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Annals of Economic and Social Measurement, 5/3, 1976 

COMPETITIVE ANALYSIS OF THE ARMS RACE 

BY D. D. Sisak 

A new nonlinear and nonstationary model is proposed for the arms race, which is a modification of the 
competitive equilibrium model used in economics to describe multiple markets of gross substitute 
commodities or services. By recognizing the fact that such models are described by Kamke’s functions, we 
will combine the powerful mathematical machinery of the comparison principle from the theory of 
differential inequalities, with the strong results obtained in the analysis of competitive equilibrium, to come 
up with new qualitative results concerning the arms race. By using the framework of the connective 
stability concept, we will resolve the central problem of alliances and neutrality in the arms race. We will 
show that formation ef alliances or neutral countries cannot destabilize the arms race, but is likely to act as 
a stabilizing factor in the armament processes of hostile nations involved in the arms race. 

1. INTRODUCTION 

Once it was recognized in [1] that the armament matrix in Richardson’s model [2] 

of the arms race is a Metzler matrix, a whole host of strong results obtained in 

economic studies [3,4] was made available for qualitative analysis of the arms 

race. Positivity of the armament process is a direct consequence of this fact. 

Another important result is that the classical Hicks conditions [4] can be applied 

to show positivity and stability of the armament equilibrium, as they were used to 

establish the same properties of the equilibrium price on multiple markets of gross 

substitute commodities or services. Recently, the concept of connective stability 

[5-8] was introduced in the study of competitive equilibrium under structural 

perturbations [7]. When applied to the arms race, the concept provides an answer 

to the central question of how formations of alliances and neutral countries affect 

the armaments of the countries involved in the arms race. We will show that 

alliances improve stability of the arms race and, at the same time, decrease the 

level of armaments at the equilibrium. 

By carrying a step further the analogy between the armaments and prices, we 

propose a new nonlinear and nonstationary mode! for the arms race, which was 

introduced recently [9] as a nonstationary generalization of the nonlinear model 

studied extensively in the general competitive analysis in economics [10, 11]. As 

expected, it is not possible for the new model to duplicate all the results obtained 

in the rich Hicks—Metzler algebraic setting [4] for linear constant models. How- 

ever, the new model is more appealing in bringing closer the mathematical 

representation to the nonlinear and nonstationary reality underlying the arms 

race problems. We will be able to show again under reasonable conditions, that 

the formation of alliances cannot destabilize a stable armament process. If the 

arms race is stable, it is also connectively stable. Pretty much the same conditions 

assure the existence of a unique equilibrium ray and its attractivity in the first 

quadrant of the armament space. Therefore, the proposed model has rich and 

meaningful properties to motivate future applications of the competitive analysis 

[7-13] to the study of armament processes. 
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2. FORMATION OF ALLIANCES AND CONNECTIVE STABILITY 

In order to place in proper perspective the gencralizations of arms race 

models proposed in this work, let us briefly review the original Richardson model 

[2]. The model is a linear constant differential equation 

(1) X= Ax+b, 

where x = {x,, X2,...,Xn,} is the armament n vector, A = (a;;) is the n Xn arma- 

ment matrix, and b = {b;, bo, ... , b,} is the grievance n vector. The elements aj; of 

A are such that 

<0, i=j 

@) a =o, iF; 

That is, the defense off-diagonal elements a;; are nonnegative so that an increase 

in armament of one hostile nation causes an increase in armaments of all hostile 

nations involved in the arms race. Arms build-up in each nation, is opposed by 

cost and fatigue effects which are reflected in the Richardson model by negativity 

of the diagonal elements a, of the armament matrix A. The vector b in (1) 

represents grievances and ambitions of the countries in the arms race, which cause 

the arms build-up in each nation even if the threats are absent. Therefore, the 

vector 6 is assumed to be nonnegative, that is, its components b;=0, i= 

1,2,...,, which we denote by b=0. 

Richardson’s characterization of an alliance in the arms race is: ““When an 

alliance is formed, the defense coefficients between allies sink to zero” [2]. A 

suitable framework for consideration of alliances and neutrality described by this 

statement, is the concept of connective stability [5-8]. 

