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METHODOLOGY 

AN APPROACH TO THE FEFDBACK CONTROL 

OF NONLINEAR ECONOMETRIC SYSTEMS 

BY GREGORY CHOW* 

Using the method of dynamic programming, an approximately optimal feedback control solution is 
obtained to minimize. the expectation of a quadratic loss function given a system of nonlinear structural 

tric equations. Both the cases of known parameters and uncertain parameters are treated. The 
desirability of ‘having a solution in feedback form is discussed. The Klein—Goldberger model serves as an 
illustration. 

In this paper, I present an approach to perform approximately optimal feedback 

control to minimize the expectation of a quadratic loss function given a system of 

nonlinear structural econometric equations. The method is explained for simul- 

taneous equation systems with given or unknown parameters (Sections 1 and 2). 

The usefulness of having a solution in feedback form is discussed (Section 3). The 

Klein—Goldberger model is used as an illustration (Section 4). 

1. FEEDBACK CONTROL FOR KNOWN ECONOMETRIC SYSTEMS 

The solution presented in this section for the feedback control of a nonlinear 

econometric system with known parameters has been obtained in Chow (1975, 

Chapter 12) and Chow (1976). The former reference applies the method of 

Lagrange multipliers while the latter applies the method of dynamic programming 

to the control of an econometric system with unknown parameters and deduces 

the solution as a by-product. The exposition in this section applies dynamic 

programming to the case of known parameters directly. It attempts to relate the 

theory of control for nonlinear systems to linear theory and emphasizes the 

computational aspects of the solution more than the previous references. 

The i-th structural equation for the observation in period f is 

(1.1) Vie = D;(y,, Vr—15 Xt Nie) + Eix 

where y;, is the i-th element in the vector y, of endogenous variables, x, is a vector 

of control variables, ;, is a vector of parameters and exogenous variables not 

subject to control, and ¢; is an additive random disturbance with mean zero, 

variance o; and distributed independently through time. In this section, the 

elements of n;, are treated as given, leaving ¢€;, to be the only random variables. 

Section 2 will deal with uncertainty in n,, which may also incorporate non-additive 

* I would like to thank Rehka Nadkarni for skillful computer programming. Andrew B. Abel and 
Sharon B. Megdal for excellent research assistance and the National Science Foundation for financial 
support, Grant SOC74-11937. Comments from two anonymous referees have been much 
appreciated. 
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random disturbances if necessary. Lagged endogenous variables dated prior to 

t—1 will be eliminated by introducing identities of the form y,;= y;,-,. Control 

variables will be incorporated in the vector y, for two purposes. First, by defining 

Yer = Xj, One Can write welfare loss as a function of y, alone. Second, lagged control 

variables can be eliminated by identities of the form Yn = Yxs-1 = Xje-1. The 

system of structural equations (1.1) can be written as 

(1.2) Vt = Dy, Ve-15 Xp MH) +E, 

with ® denoting a vector function, and with Ee,e; =. 

We assume a quadr tic loss function for a T-period control problem, 

rf + 
(1.3) W= ry (y, — a)’ Ky(y, — a;) > X (y:Kiy; —2y,K,a, + aK,a,) 

t= t= 

where a, are given targets, and K, are known symmetric positive semidefinite 

matrices. The problem is to minimize the expectation EgW conditioned on the 

information available at the end of period 0. Following the method of dynamic 

programming, we first solve the optimal control problem for the last period T by 

minimizing 

(1.4) Vr=Exz-1(ytKryr—2y7rKrar + a7K7az) = Er_s(yrHryr—2yrhrt+ cr) 

with respect to xr. In (1.4) we have defined 

(1.5) Hr=Kry; hr=Krar; cr=ayKyar 

for the sake of future treatment of the multi-period control problem. Given past 

observations y7_;, yr-2, etc., the problem for period T is solved in the following 

steps. 

(1) Starting with some trial value x7 for the control, we set e7 equal to zero 

and linearize the right hand side of (1.2) about y7_,; = Yous (given), x7 = X7 and 

yr = y7 which is the solution of the system 

(1.6) y+=@(y%, yt-1, £1, nr) 

where y?} can be computed by some iterative method such as the Gauss-Seidel. 

