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Annals of Economic and Social Measurement, 5/2, 1976. 

UNCERTAINTY AND OPTIMAL POLICY 

INTENSITY IN FISCAL AND INCOMES POLICIES 

BY FRANKLIN R. SHUPP* 

Two simple linear difference equation models are used to illustrate the effect of uncertainty on optimal 
fiscal and incomes policy behavior. Whether uncertainty induces more, less, or equally vigorous responses 
than those of the corresponding deterministic models is shown to depend on both the location of the 
uncertainty in the underlying linear models and the structure of the criterion functions. 

In particular the more complex criterion function characteristic of the incomes policy model gives rise 
to conclusions regarding relative policy intensity which are quite dissimilar to those obtained for fiscal 
policy. The conditions under which these conclusions hold for both the fiscal and incomes policy models 
are derived using control theory. Finally, some simulation results are presented to provide a feel for the 
quantitative importance of the study’s findings. 

I. INTRODUCTION 

A great deal of study has recently been devoted to the relationship between 

uncertainty and optimal macroeconomic stabilization policies. At least four 

questions have been identified and explored. (1) Given both additive and multi- 

plicative uncertainty, is the system (macro model) inherently stabilizable? Assum- 

ing a satisfactory answer to this existence query, three other questions can be 

posed. (2) Does the existence of uncertainty influence the suitable choice of policy 

instruments? (3) Does the optimal policy derived for a stochastic model yield a 

significant welfare gain over the policy appropriate to the corresponding deter- 

ministic model? and (4) How does uncertainty affect the intensity or vigor with 

which a particular policy should be employed? 

While these last three questions are interrelated and have, in fact, been 

jointly discussed (see e.g. Turnovsky [8]) this paper focuses more or less exclu- 

sively on the final question, with the intent of clarifying and extending the studies 

of Aoki [1], Brainard [3], Chow [4, 5] and Wonham [9]. 

The two models considered in this study, one a simple fiscal policy model and 

the other a simple wage-price control model, are of the same general linear- 

quadratic form given by 
. 

(1) Min D = E| y gi? + situ, +} ru 
t=1 

Subject to 

(2) X41 = A,X, + bu, + ¢, 

where x, defines the state of the system at time ¢ and u, represents the policy 

variable. The mean and the variance of the stochastic coefficients d,, b, and ¢, are 

*The author wishes to acknowledge the assistance of Hans Brems, Alan Ralston, Bryan 
Stanhouse and Thomas Yancey. 
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assumed to be known and the random coefficients themselves to be temporally 

independent although possibly jointly distributed. Furthermore the parameters 

a, b, and r are assumed to be strictly positive. 

In the more conventional fiscal policy model, the inner product term of (1) is 

assumed to vanish, i.e. s = 0. In this event the paper’s findings can be summarized 

as (i) if the uncertainty is additive, i.e. restricted to the c, term, the first period 

certainty equivalence theorem holds, (ii) if the noise is multiplicative and 

restricted to the coefficient of the policy variable, i.e. to b, a less vigorous (than the 

certainty equivalent) policy is indicated, (iii) if the uncertainty is multiplicative and 

restricted to the coefficient of the state variable, i.e. to d,, a more vigorous policy is 

implied. While these results are not inconsistent with those obtained in the studies 

cited, Chow and Turnovsky in particular appear to follow Brainard’s lead in 

attributing any overall increase in policy response to covariation between 4,and b, 

(or b, and ¢, in Brainard’s analysis), rather than to conclusion (iii) above. Since this 

result is independent of any covariation it represents a separate cause. 

For optimization studies in which the inner product term plays an essential 

role, i.e. in which s # 0, these findings must be modified. If s <0, as in the incomes 

policy model outlined below, findings (i) and (iii) survive intact. However, in this 

new situation, the impact of noise restricted to the policy variable coefficient is no 

longer unambiguous. In fact, for the particular wage-price control model consi- 

dered it is possible to establish that, for certain plausible values of s, the indicated 

policy response is less vigorous than the certainty equivalent policy (as above), but 

for certain other almost equally plausible values of s, the indicated policy response 

is more vigorous. 

