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Annals of Economic and Social Measurement, 5/3, 1978 

FIRST ORDER DUAL CONTROL’ 

BY ALFRED L. NORMAN 

For large econometric models, computational simplicity is a desirable property of active learning 
strategies. This paper presents and evaluates one such strategy, first order dual control, DUAL1. In the 
development of DUAL 1 the unknown parameters are treated directly without augmentation to the states. 
To calculate the current period control requires only one calculation of the Ricatti system. The Monte 
Carle comparisons with two passive learning strategies, heuristic certainty equivalence, HCE and open 
loop mean variance, OLMV, indicate the relative performance of the HCE and OLMV strategies is 
problem specific and there exist problems where parameter estimation error can lead to poorer performance 
for the DUAL strategy than the OLMV strategy. 

I. INTRODUCTION 

Consider the following stochastic control problem: 

Determine 

J*(Xj-1)= min a J(Xj-1) 
pUzeia--- 

where 

(1.1) J=E) ¥ G(X,-a,)'W,(X,— a,)+(U,— B,)’ WU, - B,)|P-1] 
J 

subject to 

(1.2) X, = AX,_; + BU, + CZ, + €, 

with the following observation pattern: P,_,:X, k =—N+1, N+2,...t-1 is 

observed without error prior to executing U,, and where 

X, is an n-vector of state variables, 

U, is an m-vector of control variables, 

Z, is an r-vector of exogenous variables which are assumed known through- 

out the planning horizon, 

€, is an n-vector of disturbances with the following characteristics Ee, = 0, 

Ee, ,=, e, and €, are statistically independent. 

A, B, C, «re nXn, nXm, and n Xr matrices respectively. These matrices 

which contain unknown constant elements can arise directly from a 

model specified as a reduced form (1.2) a model specified as a structural 

form 

(1.3) AoX, = AsX,-1 + B,U, + CZ, + & 

in which case, assuming Aj’ exists, A = Ag'A,, B= Ao'B,, C= AoC. 

W, and W, are symmetric weighing matrices and [B’W,B + W,] is positive 

definite. 

' Research supported by NSF Grant Soc. 72-05254. 

311 



Prior to the control experiment the system (1.2) has been observed for N 

periods under a regime of nonoptimal control. 

For large conometric models there is a need for computationally simple active 

learning strategies for non-Bayesian estimation. The purpose of this paper is to 

present and evaluate one such estimation and control strategy, first order dual 

control, DUAL1. 

For the stochastic control problem under consideration the optimal stochas- 

tic control law is not computable. To formulate an estimation and control strategy 

requires replacing the unknown parameters with proxy variables. Active learning 

strategies are based on replacing the unknown parameters with random variables 

whose means equal the parameter estimates and whose covariances are based on 

the actual data plus anticipated path. The Bayesian dual control strategy [1], [9], 

could be adapted to non-Bayesian estimation; however, this approach has a major 

disadvantage for large econometric models. For unknown parameters Tse and 

Bar-Shalom augment the state vector. As the computation of the Ricatti matrices 

is cubic in the number of states, [5], augmenting the state will incur large 

computational costs for a large econometric model. The first order dual control 

strategy, which is derived in Appendix 1, approaches the estimation and control 

problem without augmenting the unknown parameters to the states. As shown 

in Appendix 1, the Ricatti matrices for the linear and quadratic term are equi- 

valent for the deterministic and perturbation control. This implies that the 

Ricatti matrices need be computed only once to compute the current period 

control. 

Two Monte Carlo experiments were designed to test the performances of 

DUALI, with two passive learning strategies, heuristic certainty equivalence, 

HCE, and open loop mean variance, OLMV. In the HCE strategy the unknown 

parameters are replaced with the estimates, which are updated with each new 

observation. In the literature [2], [4], [7], HCE is generally known as certainty 

equivalence, CE. The adjective heuristic is added to emphasize the fact this 

strategy is generally not optimal. HCE is also known as linear decision rule, LDR, 

[6], and also forced separation [3]. In the OLMV strategy the unknown parame- 

ters are replaced by statistically independent random variables whose means 

equal the parameter estimates and whose covariances equal the estimate 

covariances. The means and covariances, which are updated with each observa- 

tion, are assumed fixed over the planning horizon. OLMV is known as uncertainty 

adverse [4], unknown parameters without learning [2], adaptive decision rule. 