The linearized version of the structure (1.2) is 

(1.7) yr = y+ Byr(yr— yt) + Borlyr-1— yt-1) + Bar(xr— Er) + er 

where the j-th column of B,7 consists of the partial derivatives of the vector 

function ® with respect to the j-th element of yz, evaluated at the given values 

y*, 9r-1, Xr and nz, and similarly for the j-th column of B27 and B37. Computa- 

tionally, if the structural functions ®; are listed in Fortran, each column of B;7 can 

be evaluated numerically as the rates of change in ®; with respect to a small 

change in the j-th element of yr from y}, and similarly for B27 and B37. In 

econometric applications, B, 7 is very sparse, each row typically consisting of very 

few elements corresponding to the other current endogenous variables in the 

equation. 
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(2) By solving (1.7), and without resorting to numerous iterative solutions of 

the nonlinear model in order to evaluate the required partial derivatives as is 

commonly practiced we obtain the linearized reduced-form 

(i 8) > eae Aryr-1 + Cyxr+ br+ ur 

where 

(1.9) (Ar Cr ur)=(I-B,r) ‘(Bor Bsr er), 

br = yr AryT-1 — Cy*r. 

Note that, since all the identities used to reduce a higher-order structure to 

first-order and to incorporate the current and lagged x’s into y, are already 

reduced-form equations, the matrix I — B,7 takes the form 

I-Bir ") 
(1.10) I Bir=| 0 I 

where the order of Bj; is the number of simultaneous structural equations 

excluding these identities. Thus only J — Bj; has to be inverted for the computa- 

tion of Az, Cr and by in (1.8). 

(3) We minimize (1.4) with respect to x7, assuming that y; is governed by 

(1.8). This is done by differentiating (1.4) with respect to x7 and interchanging the 

order of taking expectation and differentiation: 

Vr | (2) (222) 1.11 —= 3 (— —_(|— ( ) axr 2Er 1 aXxr Hryr axy hr 

- 2E7-(CrHr(Aryr-1 + Cyx7+by+urz)—Crhr]=0 

where (1.8) has been used to substitute for (dy/dx7) and y+. The solution of (1.11) 

for xr is 

(1.12) £7 = Gryr-i+ Br 

where 

(1.13) Gr= —(Ey_,CpH7Cy) '(Ez-1CrHrAr) 

gr = —(Er-1CpH7Cr) '(Ez-1CpHrbr — Ex-,Crhr). 

By the linear approximation (1.8), Az, Cy and bz are not functions of e7 and are 

thus nonrandom. Therefore, the expectation signs in (1.13) can be dropped, but 
we retain them for future discussion. 

(4) Using the solution £7 of (1.12) to replace the initial guess x7 in step (1), 

we repeat steps (1) through (4) till convergence in x7. Observe that the solution, 

even when converging, is not truly optimal because we have used the approximate 

reduced form (1.8) with constant coefficients A7, Cy and by. To obtain an exactly 

optimal solution, one would first compute. 7 as the solution of the stochastic 

structure (1.2) with e7 included, rather than y}-as a solution of (1.6). Thus jr is a 

random vector depending on e7. Secondly, (1.7) would be replaced by 

(1.14) yr = Yrt+ Birlyr— Yr) + Borlyr-i1- y 7-1) + B3r(x7—- £7). 
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The derivatives B,7, B27 and B37 in (1.14) which are evaluated at y7, and hence 

the matrices Az, Cy and br in the resulting reduced form corresponding to (1.8), 

will be dependent on e7. The matrices Gy and gr in the solution for £7 will be 

calculated by (1.13) with the expectation signs retained. Such a four-step iterative 

procedure would be optimal because when the solution %7 converges the value yr 

given by the linearized structure (1.14) and its reduced form would be exactly 

equal to yz, the solution value from the original structure (1.2); the second line of 

(1.11) would be exactly equal to the first line and not be merely an approximation. 

The earlier approximate solution amounts to replacing (1.14) by (1.7), ice., 

linearizing the structure about the nonstochastic y7- rather than the stochastic jz, 

thus making the derivatives B,7, B27 and B37 nonstochastic. The first 7 in (1.14), 

which equals ®(¥7, . . .)+e7 by (1.2), is replaced by P(y}, ...)+e7 or y-+e7 in 

(1.7). This approximate sclution is the same as the certainty-equivalence solution 

obtained by minimizing (1.4) subject to the constraint (1.2) with e,=0, as is 

shown in Chow (1975, Section 12.1). 