Let us define the elements of the armament matrix A as 

Qj + ejjQji, i=j 
(3) ay = Stas 

€jjQ jj, I FJ] 

where a; >a 20, aj =O are real numbers, and ej are elements of the n Xn 

constant matrix E = (e,;). We need first the following: 

Definition 1: By E= (&;) we denote the n X n fundamental interconnection matrix 

with binary elements 

1, the state x; acts on the state x; 
(4) eij >. 

0, the state x; does not act on the state x;. 

Then, we recall the following: 

Definition 2: By E=(ej) we denote a constant nXn interconnection matrix 

generated from the n X n fundamental interconnection matrix E = (é,) by replacing 
the unit elements @,; with the numbers e,; such that 

(5) O<e,<1, 

and the zero elements é,; of the matrix E remain the zero elements e;; of the matrix E. 

We also need the following: 
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Definition 3: By € we denote the class of all interconnection matrices E generated 

from a fundamental interconnection matrix E. 

We immediately note that according to Definitions 1-3, the matrix E is also 

a member of the class . The effect of these Definitions 1-3 is that for each 

interconnection matrix E =(e,;) we have a different system (1). The underlying 

idea of the concept of connective stability is a possibility to establish stability of a 

class of systems (1) corresponding to matrices E € @ by proving stability of one 

member of that class corresponding to E € &. 

The equilibria of the arms race are constant solutions of equation (1) 

determined by the algebraic equation 

(6) Ax+b=0. 

If det A #0, the equilibrium x“ is a constant vector 

(7) x*=-A'b, 

which is the unique solution of (6). We notice from (3) and (7) that for each E, the 

system (1) has a distinct equilibrium x°. By S,,) we denote the system described by 

equation (1) and the interconnection matrices of class ¢, and formulate the 

following: 

Definition 4: The system S,,, is said to be connectively stable if and only if the 

equilibrium x° of equation-(1) is stable in the sense of Liapunov for all E < @. 

To establish conditions for stability of system (1) expressed by Definition 4, 

let us recall McKenzie’s definition of a quasidominant diagonal matrix [14]: An 

nXn matrix A =(a;) is called quasidominant diagonal if there exist positive 

numbers d; such that 

(8) djja;|> > diay, j=1,2,...,n. 
i=1 
i¥j 

Since A is a Metzler matrix [3], (8) is necessary and sufficient [14-16] for stability 

of A. To establish connective stability of S,,, we denote by A = (@,;) the matrix A 

which corresponds to the fundamental interconnection matrix E, and prove the 

following: 

Theorem 1. The system S,,) is connectively asymptotically stable in the large if and 

only if the matrix A is quasidominant diagonal. 

Proof. Since A is a Metzler matrix [3], the quasidominant property (8) is 

necessary and sufficient [14-16] for stability of (1) for E = E. This establishes the 

“only if” part of the theorem. To prove the “‘if” part, we note that A is a Metzler 

matrix for all Ee @ and that 

(9) A=<A, VEcé 

holds element-by-element (that is, A— A <0). Thus, if (8) holds for E, it holds for 

all E and S,;) is a connectively stable system. This proves Theorem 1. 

As for interpretations of Theorem 1 in the context of the arms race, several 

Remarks are in order: 
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Remark 1. From Theorem 1, we conclude immediately that if an arms race is 

stable, then “sinking to zero” of any number of interconnection elements, which 

describes formation of alliances in the Richardson sense, cannot destabilize the 

arms race. Furthermore, such effect of alliances would only strengthen ine- 

qualities (8) and, therefore, make the arms race more stable than it was before the 

alliance was formed. It may be argued against Richardson’s description of alliance 

formation, that the interconnection elements in the alliance are not zero but stay 

On some positive values. This is, of course, included in the connective stability 

since we merely use the inequality (9), and require that the interconnection 

elements among countries involved in an alliance decrease after it is formed, 

which is reasonable to expect. It may be further argued, however, that after an 

alliance is formed the countries not involved in the alliance would increase the 

interaction coefficients corresponding to the allied countries. This effect is not 

included in connective stability, but the quasidominant condition (8) is still a good 

measure of how much of the increases can be tolerated by stability. 

