controls 
as well as the optimal one. 

1. INTRODUCTION 

Many models used in economic decision making are assumed to be linear but 

it is generally accepted that the parameters of these models are imperfectly known 

and sometimes time-varying. The decision (ar control) problem in linear systems 

with unknown parameters is actually a nonlinear stochastic control problem. The 

optimal solution of all but a few stochastic control problems is not known and 

cannot be obtained numerically because of the dimensionality associated with the 

numerical solutions [B1]. The notable few exceptions are the linear-quadratic 

problem [S3, T5, Al], anc the exponential-linear-quadratic problem [S2]. The 

optimal stochastic controi is obtained by applying the principle of optimality [B1] 

and, unless a closed-form solution can be guessed and verified, as in the above two 

problems, suboptimal solutions are usually sought. Since one has to give up on the 

optimality, it is desirable to obtain a solution that has, at least, the features 

(structural characteristics) of the optimal sclution. Therefore, it is important to 

be able to define the structure of the optimal solution, i.e., what types of 

information can be available to the controller and how are they used. 

It is well known that, in stochastic control problems, utilizing observations 

improves the performance over the open-loop controls because the utilization of 

measurements On the system reduces the uncertainty (see, e.g., [M1]). A non- 

anticipative control cannot, obviously, use future observations that can benefit the 

performance of the control; however, the probabilistic description of these 

observations can reveal the “‘value of the future information” before they are 

actually taken. Therefore, while being non-anticipative, a control can still “look 

into the future” and utilize what is presently known about the information to be 

obtained iater. This is called “‘preposterior analysis” [R1]. 

This type of control, called closed-loop because it ‘‘anticipates” that the loop 

wil! be closed in the future, is to be distinguished from the feedback type (see [B3, 

B4] for details). The latter utilizes the past measurements, but it does not 
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“anticipate” (via a probabilistic description) the future measurements. Since most 

of the existing suboptimal algorithms (where the optima! is not known) for many 

problems of practical importance are of the feedback type, it is of interest to see 

how closed-loop type algorithms can be derived and wht imprevements can be 

obtained in the performance over existing feedback algorithms. 

It is in light of this property of anticipating the value of future information by 

using the statistics of the future measurements that a closed loop stochastic control 

algorithm is examined. Namely, the algorithm developed in [T1], [T2] for a large 

class of systems that includes linear systems with unknown parameters is discussed 

in Section 2 and a rigorous derivation of it is given. It is shown how the control can 

carry Out experiments, i.e., it can probe the system in anticipation of the value of 

the information to be derived from future observations. This probing of the 

system is done by utilizing Feldbaum’s “dual effect’ [F1]. A control is said to have 

a dual effect if, in addition to its effect on the state, it can affect the estimation— 

then it can be used for “active information storage” [F1], or, in other words, it can 

actively learn. An explicit expression of the value of future information which 

weights the future uncertainty in the state is derived. The other aspect of 

controlling a stochastic system is the need for caution [F1, J1]. A caution term is 

obtained which includes the uncertainties that cannot be affected by the control 

but their weightings in the cost depend on it. 

The conflict between caution and probing is illustrated in a numerical 

example in Section 3. Comparisons of the closed-loop control a!gorithm with the 

certainty equivalence algorithm, the adaptive algorithms of MacRae [M2] and 

Chow [C2], the open-loop-optimal feedback and the optimal one are presented. 

The optimal control was obtained by extensive Monte Carlo simulation such that 

the results of the comparison can be stated with very high confidence. 

2. A STOCHASTIC CLOSED-LOOP CONTROL ALGORITHM FOR 

NONLINEAR SYSTEMS 

Feldbaum [F1], Aoki [A1] and Dreyfus [D1] stressed the importance of 

closed-loop controllers. They showed in several examples the improved perfor- 

mance one can achieve due to the closed-loop property. In this section, the 

suboptimal stochastic closed loop control algorithm (‘dual control’’) developed in 

[T1, T2] is discussed in light of the concepts presented in [B3] and a rigorous 

derivation is presented. 