(5) Using (1.8) for yr and (1.12) for x7, we compute the minimum expected 

loss for period T from (1.4), yielding 

(1.15) Vr = y'r-1Ep-1(Ar+ CrGr)'H(Ar+ CrGr)yr-1 

+2y7-1E7-1(Ar+ CrGr)'(Hrbz — hr) 

. + Ey_-1(br + Crgr)'Hr(br + Crgr) 

+ Ey_\upHyuy — 2E7_\(b7 + crgr)' hr + Ex-1¢r. 

To generalize the solution to T periods, consider next the 2-period problem 

of choosing x7 and x7_,. Since the optimal <; and V7 have already been obtained, 

we apply the principle of optimality in dynamic programming and minimize with 

respect to x7_, the expression 

(1.16) 9 Vp- = Ex-2(y'r-1Kr-1 7-1 — 2y' 7-1 Kr-1 7-1 +. 7-1 Kz-1 7-1 + Vr) 

= Ey-2(y7-1 7-1 yr-1 — 2y 7-1hr-1 + cr-1) 

where, after substitution of (1.15) for V;, 

(1.17) Hy; = Kr-1+ Ey-1(Ar+ CrGr)' H7(Ar+ CrGr) 

= Ky_-,+ Ey_-,(ATHrArz) + GX Er_1CrHrAz), 

the second line of (1.17) having utilized equation (1.13) for Gy, 

(1.18) = hy—y = Ky-1 7-1 + Ey-1(Ar + CyGr)'(hy — Hob) 

= Ky-,@7~-1 + Ey-,(Ar+ CrGr)' hy — E7-\(A rH 7b7) 

— GY Er_1C7H7rbr), 

(1.19) 9 cp_-y = Ep_,(br + Crgr)'Hr(br + Crgr) — 2E 7-1 (br + Crgr)hr 

+ ay Ky-1a7~-1 + Ex_u'pHyuz + Ez-_i cr. 

Since the second line of (1.16) has the same form as (1.4), we can repeat the steps 

in the solution for x7 with T—1 replacing T, yielding an optimal £7_, in the form 
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(1.12) and the corresponding minimum 2-period loss (Vr, from (1.16). The 

process continues backward in time until £, and V; are obtained. 

Computationally, we suggest the following steps for the T-period optimal 

control problem. (1) Start with initial guesses X,, X2, . . . , ¥7, solve the system (1.2) 

with e,=0 for y$, v3,...,y%—1, using the Gauss-Seidel method. (2) For t= 

T, T—1,..., 1, linearize the structural equations as in (1.6) and (1.7), noting that 

y*=y? has been computed in step 1. Compute the reduced form coefficients 

A, C, and b, bv (1.9). (3) Using (1.13) and (1.17) alternately, compute G, and H,_, 

for t= T, T—1,..., 1. Use (1.18) to compute h,_; and (1.13) to compute g, 

backward in time. (4) Using the feedback control equations x, = G,y,_; + g, and 

the system (1.2) with e, = 0, compute successively £,, yi. X>, ys, etc. The £, will 

serve as the initial guesses X, in step 1. The process can be repeated until the £, 

converge. (5) Use (1.19) to compute c,_, backward in time. V, will be computed 

by (1.15) with 1 replacing T. 

Recall that by our linearization of the structure about y* (rather than about j, 

which depends on ¢,) all the coefficients A, C, and b, become constants, and the 

expectation signs in all calculations above can be dropped. We only retain the 

expectation E,_,u}H,u, = tr(H,Eu,u;) in the calculation of c,_; by (1.19), which, by 

virtue of (1.9), equals tr H,(I— B,,) *(1— B,,)*. 

2. FEEDBACK.CONTROL WITH UNKNOWN PARAMETERS 

The exposition of Section 1 has paved the way for introducing randomness in 

the par: meters 7, in the system (1.2). In principle, random, can be treated in the 

same way as random e,. To obtain an exact solution to the last-period control 

problem by the method of Section 1, it is necessary to linearize (1.2) about jz, the 

solution value of yz which depends on the random e7 and n;. Accordingly, the 

coefficients B,7, B27 and B37 in (1.14) and Az, Cy and by in the resulting 

reduced-form are all random functions of 7. The approximate method we 

propose to solve the multiperiod control problem with unknown parameters also 

follows the 5 steps described at the end of Section 1, except that all the expectation 

signs have to be kept in the calculations. 