Remark 2. From connective stability, it follows than an equilibrium x“ exists for 

all E € €. Furthermore, since A is a Metzler matrix for all E ¢ € and b =0, we can 

use [3] and conclude that the solutions x(t; fo, xo) of (1) are nonnegative, that is, 

(10) x(t; lo, Xo) =0, t=Io 

for all %& and x9= 0. In other words, the armaments are always nonnegative if they 

“start” nonnegative regardless of the alliance formations. From connective 

stability of S,,;, we conclude that lim,.+.. x(t; to, Xo) = x* for all to, xo, and Ee @. 

Therefore x° =0, for all E€ @. If the grievance vector is positive (b >0) then we 

can further show that so is the corresponding equilibrium. As shown in [3], if a 

Metzler matrix A satisfies (8), then (and only then) Ais nonpositive. However, 

A‘ cannot have a row of zeros since it satisfies (8) and, thus, it is nonsingular. 

Therefore, from positivity of b and (7), follows positivity of the arms race 

equilibrium x‘* for all Ee @. 

It further can be concluded that if A satisfies (8), then from (9) follows 

A~'=A [15]. Therefore, applying (7), we have <° => x*, where %° = A ~'b is the 

armament equilibrium for E = E. The inequality <° = x* establishes the fact that a 

formation of alliances is likely to decrease the armaments levels at the equilibrium 

for all countries involved in the arms race. 

Remark 3. Since connective stability involves E = 0, we conclude that 

(11) ay = —a; + e,,0¢;, < 0, i=1,2,...,n 

for all Ee @. That is, each country involved in the arms race must exhibit the 

“‘expense and fatigue” effect for the arms race to be stable. 

Once the armament matrix is recognized as a Metzler matrix, another 

possibility is open for further generalizations of the arms race models. That is, we 

can use the powerful analysis of competitive equilibrium [10] in nonlinear 

multiple market models coupled with the comparison principle from the theory of 

differential inequalities [17] to come up with new important results. This route 

was made available only recently by a study of nonstationary competitive proces- 

ses [9], and will be shown in the following development to be suitable for 
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establishing the qualitative characteristics of the arms race expressed by the above 

Remarks, in a much more general setting, but at the cost of a more refined 

analysis. 

Another nonlinear generalization of the Richardson model was proposed 

and analyzed by Sandberg [18] using a different mathematical framework. The 

major differerce between Sandberg’s model and the one presented here, is that 

we follow Caspary’s critique [19] of the Richardson model, and assume that 

relative rather than absolute armament levels motivate countries to arm. The 

armaments in the arms race can be treated as prices of commodities (or services) 

on multiple markets, and the competitive analysis becomes an ideal setting for 

studying qualitative characteristics of armament processes. 

3. A GENERAL MODEL 

For a model of the arms race involving n hostile countries, we propose a 

differential equation 

(12) x= h(t, x)+ g(t), 

where x(t)<€ R” is the armament vector; h: J x R" > R" is the function describ- 

ing the interaction of armament levels among the countries; and g: J > R” is the 

function representing the grievances that motivate the countries to arm regardless 

of the armament levels. We assume that h(t, x)¢ C°°(T x R") and g(t)e C(I), 

where J =(7,+00) and 7 is a number or the symbol —0o, R" is the real n- 

dimensional Euclidean vector space, and R? ={x ¢ R" :x =O}. 

As in the classical Richardson model (1), we assume that an increase in the 

armament level of one country causes an increase in the armament level of the 

other countries involved in the arms race. Therefore, we say that the function 

h(t, x) belongs to the class of functions 

(13) KH: h(t, a)<h,(t, b), Vit, a), (, bETxR? 

a; = bj, a; < b;; ieM,jeN-M 

where N is the set of indices {1,2,...,}, and M is a nonvoid subset of N. 