[6], and sequential stochastic control $1 [7]. The estimator considered in this 

paper is ordinary least squares. 

The two Monte Carlo experiments are presented in Section II. In the first 

experiment the terminal target is varied thus varying the value of anticipation. 

In the second experiment the dynamics of the model are varied. For both 

experiments the relative performance of the HCE and OLMV strategies varies 

between cases. The importance of active learning in the DUAL1 is also problem 

specific. 

In the concluding section statistical inferences are drawn concerning the 

relative effectiveness of the alternative strategies. The fact that there is no 
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dominance between the HCE and OLMV strategies is inferred. In comparing the. 

OLMV and DUALI, there is an indication that active learning can lead to poorer 

performance in problems where estimation error leads to overestimating the 

value of probing. 

Il. SINGLE EQUATION EXPERIMENTS 

To gain insights into the performance of alternative estimation and control 

strategies, it is desirable to design experiments where a single parameter is varied. 

The first experiment was designed to investigate the effect of varying the value of 

the terminal state track. The effect of varying the terminal state track is to vary the 

importance of accurately estimating the true control law for the final decision, i.e. 

vary the importance of anticipating future observations on prior decisions. The 

second experiment was designed to investigate the effect of varying the dynamics 

of the system. 

The specification of the two experiments is as follows: 

Objective function 

Weights: W, = 1.0; W,=0.001 

Time horizon: 10 periods 

Tracks: a,=0 t=1,2,...9 ajo is defined below 

B,=-1.0 -t=1,2,...10 

Unknown system 

Equation: X, = y,X,-1 + y2U, + ¥3Z, + & 

Disturbance: e, ~ N(0, 1) 

Exogenous variable: Z, = 1.0 all t 

Prior observations 

Number of prior cbservations: 5 

Initial state: X_;= 

Sequence of fixed controls: U, = —1, —2,0,0,-2. t=—4,--3,..., 

Exogenous Z, = 1.0 all ¢ 

Experiment 1: y, = 0.00001, y2=0.1, y3= 1.0 

Case 1 Case 2 Case 3 Case 4 

40 0.0. 10.9 100.0 1000.0 

Experiment 2: aj9= 10.0, y: = y2= y, ¥3= 1.0 

Case 1 Case 2 Case 3 

Y 0.1 20. ¢: 2.0 

Examining the specifications of the experiments, the following items are 

noted: W,<« W, which implies “‘cheap” control; tracks imply do-nothing until the 
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final period; the system in experiment 1 has very little dynamics; and the prior 

observations were designed so that the variances of the parameters at the first 

decision were large. 

Both experiments were evaluated by a Monte Carlo experiment for the three 

alternative estimation and control strategies together with the true stochastic 

control law which could be employed if the parameters were known, KNOWN. 

The KNOWN strategy provides a lower bound to judge the performance of the 

other strategies. A normal random number generator approximating N(0, 1) was 

employed to generate the disturbances. The process started with generating prior 

observations so that each realization started at a different position with different 

initial estimates and covariances. For each case the Monte Carlo experiment is 

based on 100 realizations. The results for experiment 1 are as follows: 

EXPERIMENT 1 RESULTS 

Case 1 

a@19=0 

Case 2 

19= 10.0 

Case 3 

ai90= 100.0 

Case 4 

19 = 1000.0 

Mean Std Mean Mean Std Mean Mean Std Mean Mean Std Mean 

KNOWN 5.25 0.2 5.65 0.2 54 0.2 4,947 1 
HCE 17.36 3.8 31.98 4.0 1,726 226.7 161,511 22,096 
OLMV 9.67 0.4 46.53 1.6 3,512 256.1 83,697 15,894 
DUALI 10.49 0.5 18.72 0.9 163 5.6 5,963 46 

The relative performance of the DUAL1 to the HCE and OLMV strategies 

demonstrates the increasing importance of anticipation as a9 increases from 0 to 

1000. With increasing values of ajo the last term dominates the objective 

function; hence it is not surprising that the performance of the DUAL1 appears to 

be converging towards the KNOWN as aio increases. 