To evaluate the expectations such as E,_;(A;H,A,) in (1.17), two approxima- 

tions are made. First, all time subscripts of the expectation signs are replaced by 

zero. Thus information on the probability distribution of ¢, and 7, as of the 

beginning of the planning period is used for the calculation of the optimal £,; 

possible future learning about the unknown parameters is ignored. Second, we 

linearize the structure about y* which is the solution of (1.2) with e, = 0 and 7, set 

equal to its mean 7, obtaining the structural coefficients B,,, B2, and B3,; we then 

compute the i—j element of expectation Eo(A{H,A,) by the identity 

(2.1) E((A‘H,A,)ij = (A HA) ij +tr H,E (aie a Gin )(Gir — Gi)’ 

where A, = (I—B,,) 'B>, and the covariance matrix for any two columns a;, and 

aj, of A, can be approximated by the appropriate submatrix in D, cov (n,)D}, D, 

being the matrix of the partial derivatives of the columns of A, with respect to 7. 

Numerically, the k-th column of D, is computed as the rates of change of the 
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columns of A, with respect to a small change in the k-th element of 7, from %,. For 

a more thorough discussion of this method, the reader may refer to Chow (1976). 

3. USEFULNESS OF FEEDBACK CONTROL 

If we treat the parameters 7, as known constants and set e, = 0, the method of 

Section 1 provides a solution to the optimal control of a nonlinear deterministic 

system. Currently, a popular way to solve such a deterministic control problem is 

to treat the multiperiod loss W as a function of x;, . . . , x7 and minimize it by some 

gradient, conjugate-gradient or another standard computer algorithm, as in Fair 

(1974), Holbrook (1974), and Norman, Norman and Palash (1974). It may be 

useful to point out the possible advantages of the method of this paper as 

compared with this alternative approach. 

(1) From the very narrow viewpoint of computing the optimal policy under 

the assumption of a deterministic model, the method of Section 1 compares 

favorably with the alternative method when the number of unknowns in the 

minimization problem is large. The number of unknowns equals the number T of 

planning periods ti:aes the number q of control variables. If we are dealing with 32 

quarters and 4 controi variables, there will be 128 variables, creating a formidable 

minimization problem. Our method, being based on the method of dynamic 

programming with a time structure, converts a problem involving T sets of control 

variables to T problems each involving only one set of control variables. Its 

computing cost increases only linearly with T. For each period t, we solve a 

minimization problem involving q controls; the matrix C;H,C, to be inverted is 

q X q. Also, if q is increased from 4 to 8, we have to solve an 8-variable problem 32 

times, whereas the alternative method has to deal with 256 variables simultane- 

ously. 

On the other hand, our method is perhaps more constrained than the 

alternative method by the number of simultaneous equations (the order of the 

matrix I — Bj; in equation 1.10) in the econometric system for our linearization 

requires the inversion of I — BY,. However, by exploiting the bloc-diagonality and 

the sparseness of this matrix, it may be pessible to deal with some 150 to 200 

simultaneous equations. More computational experience is required to shed light 

on this question. 

(2) Once we leave the realm of purely deterministic control, the advantages 

of our approach are numerous. First, after incorporating the random disturbances 

€, in an otherwise deterministic model, one can no longer regard as optimal the 

values of x2, ..., x7 obtained by solving the deterministic control problem. Only 

the value of x, for the first period constitutes an approximately optimal policy. In 

contrast with the method of deterministic control, the method of Section 1 yields 

the approximately optimal %, (t=2,..., T) as a function of the yet unobserved 

y:-1. It provides analytically an estimate Vv, of the minimum expected loss 

associated with the nearly optimal strategies. Using the alternative method, one 

would have to calculate y,; from £, and ¢,, solve a multiperiod control problem 

from period 2 to T to obtain £2, calculate y. from £2 and €2, etc., and repeat the 

T-period simulations many times to estimate the expected loss from such a 

strategy. Such computations are extremely costly, if not prohibitive. 
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(3) Our method yields a linearized reduced form at each period as a 

by-product. The reduced-form coefficients are extremely useful for computing the 

various dynamic multipliers of y, with respect to current, delayed and cumulative 

changes of x, and for exhibiting how nonlinear the system is and how the various 

partial derivatives change through time. 