Consider the. system whose state, an n-vector, evolves according to the 

equation 

(2.1) x(k +1)=f[k, x(k), u(k)]+v(k) k=0,1,...,N-1 

and with observations (m-vector) 

(2.2) y(k) =h[k, x(k)]+w(k) k=1,...,N 

where x(0) is the initial condition, a random variable with mean &(0|0) and 

covariance £(0|0); {v(k)} and {w(k)} are the sequences of process and measure- 

ment noises, respectively, mutually independent, white and with known statistics 

up to second order. For simplicity we shall assume they are zero-mean. For the 
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purpose of the control algorithm to be derived no assumptions about the distribu- 

tions of these random variables are needed. 

The cost function is taken as 
N-1 

(2.3) C(N) = W[x(N)]+ 2 L{x(k), k]+ @(u(k), k] 

and the performance index is 

(2.4) J(N) = E{C(N)}. 

In the case of a linear system with unknown parameters, x is the “augmented” 

state, a stacked vector that includes the unknown parameters. 

Rather than using the exact information state {Y“, U*~'} the following 

approximate “‘wide-sense”’ information state is used. 

(2.5) P* ={R(k|k), E(k|k)} 

i.e., the conditional mean and covariance of x(k). The computation of P* can be 

done by a number of approximate methods, e.g., extended Kalman filter, second 

order filter, or non-linear filter. 

Assume now that the system is at time k and a closed-loop control [B3] is to 

be computed using * and the present knowledg:= (statistical) about the future 

observations. 

The cost-to-go for the last N—k steps is 

N-1 
(2.6) C(N—k)=#[x(N)]+ x L[{x(j), j]+(u()), j). 

The principle of optimality [B1] with the information state (2.5) yields the 

following stochastic dynamic programming equation for the closed-loop-optimal 

expected cost-to-go at time k 

(2.7) J*(N—k)=min E{L[x(k), k]+[u(k), k]+J*(N—k—1) Pr}. 

The main problem is to obtain an approximate expression for J*(N—k—1) 

while preserving its closed-loop feature, i.e., this expression should incorporate 

the “value” of the future observations. Note that J*(N —k — 1) is obtained by the 

closed-loop minimization [B1, B3] of C(N—k-—1). In order to find an explicit 

solution to this minimization, the cost-to-go*C for the last N—k—1 steps is 

expanded about a nominal trajectory as follows. Let the nominal trajectory be 

(2.8) Xo(j+1)=fLj, xo(j),uo(j)) j=k+1,...,N-1 

where Uo(j). j= k+1,..., N—1 is a sequence of nominal controls (to be discus- 

sed later) and the initial condition for this nominal trajectory is taken as 

(2.9) Xo(k +1) =R[k + 1|k; u(k)] 

i.e., the predicted value of the state at k + 1.given P* and the control (yet to be 

found) u(k). The expansion of the cost-to-go (2.6) with k replaced by k + 1 is, with 

terms up to second order, 

(2.10) C(N-k-—1)=OQ)(N-k-1)+AQ(N-k-—-1) 
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where 
N-1 

(2.11) Co(N —k —1)* W[xoLN)]+ » L[xo(j), {1+ b[uo()), J] 
j=k+ 

is the cost along the nominal and 
x4 N-1 

(2.12) ACo(N—k—1)4 ox 5x(N)+36x'(N)Wo,xx 5x(N) + Y  Losti) 6x()) 
juk+ 

+36x'(j)Loxx(j) 5x(j)+o(j) Su(j) 

i 26u (j)o,uu(j) du(j)] 

is the variation of the cost about the nominal. The notations Lo,, Lo, stand for 

the gradient and Hessian of L w.r.t. x evaluated along the nominal trajectory and 

(2.13a) 5x(j) = x(j) —Xo(j) 

(2.13b) Su(j) =u(j)—uo(j) 

are the perturbed state and control, respectively. 

The approximation of the closed-loop-optimal expected cost-to-go for the 

last N—k —1 steps is done now as follows: 

(2.14) J*(N—k—1)= min E{... min E[C(N-k-1)|P™~"]...|9**} 
pa) u(k +1) u(N 

= Jo(N—k—1)+AJ$(N-—k-1) 

where 

(2.15) Jo(N —k —1) = Co(N-k-—-1) 

(2.16) AJ§(N—k-1)= min E{... min E[AC(.N-—k-1)|P™"']...|9**} 
Su(k+1) Su(N—1) 

Note that the closed-loop minimization of (2.16) is over a cost quadratic in 

5x(i+1), Su(i), i= k+1,...,N-—1 as can be seen from (2.12). Furthermore, 

from the definition of the nominal trajectory (2.8) and the dynamics of the system 

(2.1), the perturbations (2.13) obey the following dynamic equation (with terms 

up to second order; fox, denotes the Hessian of the ith component of f, 

i=1,...,n). 