The relative performance of the HCE and OLMV strategy can be attributed 

to the fact that these two strategies have very different learning characteristics. To 

discuss learning for problems involving more than one unknown parameter 

requires a learning statistic. One possibility is the F statistic’ for the hypothesis 

that A and B are equal to zero. If we examine the case for a;9= 100 for 70 

realizations, the HCE had a higher F statistic prior to the 10th decision and better 

performance. For only 7 realizations did the OLMV have both a higher F statistic 

prior to the 10th decision and better performance. For the case where ajo = 100 

for 57 realizations, the OLMV had higher 10th period and better performance, 

whereas the same was true for the HCE in only 21 cases. As the OLMV strategy 

has covariances in both the numerator and denominator, it cannot be a priori 

assumed that the OLMV strategy is more “‘conservative” than the HCE strategy. 

AS a9 is increased the OLMV strategy becomes less “‘conservative’’ that the HCE 

strategy especially in the 9th period decision. For a; ,= 10,000 the OLMV 

strategy was superior to the HCE strat gy. 

The results for experiment 2 are as follows: 

? This statistic may not be optimal as the relationship between the F statistic and performance is 
not known. 
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EXPERIMENT 2 RESULTS 

Case 1, y=.1 Case 2, y= 1.0 Case 3, y=2.0 

Mean Std Mean Mean Std Mean Mean Std Mean 

KNOWN 5.65 : 5.22 0.2 5.3 0.2 
HCE 38.45 . 72.1 36.0 454.8 153.0 
OLMV 45.61 d 15.1 1.0 289.0 102.0 
DUAL! 18.76 X 19.0 2.1 291.6 102.5 

What is interesting about experiment 2 is that for case 2 the OLMV strategy 

outperforms the DUAL strategy. As an aid to discussion a frequency graph of 

the outcomes for case 1 and case 2 is displayed on figure 1. 

EXPERIMENT 2 

FREQUENCY DISTRIBUTION OF OBJECTIVE FUNCTION 
CASE 1 y =0.1 CASE 2 y =1.0 
INTERVALS: (M — 4,M + 4] INTERVALS: (M — 2, M + 2] 

HCE HCE 

TAIL a TAIL 

91, 93, 127, 247, 436, 474 58, 93, 94, 380, 575, 1546, 3240 

Ww fo) 

NR o NRO o 

Se FREQUENCY FREQUENCY 
3 

0 j | Ball 0 | | = a 
8 1624324048 56647280 2 6 1014182226 303438 

MIDPOINTS OF INTERVALS, M MIDPOINTS OF INTERVALS, M 

OLMV OLMV 

TAIL 

96, 106 
TAIL 

42, 50, 50, 76 

Ww o Ww o 

N oO N o 

FREGUENCY 
r= 

FREQUENCY 
3 

ULE Babi seer 0 
8 162432404856647280 2 6 10141822 263034 38 

MIDPOINTS OF INTERVALS, M MIDPOINTS OF INTERVALS, M 

DUAL 1 DUAL 1 

7“ 38 Ww o 

TAIL 
43,47,48,65 
83, 86 

N °o NR Oo 

— ° 
FREQUENCY 

3 
FREQUENCY 

+e Lia. 0 4 : 
8 16 2432404856647280 . 2 6 101418 2226 303438 

MIDPOINTS OF INTERVALS, M . MIDPOINTS OF INTERVALS, M 



As is explained in Appendix 1 the DUAL control algorithm weighs between 

two opposing methods of reducing the uncertainty: caution to reduce the eftect of 

the path on present uncertainty and probing to reduce the effect of future 

uncertainty in the parameters. With increasing dynamics two effects will increase 

the importance of caution. First, increasing learning will generally take place 

without probing, thus decreasing the marginal value of probing. Second, probing 

will have a larger effect on the subsequent path, thus increasing the marginal cost. 