(4) The feedback control equations are useful as‘a basis of policy recommen- 

dations. They can be used to compare different econometric models. They can be 

incorporated into the econometric model to study the dynamic properties of the 

system under control. Once the model is linearized, its dynamic properties can be 

deduced by spectral and auto-covariance methods, as described in Chow (1975, 

Ch. 3, 4, and 6). Not only the mean paths of the variables from periods one to T, 

but their variances, covariances, autocovariances and cross-covariances can be 

deduced. 

(5S) The value of having improved information (a smaller covariance matrix) 

for a subset of parameters can be ascertained by comparing the minimum 

expected losses computed by varying the covariance matrix of 7, using the method 

of Section 2. As a special case, the comparison of V; computed by varying the 

covariance matrix of ¢, using the method of Section 1 helps to evaluate the 

importance of the stochastic disturbances in the expected welfare loss. In short, by 

our method, the rich theory of optimal control for linear systems can be applied to 

the control of nonlinear systems. Parts of this theory will be illustrated in Section 

4. 

4. A NUMERICAL EXAMPLE USING THE KLEIN-GOLDBERGEPR MODEL 

To illustrate our method, the Klein—Goldberger model as adopted by Adel- 

man and Adelman (1959, pp. 622-624) is used. The equations are listed below. 

(4.1) Consumer expenditures in 1939 dollars = C= 

¥1 = —22.26+0.55(y6 + X1— yi9) + 0.4i(yy4- sag y3) 

+0.34(yo+x3— yor) +0.26y, 1 + 0.072 y,, -, + 0.2622 

(4.2) Gross private domestic capital formation in 1939 dollars = J = 

Y2 = —16.71+0.78(y14— yo1 + Yot X3— Y22 + Ys)-1 

—0.073 yi6,-1+0.14 yi2-1 

(4.3) Corporate savings = S, = 

y3 = —3.53 + 0.72(y4— y2o) — 0.028 yi7-1 

(4.4) Corporate profits = P. = 

ya = —7.60+0.68 yi4 

(4.5) Capital consumption charges = D = 

¥s = 7.25+0.05(yi6+ yie,-1) + 0.044(y13 — x3) 

(4.6) P-‘ate employee compensation = W, = 

¥6 = —1.40+0.24( yes — x1) +0.24(y43.-1 — X1,-1) + 0.29 Z¢ 
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(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Number of wage-and-slary earners = Nw = 

¥7 =X4—(Z4+ Zs) + 1.062 + (26.08 + y,3—x, —0.08 yi6—0.08 yi -1 

—2.05 26) + (2:17 x 1.062) ‘ 

Index of hourly wages = w = 

Ys = Ye.-1 + 4.11 —0.74(z3— yz — Z4— Zs) + 0.52(yis,-1 — Ya3,-1) + 0.54 2 

Farm income = A = 

Yo = 0.054(y6 + X1— Yio t Yia— Yai — Ys) + 0.012(z1)(y10)* yas 

index of agricultural prices = p, = 

¥19 = 1.39 yy5+32.0 

End-of-year liquid assets*held by persons = L, = 

¥11 = 0.14(y6+x1— yio+ Yia— Voi — Y3 + Yo +X3— Y22) + 76.03(1.5) °** 

End-of-year liquid assets held by businesses = L, = 

¥12 = 0.26 ye — 1.02(2.5) —0.26(y15— yis,-1) + 0.61 yy2-1 

Gross national product= Y+ T+ D= 

yis = Yityotx2 

Nonwage nonfarm income = P = 

yia = Y13— Yis— Ys~ Yo X1— Yo X3 

Price index of gross national product = p = 

Yis = 1.062 ye(y7)+(¥6+ x1) 

End-of-year stock of private capital = K = 

Y16 = Y16,-1 + Y2— Ys 

End-of-year corporate surplus = B = 

Yi7 = Y17,-1 + Y3 

Indirect taxes less subsidies = T = 

Yig = 0.0924 y,3;—1.3607 

Personal and payroll taxes less transfers = T,, = 

yi9 = 0.1549 yg+0.131 x; —6.9076 

Corporate income tax = T, = 

y20 = 0.4497 y4+2.7085 

Personal and corporate taxes less transfers = T, = 

Y21 = 0.248(y14— y2o— y3) + 0.2695(yis_1+ yisM¥14— Y2o- Y3)—1 

+0.4497 y,—5.7416 
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(4.22) Taxes less transfers associated with farm income = T, = 

Y22 = 0.0512(yo+ x3) 

(4.23) yo3= Yis,-1 

The control variables or instruments are 

x, = W, = Government employee. compensation 

X2 = G = Government expenditures for goods and services 

x3 = A2 = Government payments to farmers 

x4= Ng = Number of government employees. 