When s>0, the policy implications of uncertainty are even more qualified 

although again not indeterminate. In this situation uncertainty restricted either to 

G, or b, can induce either more or less vigorous policy responses than the certainty 

equivalent ones depending on the relative values of the parameters a, b, r and s. 

Il. THE FiscAL PoLicy MODEL 

To illustrate the impact of uncertainty on optimal policy decisions we first 

' examine a rather standard single equation macro model in which there is no long 

term growth, and in which consumption demand in any period C? is related to 

that period’s national income Y,, and investment demand I? is given autono- 

mously. The demand for government expenditures G? is assumed to consist of 

two components; G*, the long run equilibrium level of expenditure which is 

consistent with the desired public-private expenditure mix and is given autonom- 

ously, and g,, the level of planned (demanded) expenditures for stabilization 

purposes.’ 

“We assume implicitly that g, is the only policy variable and also that G* can be given as some 
fraction of the full (high) employment national income Y%, i.e. G* = k Y*, and that the prevailing tax 
structure generates receipts equal to G* at the full employment national income. We also assume that 
the given consumption and investment functions are consistent with this tax structure, which is 
assumed invariant and therefore not a policy option. 
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The demand structure can thus be given by 

CP=a,+BY, 

(3) I=, 

G; =G* +g, 

Supply is assumed to respond to aggregate excess demand and is thus given by 

(4) Y¥,41= Y,+-n[(CP?+1?+G?P)- Y,], 

where 0< 7 = 1 and denotes the response coefficient. Combining the supply and 

demand relationships yields the single equation macro model 

(5) Yo41 = a, Y,+ bg, + (a, + y,+ G*), 

where 

a,=1—n+mnB, and b,=7. 

From (5) we conclude that if g, = 0, a, <1, and the coefficients a,, B, and y, are 

time invariant, the long run equilibrium national income Y’ is given by 

_a,+y,+G* 

1— 8, 

Furthermore we assume that the price mechanism, defined to include interest and 

wage rate adjustments, operates to insure that long run equilibrium consumer and 

investor behavior is consistent with a full (high) employment national income. 

That is, we assume that when the parameters of the system take on their long run 

equilibrium values (i.e. when a, = a*, B, = B*, and y, = y*) for a sustained period, 

the induced Y’ is the full employment or targeted national income Y*, where 

i 

_a*+y*+G* 

1-—p* 

This implies that the targeted national income is not only consistent with the 

model, but also that the stabilization problem is essentially a disequilibrium one 

and arises only when ‘short run’ behavior deviates from long run equilibrium 

behavior. 

With this in mind we rewrite equation (5) in deviation form as 

ag 

(5') Vi+1 = ay, + bg, +c, 

where y, = Y,- Y*, 

n(AB,)(a* + y* + G*) 

1-p* 
c, = n(Aa, + Ay,)+ 

and Aa, =~,—a*, etc... 

Finally, to complete our model we assume we wish to minimize social 

disutility as measured by the quadratic function 

(6) 



If Aa, =AB,=Ay,=0 for the planning horizon and for the immediate 

preceding periods, then no corrective stabilization policy is necessary. However, if 

this is not the case and if the trajectories of these variables, or alternatively of a,, b, 

and c, are known with certainty, the problem can be solved by a straightforward 

application of dynamic programming or the Maximum Principle. 