Consider first the case where y = 0.1. The median of the HCE strategy lies to 

the left of the OLMV strategy. The HCE strategy for this case is generally 

more active than the OLMV. With little dynamics the cost of probing is primarily 

one period. The HCE strategy generally outperforms the OLMV ir the terminal 

period. The DUAL1 strategy appears to be probing in comparison to the OLMV 

strategy. With respect to the HCE strategy the DUALI1 frequently is more 

cautious. 

What is interesting about case 2 is the performance of the OLMV strategy 

relative to the DUAL1 strategy. The distribution of the OLMV strategy appears 

to lie slightly to the left of the DUAL1 strategy distribution, An examination of 

the output reveals that for cases where the initial estimate of B is close to zero, the 

DUALI strategy frequently overestimates the value of probing. An example is 

shown below: 

Example of excessive probing 

HCE OLMV DUALI 

Ao 0.€07 0.607 0.607 

Bo 0.157 0.157 0.157 

U; 0.631 ~0.978 —8.109 

xX 0.304 ~1.305 —8.437 

OBJ 39.0 12.4 47.7 

With By = 0.157 the DUAL1 seriously underestimates the impact probing on 

the subsequent path. In the second period the DUAL1 must correct the first 

period control, which has incurred a large cost on the first period state. From 

experiment 1 one would assume that a;9 were increased from 10 to 1000, the 

performance of the DUAL1 strategy would improve relative to the OLMV 

strategy. The results for 20 realizations are as follows: 

Experiment 2 Case 2a 

y=1.0 Q19 = 1000 

Mean Std Mean 

OLMV 10,225 5,153 

DUALI 2,737 601 

Increasing a9 to 1000 greatly increases the value of anticipating the future 

observation pattern. Errors in the first period decision are dwarfed by the gain in 

performance in the final period. 

The effect of increasing the dynamics from 0.1 to 1.0 on the relative 

performance of the HCE strategy to the OLMV strategy is twofold. The increased 
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dynamics generate more extreme values in the tail of the HCE distribution and at 

the same time increase the passive learning of the OLMV strategy to a more 

nearly optimal level. 

In case 3 the DUAL strategy utilizes very little probing. An example 

follows: 

HCE OLMV DUALI 

U; 72.06 65.151 65.161 

OBJ 1520.0 855.7 856.5 

With y= 2.0 the DUALI strategy probes slightly more than the OLMV 

strategy. If y is increased to 3.0, the DUALI strategy is slightly more cautious 

than the OLMV strategy. 

III. CONCLUSIONS 

For the Monte ~ arlo experiments statistical inference can be made concern- 

ing the relative merits of the alternative estimation and control strategies. In 

describing the tests the expression DUAL1 >OLMV means 

Ho: Meanpyai = Meangy my versus H; : Meanpyari < Meano.mv.- 

The test employed is a t-test of the difference of the two means for paired 

observations. To test whether the performance of the HCE and OLMV strategy is 

problem specific the following tests were considered 

Experiment Test t-statistic 

1 Case 4 OLMV > HCE —2.8 

1 Case 2 - HCE >OLMV —3.6 

The conclusion is reached that the performance of the HCE and OLMV is 

problem specific. This result amplifies the previous Monte Carlo experiments in 

HCE and OLMV strategies [6], [7]. In [6] Prescott found that the OLMV strategy 

was superior to the HCE for each problem considered. In [7] Sarris and Athans 

have an example with constant coefficients where the mean of HCE strategy is 

lower than the mean of the OLMV for 20 realizations. In comparison with Monte 

Carlo experiments of other passive learning strategies [3], [8] the conjecture is 

reached that it is unlikely a particular passive learning strategy will dominate its 

competitors. 