The exogenous variables not subject to control are 

Z, = F, = Index of agricultural exports 

Z2 = N, = Number of persons in the United States 

z3= N= Number of persons in the labor force 

Z4= Ne = Number of nonfarm entrepreneurs 

Zs = Nr = Number of farm operators 

Z, = time = 0 for 1929 (= 24 for 1953). 

In the control experiments reported below, 1953 was chosen as the first year 

of the planning period. Initial values of the endogenous variables yp and extrapo- 

lation formulas for the uncontrollable exogenous variables z, (part of 7, in the 

notation of Section 1) are given by Adelman and Adelman (1959, p. 624). The 

four control variables have been listed in the last paragraph. When imbedded in 

the vector y, in the notation of equation (1.2), they become respectively y24 to y27. 

Three runs have been tried. Run 1 uses endogenous variables 7 (number of wage- 

and-salary earners), 13 (real GNP), 14 (real nonwage nonfarm income) and 15 

(price index of GNP) as targets, with the value 1 specified for each of the 

corresponding 4 diagonal elements of the matrix K, in the welfare function. These 

target variables are steered to grow at 2, 5, 5 and 1 percent per year respectively 

from their initial values at 1952. Run 2 uses variables 13, 15, 26 (government 

payments to farmers) and 27 (number of government employees) as target 

variables. The target for y2. is to remain at its historical 1952 value 0.1187, and for 

Y27 is to grow 3 percent annually from its estimated 1952 value 9.393. Run 3 uses 

variables 7, 15, 26 and 27 as target variables. In effect, runs 2 and 3 tie up two 

instruments and uses the remaining two instruments to control real GNP and the 

price index, or employment of wage-and-salary earners and the price index. 

A major motivation behind the above experiments is to find out whether the 

relationship between the general price index and rea! GNP (or employment) can 

be shifted at will by government policy according to the Klein-Goldberger model. 

The answer is definitely yes. The specified targets for the price index, real GNP, 

and/or employment of wage-and-salary earners are met exactly by the optimal 

control solutions of the above 3 runs, ignoring random disturbances. Thus the 

government can choose any price-GNP or price-employment combination at any 
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period as it pleases by applying government employee compensation and govern- 

ment expenditures for goods and servives as the control] variables. 

As pointed out by Chow (1975, pp. 167-8), if the number of target variables 

(the number of nonzero elements in the p x p diagonal matrix K,) equals the 

number q = p of control variables, the time path y, generated by the deterministic 

system (which is obtained by ignoring the random disturbances in a linear 

econometric model) under optimal control will meet the targets exactly and the 

deterministic part W, of the minimum expected welfare loss will be zero, provided 

that the submatrix C,, of the matrix C, in the reduced form whose rows 

correspond to the target variables is of rank q. In the above three runs, the number 

of target variables equals the number of control variables, and the matrix C,, for 

all t in the linearized reduced form has rank 4. Thus the targets are met exactly. 

This illustrates the application of control theory for linear systems to nonlinear 

econometric systems by the approach of this paper. Note that, in the theory for 

controlling known linear systems; Chow (1975, Chapters 7 and 8), it is useful to 

decompose the solution vector y, into its deterministic part y, (obtained by 

ignoring e,) and its stochastic part y* = y, — j, due to the random disturbances. 

The same decomposition can now be achieved by our method for nonlinear 

systems. The autocovariance matrix of y* provides the variances and covariances 

of the variables under control from their mean path Jj, It can be derived 

analytically as in Chow (1975) once the system is linearized by the method of this 

paper. 