(2.17) 8x(j+1)=fo,.(j) 5x(j)+fow(j) du(/) 

+ ¥ eld 8x (i)foaa( i) 5x(i) 

+ 5u'(j)fo.ux(j) x(j) 

+3 5u'(j)fowa(j) Su(j)J+v(j) j=k+1,...,N-1 

with initial condition 

(2.18) 5x(k + 1)=x(k +1)—xo(k +1). 

Thus, the problem defined by (2.16) consists of the minimization of the 

quadratic cost (2.12) for the quadratic system (2.17) and is somewhat similar to 
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the linear-quadratic problem. Up to terms of second order, the solution of this 

problem can be assumed to be of the form 

(2.19) AJ§(N—k—-1)=go(k +1) 

+ E{po(k +1) &x(k + 1) +3 5x'(k + 1)Ko(k + 1) x(k +1)|P**"}. 

The proof by induction of the above is given in the Appendix. The algorithm 

for control of linear unknown systems with learning developed by Chow [C2], 

which is also of the closed-loop type, approximates the entire optimal expected 

cost-to-go by a second order expansion about a tentative path using numerical 

derivatives. This expansion is a function of the state, which is assumed to be 

observed perfectly. In contradistinction to this, the procedure discussed here 

utilizes a quadratic expansion of the cost prior to taking the expectations and the 

resulting perturbation cost AC) can be minimized explicitly; a numerical minimi- 

zation is required once at every period when obtaining the present control as will 

be seen later. 

To emphasize the close-loop property of AJ§, i.e., the manner in which it is a 

function of the future uncertainties, it is rewritten as follows (the detailed 

derivations are presented in the Appendix). 

(2.20) O(N —k—1)= yo(k +1) + Ef{po(k + 1) x(k +1) 

* +3 8x'(k +1)Ko(k +1) x(k +1)|P**"} 

N-1 

+3 Xt Kol) + 1)Q()) + ton( Xo ili] 
j= 

where Xo( j|j) is the covariance of the state along the nominal trajectory and Q is 

the process noise covariance. The existence and uniqueness of the above solution 

is discussed in the Appendix. 

The recursions that yield yo(k + 1), p(k + 1), K(k + 1) as well as the definition 

of %o,, can also be found in the Appendix (see (A.15)-(A.17) and (A.3), 

(A.5)-(A.8)). 

Combining (2.20) with (2.14), the stochastic dynamic programming equation 

(2.7) that will yield u(k) becomes 

(2.21) J*(N— k) = min {E{L[x(k), k]+o[u(k), k]+ Co(N—k—1)+yo(k +1) 

+po(k + 1) 5x(k +1) +3 x'(k + 1)Ko(k +1) 5x(k + 1)|P*} 

N-1 

+2 Et [Koj + QC) + Mo, xj) Zoli). 
juk+ 

From (2.9) and 2.18) it follows that 

(2.22) E[8x(k + 1)|P*]= E[k(k + 1|k)P*]=0 

and 

(2.23) El 8x'(k + 1)Ko(k + 1) 5x(k + 1)|P*}= tr [Ko(k + 1)E(k + 1|k)]. 
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Finally, dropping from (2.21) the first term which does not depend on u(k), 

and using (2.22), (2.23) the closed-loop control is obtained as 

(2.24) u'(k) = arg min J“ (N—k) 

(2.25) JI“(N—-k)*£Jp(N—k)+Jco(N —k)+Jp(N—k) 

where 

Jp(N —k)* b[u(k), k]+ Co(N — k —1)+ yo(k +1) 

is the deterministic part of the cost and 

2.37) Jo(N—k) AF tr [Kolk+DE(k+1k)}+4 S trKoj+ DOG) 

N-1 
(2.38) J(N-k)Az F tr[ton(j) Zolli] 

den 

at the stochastic terms in the cost. 