If (12) is used to represent multiple markets of commodities or services, then 

the fact that the excess demand function h(t, x) € # means that (12) describes the 

time-dependent gross substitute case introduced in [8]. More importantly, in 

[8, 9], the class of functions X was recognized as Kamke’s functions, and powerful 

methods of comparison principle [17] were made available for analysis of non- 

stationary competitive processes. 

By following Caspary’s critique [19] of the Richardson model, we assume 

that a nation’s security is dependent upon the relative rather than the absolute size 

of its own and its opponent’s forces. This amounts to assuming that 

(14) h(t, Ax)=h(t,x),  WA>O, 

which is a time-dependent version of the usual “positive” homogeneity condition 

of degree zero, well-known in the traditional microeconomics analysis. 
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Finally, we assume that there exists a positive equilibrium x“ as a solution of 

the equation 

(15) h(t, x)+ g(t) =0, 

such that x“ e @, where € ={x € R?: x >0} is an open cone in RK}. It should be 

noted here that for (15) to have a constant solution x‘ € &, it is more realistic to 

assume that g is a constant vector. Our results however, do not depend on 

constancy of g. 

Let us summarize the properties of the function h(t, x) as the following 

hypotheses: 

(H,)h(t, x)e XH; 
(H>2)h(t, Ax) = h(t, x), VA>0 

(H3)Aax* >0: h(t, x°)+g(t)=0, VteJZ. 

Our immediate interest is the existence of solutions x(t; fo, x9) of equation 

(12) on the time interval Fo=[f, +00). A preliminary result to the existence 

question is the following: 

Lemma 1. If the function h(t, x) satisfies the hypotheses (H;), (H2), and (H3), then 

there exists a unique equilibrium ray ¥# ={x* « € : x“ = Ae} of equation (12), where 

e={1,1,..., 1} is an n vector and d is a positive number. 

Using Lemma 1, cne can show the following: 

Theorem 2. If the function h(t, x) satisfies the hypotheses (H,), (Hz), and (Hs), 

then there exists a solution x(t; to, Xo) of equation (12) for any (to, Xo) € FJ x € and 

for all te To. 

Both Lemma 1 and Theorem 2 are proved in Appendix A following 

references [9] as slightly stronger Lemma A.1 and Theorem A.1. 

From the proof of Theorem A.1, one concludes directly that under the 

hypotheses (H,)-(H3), all solutions are bounded on Jp for (to, x9) € J X @. Fur- 

thermore, the solutions are positive, that is, they have the following property: 

(P1)(to, Xo) € TF X CD x(t; to, Xo) € G, VteTo 

and the open cone @ is an invariant set. 

The property (P;) is important in the context of the arms race in that the 

armaments during the adjustment process never become negative. It is a pleasing 

fact to conclude that nonnegativity of the armament process (10) established for 

the simple Richardson model, carries over to the generalized model (12). As in the 

Richardson model, positivity of the armaments is essential for demonstrating the 

structural properties of the model (12) in the context of connectivity. 

As shown in [9], hypotheses (H,)—(H3) imply not only that the cone @ is an . 

invariant set, but that it is also a region of attraction of the equilibrium ray % < @. 

That is, we demonstrate the following property of the solution x(t; fo, xo): 

(P2)(to, Xo) €E TX E> Jim. d[x(t; to, Xo), #]=0 
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where d(x, #)} =inf,<cx {\|x — x*|ln}, |lxllw = supicn {|]x;[l}. That is, in the Appendix, 

we prove Theorem A.2 which is slightly stronger than the following: 

Theorem 3. If the function h(t, x) s7tisfies the hypotheses (H,), (H2), and (Hs), 

then the solutions x(t; to, Xo) of equai.n (12) have the property (P2). 

Theorem 3 can be widened to include a connective version of the property 

(P2). For this purpose, we specify the components h,(t, x) of the function h(t, x) as 

(16) hi(t, x) = hiy(t, Xj, €:1%1, - - - 5 CuXip -- + 5 Cin¥n)s ieN 

where ej are elements of the n X n interconnection matrix E. 

We introduce the “nonlinear” analog to Definition 5 as the following: 

Definition 5. The system L,12) is said to be connectively attractive if and only if the 

equilibrium ray # of equation (12) has the property (P2) for all Ee @. 