To better appreciate the reason why government policy can shift the relation- 

ship between the general price index and real GNP (or employment), consider the 

“aggregate demand curve” and the “aggregate supply curve” implicit in the 

Klein—Goldberger model. The aggregate demand curve relating price to real GNP 

can be obtained by solving the aggregate demand sector consisting of 16 equa- 

tions: (4.1)-(4.4), (4.9), (4.10), (4.13), (4.14), (4.17)-(4.22) of the IS sector and 

equations (4.11) and (4.12) of the LM sector. The aggregate supply curve is 

obtained by solving 6 equations: (4.5)—-(4.8), (4.15) and (4.16). We refer to the 

short-run aggregate supply curve, holding all lagged dependent variables con- 

stant. (4.8) gives wage w as a linear function of employment Ny. (4.7) gives Nw as 

a function of real GNP, capital stock K, and government employee compensation 

W,. Equations (4.16) and (4.5) explain K vy capital consumption charges D 

(investment I being predetermined by equation 4.2) and D by K, GNP and W,, 

yielding K as a function of GNP and W,. Both w and Ny thus become functions of 

GNP and W,. By (4.15) price p= 1.062 wNy/(W,+ W2), where the private 

employee co;1pensation W, is also a function of GNP and W, by virtue of (4.6). 

Hence the resulting aggregate supply curve relating p to GNP and W, can be 

shifted by manipulating the control variable W). 

If the aggregate supply function relating price to real GNP or to employment 

contains no variables which are subject to government control, government policy 

can only shift aggregate demand and trace out the rigid relation between price and 

real GNP, but cannot achieve more real output or employment without inflation. 

A case in point is the relation between the wage rate and employment as given by 

(4.8). No government policy can shift this rigid relationship for the current period, 

given the predetermined variables. In terms of control theory, no two instruments 
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can steer wage and employment to specified target values as they are linearly 

related by (4.8). The matrix C,, has two linearly dependent rows and has rank 

smaller than the number of instruments. 

We have coi iputed the optimal control solutions for the three runs described 

above, and some other related runs, using T=5 and T= 10 as the planning 

horizon. To start the iterations, we arbitrarily let the initial x, be the 3 percent 

annual growth path for each of the 4 control vz :1ables beginning from its historical 

value as of 1953; these initial paths are given in Table 1 for x, and x2. For the first 

TABLE 1 

VALUES OF SELECTED VARIABLES AT THREE SUCCESSIVE PASSES FOR CONTROL BY THE 
KLEIN-GOLDBERGER MODEL—RUN 1 (yz, y13, Yia, Yis AS TARGETS). 

Variable Pass 1953 1954 1955 1956 1957 

Xy 0 15.70 16.17 16.66 17.16 17.67 
(government 1 21.15 25.60 29.41 32.95 36.35 
employee 2 21.21 26.03 30.63 35.35 40.28 
compensation) 3 21.21 26.03 30.64 35.38 40.35 

X2 0 33.50 34.50 35.54 36.61 37.70 
(government 1 39.96 45.42 49.68 53.59 57.60 
expenditures 2 39.95 45.40 49.74 53.85 58.11 
for goods 3 39.95 45.40 49.74 53.85 58.11 
and services) 

yi3 0 171.24 171.85 174.41 178.12 182.31 
(real GNP) 1 180.60 189.64 199.13 209.10 219.58 

2 180.60 189.63 199.11 209.07 219.52 
3 180.60 189.63 199.11 209.07 219.52 

Yis 0 204.75 209.28 215.81 223.35 231.26 
(price index) 1 204.52 207.10 210.23 213.80 217.68 

2 204.42 206.47 208.55 210.66 212.82 
3 204.42 206.47 208.53 210.62 212.72 

period 1953, we use the values of the endogenous variables as of 1952 as starting 

values for the Gauss-Seidel iterations to solve for yiess, given Xj953, and use yi953 

as starting values to iterate for Viese: given X1954, etc. Table 1 shows the values of 

selected target and control variables for Run 1 at the three rounds of linearizations 

(three “‘passes”’ through step (1) of the method of Section 1) required for the 

convergence of the target variables to five significant figures. Note how rapidly 

these variables converge to the solution, the first pass already near the optimum. 