The first stochastic term, (2.27), reflects the effect of the uncertainty at time k 

and subsequent process noises on the cost. These uncertainties cannot be affected 

by u(k) but their weightings do depend on it. The effect of these uncontrollable 

uncertainties on the cost should be minimized by the control; this term indicates 

the need for the control to be cautious and thus is called caution term. The second 

stochastic term, (2.28) accounts for the effect of uncertainties when subsequent 

decisions will be made. As discussed in the Appendix, if the perturbation problem 

has a solution, then the weighting of these future uncertainties is non-negative 

(ox is positive semidefinite). If the control can reduce by probing (experimenta- 

tion) the future updated covariances, it can thus reduce the cost. The weighting 

matrix %o,x yields approximately the value of future information for the problem 

under consideration. Therefore this is called the probing term. 

The benefit of probing is weighted by its cost and a compromise is chosen such 

as to minimize the sum of the deterministic, caution and probing terms. The 

minimization of J will also achieve a tradeoff between the present and future 

actions according to the information available at the time the corresponding 

decisions are made. A sufficient condition for the existence and uniqueness of the 

solution to the perturbation problem is that the sequence of nominal controls will 

minimize (2.11) subject to (2.8). In this case one also has 

(2.29) yo(k +1)=0 k=0,...,N-1 

The preposterior analysis can be seen as appearing explicitly in the decision 

on the present control which is to be done using the (“‘prior’’) estimate Lo(j | j) of 

the future updated (“posterior”) covariance &( j| j) of the state. 

To find the closed-loop control u(k), the minimization of (2.25) is performed 

using a search procedure. At every k to each control u(k) for which (2.25) is 

evaluated during the search there corresponds a predicted state (2.9) and to this 

prediced state a sequence of deterministic controls is attached that defines the 

nominal trajectory. The cost-to-go is then evaluated by expansion about this 

nominal and its variation (up to second order) is minimized in a closed-loop 

fashion. This leads to (2.25) where the possible benefit from probing (active 
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learning) as well as the need for caution appear explicitly. The only use of the 

nominals and perturbations is to make possible the evaluation of the cost-to-go 

optimized in a closed-loop manner. This procedure is repeated at every time a new 

control is obtained. While the computational requirements of this algorithm are 

significantly higher than those of the certainty equivalence algorithm, problems of 

modest size can be handled; for example, a 20 period problem for a system with a 

three dimensional state and six unknown parameters took approximately 45 s for 

a complete run on a Univac 1108 [T2]. 

The performance of this algorithm, which is of thy “performance adaptive” 

type [S1], is examined in the next section for a simple example of a linear syste1n 

with an unknown parameter. Its usefulness is, however, not limited for this class of 

problems (see [T4] for its application to a nonlinear system which had no unknown 

parameters). 

3. EXAMPLE 

Similarly to MacRae [M2], we shall consider the problem of controlling the 

system 

(3.1) x(k +1)= ax(k)+ bu(k)+c+v(k) k=0, 1. 

with perfect observations of x. The parameters a and c will be assumed known. 

The input gain will be unknown, time-invariant, with prior mean 5(0) and 

variance >” (0). The noise sequence v(k) is zero-mean, white, and with variance 

Q. The cost function whose expected value is to be minimized is taken as 

(3.2)* C(2) =3 pA q(k)x?(k)+ru7(k —1) 

The initial state is x(0)=0. 

The augmented system with the state including the unknown parameter is 

3.3 ~ x(k) A x(k) 

sli i fom Pa 

and obeys the nonlinear stochastic difference equation 

(3.4) x(k + 1)=f[x(k)]+v(k) 

where 

3.5 p ax,(k)+x2(k)u(k)+c 
(3.5) f{x(k)] ot 

_ [vi(k)] _ folk) 

36) We= [oll | 

The covariance matrix of the augmented state (3.3) is denoted by ©. 

* Only one case where the “goals” are zero is considered for simplicity. 
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The closed-loop cost J“*(2) to be minimized by the first period control u(0) 

is, following the discussion of Section 2, as follows 

(3.7) I“ (2) = IJp(2) + Ic(2) + Jp(2) 

where 

(3.8) Ip(2) = zru7(0) + Co(1) 

is the deterministic part of the total cost, and the stochastic part of the cost is 

divided into the “‘caution” and “‘probing’”’ components given respectively, by 

(3.9) Je(2) =} tr {Ko(1)%(1|0) + Ko(2)Q(1)} 

(3.10) Jp(2) =3 tr {Foxx(1)Zo(1|1)} 

Simulations were done for several cases. The values of the parameters that 

define each case are given in Table 1. The weighting of the final state was taken as 

q(2) = 1 in each case. 