The results of Experiment 2 Case 2 raise the issue of whether a passive 

learning strategy can produce better results than an active learning strategy. The ¢ 

statistic for OLMV >DUAL1 is —2.0 Experiment 2 Case 2 was repeated twice 

with the following results: 

OLMV DUALI 

Case Mean Std Mean Std t for OLMV > DUALI1 

2b 16.15 1.3 22.85 3.7 —1.91 

2c 16.66 1.6 19.83 1.7 — 2.09 

Sum 15.94 0.8 . 20.54 1.5 — 3.22 
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From these resul..: . =e assumed the OLMV strategy is superior to the 

DUALI strategy for this problem. 

University of Texas at Austin 
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APPENDIX 1 

Like the Tse, Bar-Shalom Dual Control, the DUAL1 approach divides the 

problem to be solved into the current control, future deterministic control, and 

future perturbation control. 

The assumed dynamics for the DUAL1 are 

(A.1) X,=A,X,-.+ B,U, + GZ, + €, 

As B,, Cc are random variables whose means are equal to the estimates obtained 

from the observed data and whose covariances are obtained from the observed 

data plus future nominal data through t — 1. Partitioning the random variables into 

their deterministic and random components, e.g., 

X,=X,+AX, A,=A+AA,etc., 

the deterministic component can be written 

(A.2) X, = AX,-1+ BU, + CZ, 

and ignoring second order terms, e.g., AA,AX,, the stochastic component is 

(A.3) AX, = AAX,_, + BAU, + AA,X,_, + AB,U, + AGZ + €;. 

The deterministic component problem is 

(A.4) Determine J*(X,) = min | I(X;) 



where 

T — —_ — —_ 
(AS) J= EY EX —a)' Wi(X— 4) +2(U, — B,) WU, - B)] 

subject to 

(A.6) X, = AX,-1 + BU, + CZ, 

By a straightforward application of recursive dynamic programming the 

solution of this problem can be written as 

(A.7) J*(X,) = Qi(k + 1) + X,Q2(k + 1) +4X,O5(k + 1X. 

The stochastic component problem is 

(A.8) J*(AX,)= min — J(AX,) 
AUK+1 grees AU; 

where 

T — 
(A.9) J=E\ ¥ GAX(W,AX,+AX'W,(X,—a,)+34U,W,AU, 

t=k+1 

+AU'W,(U, B)|%..)| 

subject to 

(A.10) AX, = AAX,_, + BAU, + AA,X,_, + AB,U, + AG7, + €,. 

Proceeding by the usual recursive dynamic programming formulation assume 

the solution can be expressed as a quadratic form 

(A.11) J*(AX;)= Gali + 1) + AXjOs(j +1) + AX4O¢(j + 1)X; +34XjO7(j + AX, 

then, 

J*(AX;-1)= min EQ(AX;W, AX; + AX;W;(X;—a))+34U;W2AU; 

(A.12) +AU}W,(U; — B;) + Oa(j + 1) + AX4Q5(j + 1) 

+AX'Oo(j +1) X) +34X40(j + 1)AX;|P;-1}. 

Substitution for AX; and collecting terms 

(A.13) J*(AX;-1)=min [3(AAX;-, + BAU;)(W, + Q,(j + 1)(AAX)-. + BAU) 

+(AAX;-1 + BAU;)'[(W, + Qc( + 1))X;— Wray + Os( + 1)) 

+3AU;W,AU; +AU;W2(U; -B;) 

+; + Efe(W, + O,(j + 1))e}+ Qu(j+1)] 
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where 

®, = Ef{(AA,X)-, + ABU; + AGZ;)'(W, + O,(j + 1) (AA;X}-1 + ABjU; + AGZ,). 

Solving for AU; 

oe AU; = -[B(W, + O,(j+1))B+ W2] ‘[B(W, + Oj +1))AAX_; 

+ B{W, + Q6(j + 1))X;— Wie; + Qs(j + 1)}+ W2(U;—B;)]. 