We now assume that the trajectories a,, b, and c, are given only stochastically, 

with known means and variances. An explicit analytic solution is available, using 

the same techniques, if the random coefficients (variables) are assumed tempor- 

ally independent. The stochastic problem can be restated as 

1 T+! 2 1 r 2 
(7) Min D = E|> > yt+=zr F ra 

2 t=1 2 t=1 

subject to 

(8) Ve+ ha ay, ns bg, + ¢, 

In addition we note that 

E(5,)° = ito, 

and 

Vii Ys = dy, + b.g,+C, 

and 

2 - , 2 
(9) yi0il¥e = Fay: + 04,281 +O, 

In the final equation above we have assumed solely for the sake of exposition that 

there is no covariation between 4@,, b, and ¢,. This assumption is relaxed in the 

more comprehensive formulation included in the appendix. 

The general solution to the problem defined by (7), (8) and (9) can be derived 
from the appendix and is of the form 

(10) 8 = —[Kiai(b° +05) +r) '[K,41b(ay, —&) + bk], 

where K, and k, are the solutions to the Ricatti and tracking equations given in 

(11a) in the Appendix. Assuming that K;,, = 1 and k,,,;=0, then 

br(Gryr+ Cr) 1 i, a, 
(11) wr by+o,tr 

and 

{(b7-, +oa,+r\(1 +47, +02) —@7~1b7_1}b7_\(Gr—-1 7-1 

+€p_1)+ drbrér(o5 +r) 

{(b7-1+.05)(1+ 47-1 +02) + r}(b7_1 +0341) 

— 47 -b67_1(67-, +04) 

Having established the structure of the optimal policy rule, we return now to 
our primary concern which is to study the impact of uncertainty on optimal policy 
behavior. To do this we examine the policy rule given by (12), bearing in mind that 
while the general form of this rule is time invariant, the precise specification is not. 
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We consider first the impact of uncertainty associated with the additive term 

c, and measured by the variance o-,. WW note that o-,,does not appear in the policy 

rule given by (12). We conclude from this that additive uncertainty does not 

influence the optimal policy <iecis:cs:. indeed, if we assume that o = o; = 0, then 

the policy rule of (12) reduces to 

_ by (b7 ptr+az ir Mar yr 1 +Cy- pteprtr 
(13) Sr-1 >= 

b7.,(b7- i+2r+ay intr 

This result is identical to the corresponding certainty solution except that €; and 

€r-1 replace c; and c7_; respectively, and as such implies first period certainty 

equivalence. 

We next address the case in which uncertainty is associated with the response 

of the economy to the stabilization measure, which implies that 6, is known only 

stochastically. We assume all other relationships are known with certainty in 

which case (12) reduces to 

{67-1 +05+r+a7-1(o5+n}br_s(ar-1yr-1 + cr-1) 

(4) | g=- , = ; . <oherent 

(by, +0, b7_-1 +0,+2r+az_(o,t+n}+r° 

which can be rewritten as 

(14’) 87-1 = ~Y1Yr--1 — V2CrT-1 — V3Cr. 

To examine the impact of this form of uncertainty we differentiate the coefficient 

of the first term of (14’) with respect to the variance of the policy parameter. This 

yields 

(15) ov 
da; 

ab{(b? + a7r)(2r+ar)+r°+b°+21+a\(b°+rt+ar)op+(1+a’)(or)} 

[((b°+0;){b +o,t+rt+art+ao}t+rlb t+o.t+n} 
<0. 

The implication of this is immediate. Ceteris paribus, any increase in the uncer- 

tainty of b, reduces the intensity of the corrective action associated with any given 

GNP gap. 

We next consider the situation in which a; = 02 =0, i.e. in which only the 

state variable parameter, G,, is stochastic. Under these circumstances equation 

(12) reduces to 

(16) _ {bri +1) +04) + ar_arhbr—s(Gyr—1 + ers) + Arbrer? 

ah br lbs + toa +a r}+r(b714+7) 

which can also be rewritten as 

(16’) 81-1 = ~ Bi Yr-1— M2Ct-1— 3Cr- 

To measure the impact of this type of uncertainty, we differentiate the coefficient 

of the first term of (16’) with respect to a. and obtain 

abr(b? +r) Op 7 - . : 
(17) do, [b*{(b-+r)(1+072)+a *r}+r(b° +r)} ae 
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Again the implication is clear. Ceteris paribus, uncertainty associated with the 

parameter d, increases the vigor or intensity of optima! corrective measures 

associated with any specific GNP gap. This somewhat unexpected conclusion 

appears to warrant further examination, 

If r>0, the optimal deterministic policy of period t does not close entirely the 

GNP gap in period t+1. While a further reduction in the GNP gap would be 

beneficial, the marginal costs in terms of the more intensive policy required to 

reduce the gap further would more than offset the marginal potential benefits. 