To be able to establish the connective version of (P2), as specified by 

Definition 5, we require the interconnection matrices E to be indecomposable [4]. 

That is, we consider the class of matrices € such that Ec implies that E cannot 

be permuted into a matrix of the form 

E 0 
17 E=| r 

where E,,, E22 are square submatrices of E and 0 is a rectangular block of zeros. 

Equation (12) and the class of interconnection matrices € define the Fan. 

By h(t, x) we denote the function h(t, x) in (16) which corresponds to the 

fundamental interconnection matrix E € €. We need the following hypotheses: 

(Ay)h(t, x)e XH; 
(H2)h(t, Ax) = h(t, x), WA>O0. 

Now, we prove the following: 

Theorem 4. If the function h(t, x) satisfies the hypotheses (Hj) and (H2), and the 

function h(t, x) satisfies the hypothesis (H;) for all E € @, then P,,2) is connectively 

attractive. 

Proof. From (16), indecomposability of E € é, _and the property (P;), it follows 

that A(t, x)e XH implies h(t, x)€ XH for all Ee &. That is, if h(t, x) satisfies (A), 

then A(t, x) satisfies (H;) for all E ¢ $. Furthermore, if A(t, x) satisfies (H,), then 

h(t, x) satisfies (H>) for all E € . Therefore, under the conditions of the Theorem, 

h(t, x) satisfies the hypotheses (H,)-(H;) for all E € é, and by Theorem 3 system 

Pa is connectively attractive. This proves Theorem 4. 

Unfortunately, by Theorem 4 we are not providing the entire “nonlinear” 

analog to Theorem 1 since we are not able to express our conditions only in terms 

of the function h(t, x). That comes from our inability to show that if h(t, x) satisfies 

(H3) so does h(t, x) for all Ee @. , 

As in Remark 1, we conclude that under somewhat restricted conditions 

(Ee @ instead of Ee €), formation of alliances in the general model (12), cannot 

ruin stability of the arms race. Remark 2 has not its counterpart in the general 
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model (12). As for the Remark 3, we can show that there is a “nonlinear” 

counterpart to the necessary condition (11)), which is expressed by 

(18) h(t, a)sh,(t, b), a; > b;, a; = 5,1 #j;i,7EN. 

Condition (18) is a necessary condition for system (12) to have the property (P>), 

and represents the “expense and fatigue”’ effect established in the linear model (1) 

by the condition (11). A proof of necessity of (18) is provided by Theorem A.3 of 
the Appendix. 

4. CONCLUSION 

By exploring the analogy between the competitive equilibrium in economics 

and the arms race models, we were able to show a number of results concerning 

the armament processes involving hostile countries. The most important conclu- 

sion reached by the foregoing analysis is that the formation of alliances or neutral 

countries, cannot destroy stability, but is likely to stabilize the arms race. It would 

be interesting to show that the same conclusion can be made for the stochastic 

arms race model [1] on the basis of results obtained for model ecosystems in 

randomly varying environment [20] and stochastic large-scale systems [21]. 
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APPENDIX 

In this section, we will establish the existence result that is slightly stronger 

than that expressed by Theorem 2. 

For simplicity, let us rewrite the equation (29) as 

(A.1) X=f(t, x), 

where f(t, x) =h(t, x) + g(t) and, therefore, f(t, x)—¢ C°°(F x R") with te J, xe 

sn We see that the function f(t, x) satisfies the same hypotheses (H,)—(H3) as 

h(t, x): 

(Hi)f(t, x)e HX; 

(H4)f(t, Ax) = f(t, x), VA>O0; 

(H3)Ax* >0: f(t, x°) =0, VteJZ. 