“TABLE 1. 
CASES SIMULATED 

Parameters : 
Case a 60) =” 0) c Q q(1) r 

I 0.7 =E.5 0.5 3.5 0.2 1 1 
Il 0.7 —06.5 0.5 3.5 0.2 1 0.2 

Ill 0.7 —0.5 0.5 3.5 1 1 0.2 
IV 0.7 0 0.5 3:5 0.2 1 0.2 
Vv 0.7 ~O5 0.5 1 0.5 1 0.2 
VI 0.25 0.5 0.5 1 0.5 1 0.2 
Vil 0.25 =—@5 0.5 1 0.2 0 0.2 

Figure 1 presents, for Case I, the plot of the closed-loop cost from the initial 

time and its three components as defined above. The deterministic component 

(obtained by using the CE control as nominal) attains its minimum at the value 

u~"(0) = 2.53. The caution part Jc is a monotonically increasing function of u(0). 

This is due to the fact that a large input applied through the imperfectly known 

gain b will lead to a large uncertainty. The probing term Jp is monotonically 

decreasing in the first period control—the larger this control, the more accurate 

estimates will be available subsequently. 

The minimum of the closed-loop cost J is attained at u"(0) = 1.33. This 

value is below u because the benefit from probing (decrease of Jp) is much less 

than its cost, due mainly to the steep increase of Jc. Thus the problem under 

consideration the caution dominates the probing. 

An interesting and important question is what is the value of the optimal first 

period control and how does the (suboptimal) u“ relate to it. Also the compari- 

son with the open-loop optimal feedback control u°'°",, the adaptive controls of 

MacRae [M2] and Chow [C2], denoted, respectively, as u“™” and u*© is of 

interest.* The three learning algorithms AM, AC and CL used CE controls as 

nominal. 

* For the problem simulated here the algorithm of Rausser and Freebairn [R2] coincides with the 
one of MacRae [M2]. 
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3 First 
period 
control 

Z yet / ce 

Figure 1 The Closed-Loop Approximate Cost and Its Components 

Since, for the problem under consideration the optimal control cannot be 

obtained exactly, a Monte Carlo simulation was carried out. Note that the optimal 

control prior to the last stage, u(1), is of the open-loop type and is given by 

(3.11) u*(1)= —[r+(6(1))? +=" (1|1)]) '(1)Lax(1) +c] 

where 6(1) is the estimate of b after x(1) has been observed. 

The expected value of the cost (3.2) for a given value of u(0) was evaluated by 

going through the following steps in each run 

1. The true 5 was obtained from a random number generator as 

N{6(0), =°"(0)], as implied by our Bayesian assumption. 
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2. The state x(1) was computed using (3.1) with the chosen u(0) and a noise 

v(0)~ AN[0, Q). 

3. With the realization x(1) a new estimate b( 1) was obtained and u*(1) was 

4. The cost (3.2) was then calculated. 

then applied to yield x(2). In this case instead of generating v(1) its 

variance was directly added to the resulting [x(2)}° in order to reduce the 

variability of the result. 

This procedure was repeated M = 10,000 times and the average cost, J(2), 

together with its standard deviation are shown in Table 2 for the control 

algorithms considered. Each set of runs for a given first period control u(0) used 

the same set of random numbers. This was done in order to get a meaningful 

comparison of the values of the cost for different values of u(Q). Tne optimum 

control was obtained from these extensive runs by using a line search procedure; 

its value and the corresponding cost are also given in Table 2. 

Cases I and II are among thoSe considered in [M2]; however, the goodness of 

che controls has not been investigated there. The reasen OLOF performed quite 

well and, in some cases, better than all the other “learning” algorithms seems to 

PERFORMANCE OF VARIOUS CONTROL ALGORITHMS 
TABLE 2 

First period 
Control Control algorithm 

and 
Case Performance CE OLOF AM AC CL OPT 

u(0) 2.53 1.71 1.74 1.998 1.33 1.63 
I J 18.158 17.239 17.246 17.396 17.350 17.230 

a; 0.105 0.091 0.091 0.096 0.085 0.089 

u(0) 5.30 2.69 2.68 3.30 2.00 2.46 
II J 17.178 12.533 12.530 13.100 12.652 12.497 

a; 0.135 0.101 0.101 0.110 0.096 0.099 

u(0) 5.30 2.69 2.49 2.96 2.04 2.85 
Ill J 18.474 14.554 14.633 14.550 15.070 14.538 