When a stochastic element is introduced into the dy, term, a further benefit 

accrues however which upsets this deterministic equilibrium. This additional 

benefit derives from a reduction in the uncertainty in period t + 2, i.e. in ee which 

as we have noted in (9) above is a concomitant of any reduction in the absolute 

value of y,,,. Consequently, ceteris paribus a more intensive stabilization policy is 

required to achieve the stochastic equilibrium. We note that this result depends 

crucially on the dynamic nature of the model and the eminently reasonable 

assumption that r>0. 

In semmary then we have demonstrated that uncertainty associated with the 

parameters d,, b,, and ¢, in our fiscal policy model tends to induce optimal policy 

responses which are respectively of greater, lesser and equal intensity than the 

corresponding optimal deterministic policies. This conclusion requires that a, and 7 
b, are both positive. 

Ill. THE INCOMEs PoLicy MODEL 

In this section policy rules for a temporary incomes policy are identified and 

examined. These rules are optimal with respect to the posited criterion function 

and a simple but plausible wage-price inflation model. The principal assumption 

of the underlying model is that the relevant inflation is sustained by an inflationary 

psychology, characterized by expectations of continuing price and wage increases. 

Temporary wage-price controls by dampening these expectations serve to reduce 

the inflation. 

The inflation model considered is a rather conventional two equation system, 

consisting of a wage formation equation and a price formation equation. Money 

wage increases W, are assumed to be related to expected price increases P‘, 

average productivity increases W;, and lagged excess demand for labor as 

measured by the difference between the prevailing unemployment rate U,_, and 

the targeted unemployment rate U%_;. This relationship is given in equation (18) 

below with all variables expressed in percentage terms as 

(18) W, = Pi + Wi +7(U,-1— U4). 

If we make the additional assumption that expected price increases are related to 

past price changes P, as given by 

(19) Pt =h(P,-,+dP,-2+ d’P,-34..), 

where 0<h<1 and d=1-—h, we can use a Koyck transformation to obtain the 

following wage (increase) formation equation 

(20) Wir = dW, +hP, + Wi41—- dW, + 9(U,— UF) — nd(U,-1— UF). 
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On the other hand, price increases are assumed to be related to increases in 

average unit labor costs, W, = W, — W', and to aggregate excess demand, Y,— Y*, 

where Y7 equals the output defined by operating at the targeted unemployment 

rate Us and the targeted capital capacity level. A closed economy is assumed in 

the sense that no ailowance is made for disproportionate exogenous price 

increases. If we assume, in addition, that the relationship between price changes 

and past wage changes follows a Koyck lag structure, it follows that 

(21) P,=b(W,-.+aW,_.+a°W,_3+ ...)+@(¥,— ¥7), 

where 0<b<1 and a=1-—b. This implies the price formation equation, 

(22) P,41= aP,+bW,—(Y,— Y?)—wa(Y,-1— Y@.,). 

It is evident from (20) and (22) that the inflationary process defined in this 

study is self-feeding, i.e. is characterized by a wage-price spiral, and furthermore 

that this process can be interrupted only by (i) a substantial increase in either or 

both the unemployment gap U, — U7 and the deflationary gap Y*— Y,, or by (ii) 

wage-price controls which negate either the wage formation equation (20) or the 

price formation equation (22). We note also that the system given by (20) and (22) 

is capable of generating an unstable wage-price spiral, i.e., one characterized by a 

continuing escalation in the rate of increase (decrease) of prices and wages. 