To prove the existence result for (A.1), we first establish the following [9]: 

Lemma A.1. If the function f(t, x) satisfies the hypotheses (H‘), (H) and (H3), 

then for any two vectors u >0, v > 0, u # v, there exist indices k, le N, k # lsuch that 

(A.2) f(t, u)<f,(t, v), filt, u) > filt, v) 

for each fixed te J and all u, ve R*. 
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Proof. Define &, = max;<n {u;/v;}, m, = mMinjcn {u;/v;} for any pair of vectors u, v > 

0. With each pair (u, v), we associate the pair (u,, u*) given as u, = &;'u, u* = 

niu, so that u,=v and u*=v. That is, u,; <0, i#k, Uy) = 4, and likewise, 

u* >v,, i# l, uf = v, and since u # v, at least for some i we have Ugi < v;,, ut > 

vi #7 Ki Fl. 

From (H'‘) and (H4), we have 

(A.3) f(t, U) =fix(t, Uy) <fe(t, v), filt, u) =filt, u*) > filt, v) 

for each t€ J, which proves Lemma A.1. 

We recall that the equilibrium ray of (A.1) is # ={x* € @, x° =Ae}, where 

e={1,1,..., 1} such that ee R? and A >0. We provide the following: 

Proof of Lemma 1. Uniqueness of # means that for any pair of equilibrium values 

x’, x"E €, x’ Fx", 

(A.4) f(t, x") = f(t, x')=O0>x"= ax’ 

for all t¢ J and some A > 0. 

Define ys = minj<n {x{/x;'}, where x}, x!’ are the i-th components of the two 

equilibria x’, x”, and x” = xx”. Then, we have x” = x’, that is, x’=x},i#L x7 =x} 

and at least for some i # l, x’ < x}. Assume that the statement (A.4) is false. That is 

x"#Ax', for all A>0O. By (H‘)-(H3) and f(t, x”)=f(t, x')=0, we have 0= 

filt, x") = filt, x"")<fi(t, x')=0, which is absurd. The proof of Lemma 1 is com- 

plete. 

Remark 4. If we take any pair of vectors x°, x € @ such that x° € %, x #, and use 

Lemma 1 and inequalities (A.2), we conclude that f, (¢, x) <0 and f,(t, x) > 0 for all 

te FJ and some indices k, J € N. 

To establish the existence result for equation (A.1), we can replace the 

hypotheses (H’,)-(H3) by the following weaker hypothesis:.(H4)f(t, x°) =0@x* € 

#, and for any x € @ and x¢ # and any x“ € &, there exists a pair of indices k, | € N, 

k $1, such that 

(A.5) x, =max{x}>f.(t,x)<0, x» =min{x}D>fi(t, x)>0 
ieN ieN 

for all te 7. 

In view of Remark 4, (H‘)-(H34) imply (H4) but not vice versa. 

Now, we can prove a slightly stronger result than that of Theorem 2, which we 

state as the following [9]: 

Theorem A.1. If the function f(t, x) satisfies the hypothesis (H;), then there exists a 

solution x(t) = x(t; to, Xo) for any (to, Xo) € J X € and for all te To. 

Proof. Consider xo ¢ #, and a = x,%o = Maxjcn {Xo}, B = X10 = MiNjen {Xj0}, a > B > 

0. Define 

(A.6) B'={xEeR:B =x, <a, VieN} 

RB" ={xER" : 3B <x, <at3B, Wie N} 

and note @’c %”". For any t >0, we define the time interval 7, =[fo, to +7] and 

the rectangle 7, x #”. By continuity of f(t, x) we can find a number yz > 0 such that 

| f(t, x)| <1, for all (t, x)€ J, x B" and all ie N. By Peano’s existence Theorem 
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[22], there exists at least one solution x(t) for all té[t, to+e], where e,= 

min {t, a/1}. Now, either x(t,;)¢ % for some t; € (fo, to+ 1], or x(t)¢ & for all 

t € (to, to+ €;]. In the first case, the solution x(t) exists for all t€ Jo. If we have the 

second case, then we extend successively the solution x(t) beyond the time 

interval (to, to + €;]. 

Note that for all t €[to, to+ €,], x(t) € B”. In fact, we can show that x(t)< B’ 

for all t €[to, to + €;]. Since x9 ¢ &, by using (H4), we have (A.5) with x = x9 which 

implies for t = fo, 

(A.7) fi(to, X0)< 90, - filto, Xo) > 0. 