a; 0.148 0.122 0.122 0.123 0.122 0.122 

u(0) 0 0 0 0 2.40 1.67 
IV J 24.10 24.10 24.10 24.10 18.70 17.60 

a; 0.078 0.078 0.078 0.078 0.22 0.20 

u(0) 1.51 0.77 0.78 0.62 0.58 0.89 
Vv J 2.114 1.889 1.888 1.921 1.933 1.881 

a; 0.018 0.017 0.017 0.017 0.017 0.017 

u(0) 1.25 0.62 0.69 0.33 0.55 0.70 
VI FI 1.563 1.414 1.411 1.467 1.422 1.411 

oy 0.012 0.011 0.041 0.011 0.011 0.011 

u(0) 0.34 0.49 —0.10 0.32 0.08 0.85 
Vil J 0.656 0.633 0.680 0.659 0.681 0.605 

Co; 0.004 0.004 0.005 0.004 0.005 0.004 
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stem from the short horizon of the problem. Furthermore, except for case IV, the 

accidental learning of b at time 1 also contributed to this. In case IV, if u(0)=0 

then there is no accidental learning and active probing is needed. In all cases 

except IV caution dominates probing. In the last case, u is second best while in 

the other cases it is worst. 

These results point out that there is no superiority between the algorithms 

considered. The more sophisticated «!go:.ihms (AM, AC, CL), which are subopti- 

mal, are not always better than the O'.OF or even the CE. Note also the small 

difference between the performance of the various algorithms. Further work is 

required where these algorithms have to be compared on realistic problems. In 

order to see the interplay between caution and probing longer horizon problems 

should be considered. Since meaningful comparisons can be made only by Monte 

Carlo methods, the required computation time for results that can be stated with 

high significance appears to be the main stumbling block. Another aspect to be 

investigated is the trade-off between computational complexity and performance. 

Some preliminary results in this direction have been recently obtained by Norman 

[N1]. 

5. CONCLUSION 

The structural properties of the closed-loop and feedback type controllers for 

stochastic problems have been discussed. It has been pointed out that a closed- 

loop controller “‘anticipates” the future observations via their statistical descrip- 

tion. As a consequence of this, a closed-loop controller has the capability of 

probing the system to reduce the existing uncertainties. On the other hand, this 

controller will have to exercise caution in view of the uncertainties in the system. 

When minimizing the closed-loop approximation of the cost, such a controller will 

also achieve a trade-off between the present and future actions according to the 

information available at the time the corresponding decisions are made. Simula- 

tion results have been presented that compare several suboptimal control 

algorithms as well as the optimum. 
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APPENDIX 

THE CLOsED Loop OPTIMIZATION OF THE COST-TOG-GO 

Rewriting (2.16) in the stochastic dynamic programming form with the 

assumed closed-loop-optimal expected cost-to-go of the form (2.19) yields 
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(A.1) AJ§(N—j)= min E{Log(j) 5x(j)+2 5x'(j)Loxx 5x()) 

+ boa(j) Sul) +3 5u'(j) douu(/) Sul) 

+ go(j +1) + E[po(j +1) Sx(j + 1) 

+3 8x'(j + 1)Ko(j +1) dx(j+1)|P"*"P"} 

j=k+1,...,N-1. 

Using (2.17) and retaining terms up to second order only, the above becomes 

(A.2) AJ$(N-j)= min {E{Lx(j) &x(j) +3 5x'(j) Lo.xx(j) 5x()) 

+ bou(j) Su(j) +3 5u'(j)bouu(j) Su(j) + gol +1) 

+ po(j + 1fox(j) 5x(j)+ pol + 1)fow(j) Su j) 

M : ‘ 

+ polit) ¥ el 5x'(j)fo.c( i) 5x(j)+ 5u'(j)fose(j) 5x(i) 

+3 8u'(j)fouu(j) 5u(j)]+2 5x’(j)fo.x(j)Ko(i + 1)fox(j) 5x(j) 

+ 5u’(j)fo,u(j)Ko(j + 1fo.x(j) 5x(/) 

+3 5u'(j)foe(j)Kolj + 1)fow(j) 5u(j)|F’} 

+3 tr [Ko(j + 1)Q(j)]} 

where Q(j) is the covariance of v(/). 