However, if the system is constrained so that U, = U* and Y, = Y*, ¢=(1,2...), 

the wage-price spiral is not only stable, but the equilibrium values of P, and W, 

depend only on the initial values of those same variables. 

In the analysis which follows we assume that the system is so constrained, i.e. 

that the economy is operating at the target levels of output and employment either 

with or without the assistance of monetary and fiscal policies. Consequently, the 

final two terms on the r.h.s. of equations (20) and (22) can be eliminated, and the 

inflation is thus sustained only by inflationary expectations. In this situation wage 

and/or price controls are designed to combat the inflation by altering these 

expectations. We assume further that direct wage controls are imposed; in which 

case the inflation model reduces to 

(23) P,.,=aP,+bW, 

where W,= W,— W; and represents the policy or control variable, while P, is 

determined in the market. 

A good incomes policy must provide for (i) the elimination of price inflation 

or at least its reduction to some acceptable level, (ii) an equitable distribution of 

any restraining impact on wages, interest *ates, and profits, (iii) terminal charac- 

teristics which minimize the possibility of the reintroduction of a continually 

escalating wage-price spiral once controls are suspended. This last objective 

requires that the terminal price expectation P7., is equal to the targeted level of 

price increase P*, which may or may not be equal to zero. A criterion function 

constructed to achieve these three objectives when it is minimized is given by 

T 
(24) D= y {p,|P, — P*|+|W,—(W’' + P,)|}+ p2|P7+1—P*|. 
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A formal statement of the control problem requires one additional observa- 

tion. The terminal condition as given by the third term of (24) is expressed in terms 

of the expected price increase P,, which is itself determined by a price increase 

trajectory as per equation (19). This relationship permits us to combine the first 

and third terms of (24) and to rewrite the criterion function as 

T 

(25) D= ¥ p|P.—P*|+|(W,— Wi)—P 

where p,=p,+hd" "p, for t=(1,2,..., T). 

Finally we find it convenient to replace the absolute value form of the 

criterion function (25) with the mathematically more tractable quadratic structure 

of (26). If we simultaneously set P*=0 and normalize on the state vector 

coefficient we can rewrite (25) as ; 

T = = 
(26) D= x 5P;—s,W,P, +31,W?, 

t=1 

where s, = r,. 

Minimizing (26) subject to (23) yields a variable coefficient policy rule of the 

form 

(27) W, = 6,P,+ Wi, 

where 0=0,=1 and where 6 > 1 #3 t > T. This provides for a reasonable 

‘reentry’ into the market. 

The stochastic version of the same model can be restated as 

rg ~ ~ = = 
(28) Min D = E| > 3P?—s,P.W, +4rwi] 

t-1 

subject to 

(29) P.,, =4,P,+6,W,+é, 

where é, is assumed to be temporally independent and to have a zero mean. 

From the appendix we see that if we exclude any covariation, the general 

form of the solution to the problem given by (28) and (29) is 

abK,.:—S, 
30 ie mei a 
~~ W, (b+0%)Kiith 

Assuming for expositional purposes that s and r are time invariant, and also 

that K7,.; = 1, it follows from (30) that for the final two periods, 

ab—s 
(31) Wr=- Boba 

and 

(32) Wy, = — Sb +a" +03)(6? +05, +1) - (ab -s)"}— (6? +05 +1) 
cg. woes 

(b7+0;){(1+ a> +07+r)—(ab—s)}+r(b-+a74+nr) 
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It is evident from (31) and (32) that additive uncertainty does not affect the 

optimal policy rule, i.e. that the certainty equivalent theorem holds in this case. 

When the uncertainty is restricted to the coefficient of the state variable, i.e. 

when o7,= 07 =0, the policy rule given by (32) can be rewritten as 

i. _ _{abF—s(b? +1)}+ ab(b?+n)o% 

(33) Wr =—«Pr_1= {b°F+r(b°+r)}+b°(b' +n)o- Pr-t 

where F=(b?+r)(1+a*)—(ab—s)’. 