By continuity of f(t, x) and x(t), we can find a 6, >0 such that 

(A.8) fit, x(t)]<0, filt, x(t)]>0, VteE[to, to + 5;] 

which by integratic.a yields 

(A.9) Xx (t) = Xxo, x,(t) = x10, VteE[to, to+8,] 

which in turn, implies that x(¢) € @’ for all t € [ fo, tot 5, ]. Since x(t9 + 6,]€ B” and 

also x(to+5,) ¢ &, by using (H4), we have 

(A.10) filtot+ 81, x(to+6,))<0, —filto +84, x(t9+8,)} > 0 

and conclude that there exists a 6, >0 such that 

(A.11) fi lt, x(t)]<0, filt, x(t)]>0, 

VtE[to+ 81, 9 +8, +52] 
and 

(A.12) Xk (t)=Xx(to+S;), —Xi(t) = x1(to+ 61), 

Vte[to+ 5s, +8, +8]. 

Therefore, (A.8) and (A.12) imply that x(t)¢ @’ for all té€[t, 9 +6, +82]. By 

continuing this process, one arrives in finite number of steps to the conclusion that 

x(t)e B’ for all t€[to, to + €;]. 

Since x(t) remains in %’ for the entire interval [ to, fo + €,], by using the above 

arguments, one can show that the solution x(t) can be extended over the interval 

[to+ €1, to +2e,] and, thus, over the interval 7; =[to, fo +7]. Moreover, x(t)< B’ 

for all te J. 

Because, the solution x(t) stays inside %’ for the entire interval 7, = 

[to, to +7], it can be extended over the interval 7,=[t9+7, t9+27] by choosing 

subintervals of J, determined by €2= min {7, a/ 12}, where yz is defined by the 

condition | f;(t, x)|< 2, for all (t, x) € J, x B" and ie N. Moreover, one shows as 

before that x(t) € @’ for all t€ Jz. Therefore, x(t)¢ B’ for all te J, UT>. In this 

manner, a solution staying in B’ can be found for all t€ Zo. This proves Theorem 

A.1. 

Now, we can establish the attractivity property of the equilibrium ray 2 of 

equation (A.1) by the following [9]: 

Theorem A.2. If the function f(t, x) satisfies the hypothesis (H‘4), then the solutions 

X(t; to, Xo) of equation (A.1) have the property (P2). 
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Proof. To prove Theorem A.2, we use the Liapunov-like function V:€>R,, ; 

(A.13) V(x) = d(x, #), 

V(x) ¢ C°(@) and V(x) is Lipchitzian, which has 

(A.14) D* V(x)< min {lfi(t,x)}, WitxeTx-®Z. 

where L is a nonvoid subset of N defined by the set of all ic N such that 

| fit, x)|>0. 

To show (A.14), we note that for each (t, x)e J x €—@Z there exists Ag >0 

such that V(x) can be rewritten as V(x)=maxjcn {|x;—Aol}. To see this, we 

recognize the fact that the distance between a point x and the ray % is equal to the 

distance between the point x and the foot x°e& of the normal drawn from the 

point x to the ray 2%. Furthermore, there exists an index set L such that 

V(x) =|x;—Ao| for all ic L. Now, by hypothesis (H%4), for ic L we have either 

f(t, x) <0, or f(t, x) >0 and, therefore, | f,(t, x)|>0, ie L. By continuity of f(t, x) 

and for At>0O sufficiently small, we conclude that the index set L remains 

invariant. 

We proceed to compute D* V(x) as follows: 

(A.15) Vix+Arf(t, x)]— V(x)=|x,+Atf(t x)—Agl—|x;—Aol, Wie L. 

There are two cases to be considered: (i) x; —Ag>0, and (ii) x; —Ag<0, for 

ie L. in either case, (A.15) can be rewritten as 

(A.16) Vix + Atf(t, x)]— V(x) = Atl f(t, x)|, VieL. 

When (i), then f(t, x)< 0, and when (ii), then f;(t, x) > 0. Hence, from (A.16), we 

get 

(A.17) V[x + At f(t, x)]— Vix) =—Atl f(t, x) 4 VieL 

and finally, (A.14) is established from (A.17). 