Let 

(A.15) Sj41=Wi+Q,(j+1); D;=[B’S)1B+W2]; G;=D;" '[B’S;4,:AAX;-1] 

Assuming Q;(j + 1) = Q.(j +1) 

Q.6(j +1) = Q3(7 + 1) (from the deterministic component) 

Q;(j +1) = O.(j + 1) (from the deterministic component) 

then 

(A.16) AU;=G,AX;-;—Dj;' [BS;+1)X;— Wa; + Q2(j + 1) + W2(U;—B;)]. 

Substituting for X, and U, (A.16) can be reduced to 

(A.17) AU; = G,AX;}-_, 

where G; is the same as the deterministic component. 

Substituting for AU;, X; and U; in (A.13) and collecting terms 

(A.18) Q,(j)=A'S;.:A+ GiD,G; = Q3()) 

(A.19) O<(/)= A'S;4:A+ G;D,G; = Q;(j) from the deterministic component 

(A.20) Qs(j) = G/B’S;.,Bg; + A’S;.,Bg; + G/B’S,.; CZ; + A’S)41CZ; 

+ A'(Q2(j +1) — Wjaj) + GBY Q2(j + 1) — Wray) + GjWe(g;— B)) 

= Q,(j) (from the deterministic component) 

(A.21) Q4(j)= Q4(j +1) +; + Efe}S).16;)}. 

Thus, the cost to go, i.e., perturbation plus deterministic component prob- 

lems can be written 

(A.22) J‘(X,)=J*(X,) + J*(AX;) 

= O,(k +1) + Qg(k + 1) + X,.O2(k + 1) +3XL.O3X,. 

The only term which depends on xX, and U, is O,(k + 1). Given tke solution to 

the perturbation control problem, U,, is obtained from 

(A.23) J*°(X,-1) = min EGG(Xt — 14)’ Wi( Xt ~ 04) +2( Ue — Br)’ Wo( Ur — Br) 

+ I—(X) Pes} 
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= min [(X, — ay)! W(X — ay) +3(U; — By)’ W2(U, — By.) + Qa(k) 

+ O,(k +1)+X,Q(k + 1) + X,Ox(k + 1)X;]. 

Because ®;’s must be evaluated along the future nominal path, U, must be 

obtained by numerical methods. For the first order DUAL1, Q,(k+1) and 

Q;(k+1) are equivalent for the deterministic and perturbation component 

problems; hence, Q,(k +1), Q2(k +1) and Q3(k +1) need be solved only once to 

compute U,. For the example shown, a quadratic fit linear search was employed to 

compute single control variable problems and a quasi-Newton algorithm can be 

employed for multi-variable problems. It should be noted that there are two 

considerations in reducing the value of ®;: the nominal path [X; ie U, Z) and the 

covariance elements of the [AA;, AB;, AC;]. 

To compare the DUAL1 with the MacRae adaptive control Table 2 of [4] 

was computed for the DUAL1 with the following results: 

TABLE 2 of [7] 

FIRST PERIOD POLICIES FOR DIFFERENT HORIZON LENGTHS 

N = Horizon; Goals = 0 

a=0.7 b=-0.5 c=3.5 
M@=0.2 re’ =0.5 Xo=0.0 

N=2 N=4 N=8 N=16 
q:r DUAL1 Adapt DUALI1 Adapt DUAL1 Adapt DUALI1_ Adapt 

5 0.622 0.622 1.091 1.082 1.442 1.394 1.547 1.460 
3 1.747 1.740 2.521 2.449 2.920 2.688 3.096 2.705 
1 2.707 2.682 3.245 3.056 3.456 3.083 3.688 3.084 
0 3.206 3.138 3.351 3.146 3.531 3.147 3.725 3.147 

The DUAL I control is slightly more “‘aggressive”’ than the MacRae adaptive 

control. Bar-Shalom and Tse have examined the case g:r is 5:5 and N=2 ina 

Monte Carlo experiment. They show that the original version of the dual control 

produces a first period decision of 1.33. The basic difference between DUALI1 

and the Tse and Bar-Shalom dual is the fact that the DUALI1 contains no 

covariances of the state and unknown parameters. If this term is eliminated from 

the objective function for the Tse and Bar-Shalom dual control, the first period 

decision is 1.746. 
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