As above, to determine the impact of this uncertainty we differentiate «x with 

respect to the variance of d,, and obtain 

OK (abr + b*s)(b* +r)” 
(34) ao? [b4d4+a2+0b'+r)—-(ab=s))4rb tne 

As in section II above this implies a more vigorous policy response for uncertainty 

of this type. However, if the inner product term is added as in (1) rather than 

subtracted as in (28), the denominator of (34) is given by (abr — b*s)(b* +r) and 

therefore ax/d02>0 only when s<ar/b, and negative otherwise. In those 

instances when s =r, the sign of ax/da. depends exclusively on whether or not 

a>b. 

Returning again to the incomes po'icy model, it follows from (32) that if 

uncertainty is restricted to the policy variable, i.e. if ¢2= 02 =0, that 

(35) arith " 

7 yaen ee {abF — s(b° +1r)}+{ab(1+a’)—s}o% p 

eee Th {b°F+r(b°+n}+{F+b-(1+a)+rop+(l+a os) 7 

The complexity of (35) precludes finding simple necessary and sufficient 

conditions for determining the sign of 3A/ao%. However, sufficient conditions can 

be readily ascertained. In particular 

(36) 8A/a0%>0, when ab(1+a”)<s<ab+{(1+a’(b°+n)]'”. 

This result is particularly interesting because when (36) holds, the conclusion 

contradicts the findings of section II. Also since we have already shown that 

aA/d0% is positive for the incomes policy model, it follows that uncertainty in 

either a, or b, induces a more vigorous policy response. (Again no covariation is 

assumed.) Furthermore, it is easy to demonstrate that plausible values of s do 

satisfy (36). In particular, in the model employed in which a = 0.77 and b = 0.23 

and in which r = s, (36) is satisfied whenever 0.23 = r= 1.98. In addition we note 

that this is a sufficient condition and that a larger interval might also satisfy (36). 

In the more familiar case in which the inner product term is positive as in (1) a 

simple sufficiency condition can be derived only for aA/da; <0. For this case 

(37) ad/do74,<0, when ar/b<s <[(1+a’)(b?+r)]'/?
 —ab. 

In the common special case when a, b < 1, the upper limit implies that s cannot be 

significantly greater than r, if we wish to guarantee that aA/da; <0. Also for r~s, 

*This result is consistent with our earlier explanation. Increasing a, while holding 5, constant 
implies via (1) that x,,, increases, which in turn implies a reduction in the absolute value of o~,,.. 
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the lower bound condition of (37) again emphasizes the importance of the relative 

magnitudes of a and b. 

Ill. SUMMARY 

The findings of the previous two sections were obtained for a single equation 

model with a two period horizon. To illustrate that these conclusions are in 

general transferable to systems characterized by an n period horizon (n > 2) and 

simultaneous equations, some control simulation were made for a simple 2 

equation model with a twleve period horizon. The results are reported in Table 1. 

The model is defined by 

_ (1.25 -0.75 (il sp sr (-5) 3 &*) 

A=(15 0 ), B=(5 0/7 &* 0)’ Xo 50 

O=() RG as) 5 - 

All of the results in Table 1 are consistent with the findings in Section II. A 

comparison of the results of simulations (2) and (3) with those of simulation (1) 

show that when uncertainty is restricted to the A matrix, that policy is pursued 

more intensively than for the corresponding certainty case. Similarly a compari- 

son of row 5 with row 1 illustrates the less vigorous response which arises when 

uncertainty is confined to the B matrix. The results of simulation 4 demonstrate 

the substitution of policy 1 when uncertainty is restricted to the coefficient of the 

latter. The other results are self explanatory. 