The second part of the proof consists in showing that the function V(x) 

defined in (A.13) with (A.14) implies property (P2). Let x(t) = x(t; f&, xo) be any 

solution of (A.1) for (to, x9) € J X @. Then, x(t)¢ B’ for all te To, where B’ was 

defined in {A.6). Set 

(A.18) p(t)= Vi x(t). 

For sufficiently small At >0, we have 

(A.19) p(t+At)—p(t)= Vi x(t+Ar)]— Vi x(t)] 

= V[x(t+Ar)]— V(x(t)+Arf[t, x(0)) 

+ V(x(t)+Atf[t, x(t)]})— Vi x(n]. 

By using the fact that V(x) is Lipschitzian, from (A.19), we obtain 

(A.20) D*p(t)=min {| filt, x(t)]}}, Wte To. 
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We proceed to establish the property (P2) by contradiction. That is, for some 

e >0, (to, Xo) € J X @, there exists t; > tp and a sequence {t,}, & >t, & >+0,k—> 

+00, such that d[x(t,), ¥]=e and d[x(t), #]>e for te(t, & +1). Let us denote 

RB" ={x € 3’: d(x, X¥)= e}, which is a compact set. For any te J and any fixed 

x€"”, there exists an index subset L—N such that the function 0(t, )= 

minje x {| fi(t, X)|}>0. By continuity of @(t, £), there exists a neighborhood 0(£) of 

x-€ B"” such that 6(t, x) >0, for all x € O(X). Let U ={O(X): ¥ € B”} open cover of 

8". Since BZ” is compact, by Heine—Borel Theorem [23], we can extract a finite 

subcover {0(X;), O(%2),..., O(%,)}, where to each O(x;) there corresponds an 

index subset L; and the function 6;(t, x)= minj<,, {| fi(t, x)|}. We define w(t, x)= 

min; {0;(t, x), 92(t, x),..., 0,(t,x)}, and note that w(t, x)e COT xB") and 

w(t, x) >0, for all (t, x)€7 XB”. Therefore, we can take inf, .g» W(t, x) = y(t) and 

g(t)e C(T) since B" is compact. 

Now, from inequality (A.20), we can derive 

(A.21) D* p(t)=—¢(t), 

where x(t)<€ B”, te[t, & +1]. Integrating (A.21) from & to &+4:, and using the 

definitions (A.14) and (A.18) of V(x) and p(t) we obtain 

feet 
(A.22) O= plte+1)— pl) = -| g(t) dr<0 

tk 

which is absurd. Therefore, the proof of Theorem A.2 is complete. 

As the final part of the Appendix, let us prove the following: 

Theorem A.3. If the function f(t, x) satisfies the hypotheses (H'), (H%), and (H%), 

and solutions x(t; t., Xo) of equation (A.1) have the property (P2), then 

(A.23) filt, a)=fi(t, b), a; > b;, a; = b), i Aj; 1,7 EN. 

Proof. Suppose that (A.23) is false. This would imply that for some i € N, 

(4.24) filt, a)> f(t, b), 

for all a, b such that a; > b; >0, 0<a;=b;,, i# j. Then, (A.24) is equivalent to 

(A.25) fit, Q@i,...-, Aj-1, ai, pe 

> fi(t, ai, a | Gi-1; bi, Gitis--s,5 a,). 

This together with (A.23) and the fact that f(t, x) is continuous and belongs to %, 

implies that 

filt, Qy, ~~~, Qj-1, Qiy Qin, ..- 5 An) 

> fi(t, 1, ..., Qji—1, Dj, Qisi,.-.5 An) 

>fi(t,0,...,0, 5, 0,...,0) 

> f(t, 0,...,0,0,0,...,0)>0, 
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for all a>0O. From (A.26) and the fact that under conditions of the Theorem. 

x(t; t, Xo) € €, we conclude that the i-th component x;(t; to, Xo) of the solution 

x(t; t, Xo) is a strictly increasing function for all t¢ Zo, which contradicts the 

property (P2). This proves Theorem A.2. 

University of Santa Clara 
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