In terms of computing time using the IBM 360-91 computer at Princeton 

University, each pass took slightly less than 4 seconds, and the total computer time 

for three passes was about 12 seconds. When we ran the experiments for 10 

periods instead of 5, the time merely doubled, taking about 24 seconds for three 

passes to convergence. These would be minimization problems involving 40 

variables in the alternative approach to deterministic control. Imagine a 120- 

variable problem with 4 controls and 30 periods using a quarterly model of similar 

size. The alternative approach would be almost prohibitive, but our method would 

take about 3 x 24 or 72 seconds. By our method, increasing the number of control 
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variables from 4 to 5 would not require much more computing time, since a 5 x 5 

C;H,C, matrix is still easy to invert and the hard computing work is performed in 

obtaining the linearized reduced form. By the alternative method, a 120-variable 

problem would become a 150-variable problem. (For the same reasons, increas- 

ing the number of target variables from 4 to 5 or 6 while keeping the same 4 

control variables in our example has produced almost no effect on the computing 

time.) 

We next examine the coefficients G, and g, in the feedback control equations 

for the optimal solution of Run 1 with T = 5. Of the 27 variables in y,_, (including 

4 control variables), only 18 appear in the reduced form, the matrix A, having 9 

columns of zeros. Table 2 exhibits coefficients of selected lagged variables in the 

TABLE 2 

COEFFICIENTS OF SELECTED LAGGED VARIABLES IN THE FEEDBACK CONTROL EQUATIONS 
FOR GOVERNMENT EXPENDITURES—RUN 1 (T= 5) 

Lagged Variable Intercept 

Period 1 3 5 8 9 12 14 15 g 

—0.260 —0.109 —0.768 —0.053 —0.768 —0.138 —0.659 —0.015 124.4 
—0.260 —0.109 —0.768 —0.054 —0.768 —0.138 —0.659 —0.014 137.0 
—0.260 —0.109 —0.768 —0.055 —0.768 —0.138 —0.659 —0.014 151.0 Awe 

feedback control equations for government expenditures x2. Note that the 

coefficients of the lagged expenditure, income and price variables are all negative, 

showing that government expenditures should respond negatively to recent signs 

of economic expansion. The feedback coefficients are practically identical for 

periods 1 through 5 for two reasons. First, since the number of instruments equals 

the number of target variables and the matrix C), has full rank, we have 

K,(A, + C,G,) = 0 and H, = K,, as shown in Chow (1975a, pp. 168-9). This means 

that the matrix H, in the quadratic loss function V, to be minimized in each future 

period is identical. Second, since the linearized reduced form coefficients A, and 

C, vary only slightly through time, the solution G, = (C}H,C,) 'C/H,A, will also 

be stable through time. The intercept g,, however, is increasing in order to meet 

the growing targets as we have specified. 

It may be interesting to exhibit parts of the matrices A,, C, and b, for t= 1,3, 5 

to show how time-varying they are. Table 3 shows selected coefficients of the 

TABLE 3 

REDUCED FORM COEFFICIENTS FOR CONSUMPTION FROM THE OPTIMAL SOLUTION—RUN 1 

Period ai 413 Qis 416 Ci C12 b, 

1 0.3305 0.1425 0.2036 0 0.3005 0.2712 33.84 
3 0.3311 0.1428 0.2053 0 0.2997 0.2736 35.58 
| 0.3315 0.1429 0.2064 0 0.3005 0.2750 37.42 * 

Goldberger 0.3219 0.0297 0.2834 0.1027 0.3355 0.2380 
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reduced form equation for consumption expenditures y, from the optima! control , 

solution of run 1. Their stability through time is apparent. The last rov, of Table 3 

reproduces the corresponding coefficients from the study by A. S. Goidberger 

(1959, pp. 40-41) on impact multipliers of the Klein-Goldberger model, although 

for numerous reasons, including the differences between the two versions of the 

Klein—Goldberger model, the coefficients given by Goldberger should be different 

from ours. 

If we were to pursue a dynamic policy analysis using the Klein—Goldberger 

model or any other nonlinear econometric model by the method of this paper, it 

would occupy a substantial volume. Once the model is linearized and the 

approximately optimal linear feedback control equations obtained, the methods 

of dynamic analysis as described in Goldberger (1959), Adelman and Adelman 

(1959), and Chow (1975a) can be applied to study numerous important and 

interesting questions of macroeconomic theory and policy. The main purpose of 

this paper has been to show that, using our method of feedback control, the theory 

and techniques for controlling linear econometric systems can be made applicable 

to nonlinear econometric systems. This paper has recommended the feedback 

approach, because it appears to be much more useful than the computation of 

optimal time paths for the deterministic version of a stochastic control problem 

and helps to tie together 2 significant part of stochastic control theory in 

economics.’ 
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