Denoting 

(A.3) Ho(j) * Lo(j)+ bo(j) + poli + Dili) 

and rearranging the terms in (A.2) it becomes 

(A.4) 

Denote 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

o(N—-j)= min E{Hox(j) 5x(j) + Ho.a(j) du(j) 

+3 8x'(j)[Ho.xx(j)+fo,x(j)Ko(j + Uifox(/)] 8x(/) 

+ 6u'(j)[Ho.wx(j) +f0,0(j)Kolj + 1)fo.x(j)] x(/) 

+3 8u'(j)[Ho,wu(j) +fo,0(j)Kolj + Dfo,u(j)] Su(j) 

+ go(j+1)+2 tr [Ko(j + 1)Q(j)]| P’}. 

Ho xxi) * Ho.xx(j) + f0,x(j)Ko(j + 1)fo,x(/) 

Houx( i) * Ho,ux(j) + fou j)Kolj + 1fo.x(J) 

Hoa j) * Ho,wal j) + fo,u(j)Ko(j + 1)fo,u(/) 

Ao xx j)* Hoax j) Hou i) Ho,ux( j)- 

With these notations, the optimal perturbation control resulting from (A.4) is 

(A.9) 5u*(j) = — Ho,0ul j)[Houx(j) 5&(j|j) + Holi) 
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where 

(A.10) 5%( j| j) = E[Sx(j)|F’]. 

A necessary and sufficient condition for the existence and uniqueness of the 

solution to the perturbation problem is that (A.7) be positive definite. Note that 

this is guaranteed if the nominal is a local minimum for the deterministic problem. 

In this case (A.8) will be positive semidefinite. Reinserting (A.9) into (A.4) yields 

(A.11) AJ3(N —j) = E{Hos(i) 8x(j) — Hoe i) oseuli) Ho (i) 

— Howl j) Hosaul j) Hoax j) 5R(j |) 

+3 8x'(j) Hox j) 5x(j)— 5R(j| j)o.xx(j) 5x(j) 

— Hoyo j) Haul j) Hoax j) 5x) 

+3 6% (| j)bo.xx 5X(j|) 

+ Howl j) Hoan j) Ho,ux( j) 5%(j| j) 

+3Ho,0( j)Ho,ua( j) Hou j)|P’}+ golj + 1) 

+3 tr [Ko(j +1)Q(j)]. 

Notice that ; 

(A.12) E[8x'(j)4o.xx(j) 5x(j)|P’] 

= 52'(j|j)Foxx(j) 5%(j| j) + tr [ox j)Zo( ji) 

where Xo( jj), is the covariance of the (future) updated state, along the nominal. 

With this, (A.11) can be rewritten as follows: 

(A.13)  AJ$(N—j) = gol + 1)—3H oj) Homa j)How(j) 

+3 tr [Ko(j + 1)Q(j)+ Fox(j) Zolli] 

+ E{{Ho,x(j)— Ho,ux(j) Huw j) Howl j)Y 5x(j) 

+3 5x'(j)[Hoxx(j) — Goxx(j)] 5x(j)|P’}. 

Thus, it can be seen that (A.13) is indeed the assumed quadratic form of 

(2.19) and the recursions for go, pp and Ko are, using notations (A.5)-(A.8) 

(A.14) — go(j) = go(j+1)—2Hou(j) Hou0l j)Hoa(j) +2 tr [Ko(j + 1)Q()) 

+ Ho sx(j)Zo(j|/)]j =N—1,...,k +1; go(N) =0 

(A.15) Pol j) = Hox(j)— Houx( i) Ho,00( i) How i) 

j=N-1,...,k+1; po(N)= ox 

(A.16) Ko(j) = Hoxx(j) — Boxx(j) 

j=N-1,...,k+1; Ko(N) = Won. 

In order to separate the stochastic effects in the expected cost, introduce 
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(A.17) yo(j) = Yo i + 1)—3How( J) Ho,uu( i) Howl J) 

Then 

joN—1,,..,&+1; Yo(N) = 0. 

N-1 

(A.18) go(k +1)= yolk +1)+2_ » Pal [Ko(j + 1)Q(j) + Foxx(f)ZoC ii) 
j=k+ 

This completes the proof of (2.20). If the sequence of nominal controls is optimal 

for the deterministic problem, then the Hamiltonian (A.3) achieves its minimum 

and Ho. = 9 (unless one has a constrained optimization and the minimum occurs 

at the boundary). In this case yo(j) = 0 for all j. 
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