TABLE 1 

UNCERTAINTY AND FIRST PERIOD POLICY RESPONSES 

Insentity of Policy Response 

Simulation Positive Variances uy uz 

1 none 31.8 15.9 

2 Sesh fleen 34.3 17.6 

3 eel Wine Catena 35.1 17.5 

4 Or: 23.1 25.0 

5 Oris For2 26.9 13.5 
hs v2, 31.8 15.9 
7 all 29.5 14.8 

When positive the variances have the following magnitudes Car = 0.25, 
F212 = 0.09, 72,012 = 0-02, o},, = 0.2, o},, = 0.2, o2,, =9.0. 

In summary the primary factors which appear to influence the intensity of 

policy response in a stochastic model are whether (1) the uncertainty resides 

primarily in a(A) or b(B), (2) the inner product matrix s(S) is positive, negative or 

zero and (3) a>b (or in some sense A > B). Given this host of qualifications, it 

would appear prudent to simulate any specific model or system before making any 

qualitative judgment about uncertainty and policy intensity. Furthermore since 
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policy intensity, welfare gains and policy instrument choice are all interrelated, it 

seems reasonable to assume that this same course of action might also be advisable ° 

prior to any judgment in these latter two areas. 

University of Illinois 
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APPENDIX 

DERIVATION OF THE OPTIMAL POLICy RULES FOR 

A STOCHASTIC LINEAR-QUADRATIC DYNAMIC PROGRAM 

The Problem 

(1) 
dal > ar , ae i, 

Minimize E\5 2, x,O,X,+x,Su, +5 on u, Ru, $32 rQraxr| 

(2) s.t. X41 = Ax, + Bu, +é,. 

A Necessary Relationship 

(3) E[ x41 X41) = F141 OF 41 + (QV), 

where the ijth element of the matrix V**" is given by 

(4) Viet = xi VA4ix, +221 Vu, + 2x) VS +20) VS + Vu, + VO 

where V“' = the covariance matrix of the ith row of A with the jth row of B. 

Outline of the Dynamic Programming Derivation 

Let 

(5) Fros(X7r+1) =4$%741 OreiXre1s 

and 

(6) Fr(x1) = Min}E@x7Orxr + x7Sur +3u7Rur + Fryi(xr+1))} 

. 1 i 1 
= Min {x 7O7x7 +x Suz + 2Uu 7Rur + E(a(x T+ 1OreiX1r4+1 \\x7)}, 

UT 
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which by (2), (3), and (4) yields 

(6) Fy(xr)= Min{z x7OrxXr +3 uRur +x Sur 

+}(Axy + Buy +r) Ors:(Axr+ Bur +r) 

+3 tr( Oras (x pV x7 + 2x Ve uy + 2x VW" + 2u-V™ 

+upV 8 ur+ V))}. 

The value of uy; which minimizes the right hand side of (6’) can be found by 

setting d{ }/du;7 = 0. This yields the optimal policy rule, 

(7) up=—[Rrt B’Ory:B + Or. V7?) {B' Ors 1(Axr+ Ex) + (Ors V9) x7 

+Sipx7+ trOrs1V°}'. 

Substituting (7) back into (6’) yields the quadratic form 

(8) Fy(x7) = iy TK rx7r+ kyxr+ hry, 

where 

(8a) 9 Kr=Qr+A'Qr41A +7741 —(A'Or41B + Spt Or V UT 

x (B'Or.1:A + S1+(OruiV™)') 

ker =F 7Or41A + (Ory V“Y —(€70741B + (trOrs1 vray" 

x (B'O7,,A + S'-+ (Or, V*")’) 

hr = 2{E7Ors1Er + Ores V+ (Err 1B + (Ors VY LT 

x (BOr,:ér+ trOrs1 V®9}. 

The same procedure is repeated for the new recursive equation 

(9) Fr—,(x7-1) = Min E{(@x'r-1Or-127-1 +x‘ Sur. t+ u'r, Rur-, + Fy(x7))}. 

The only difference between this new equation and equation (6) above is that 

F;(x7) given by (8) is more complex than F;7,;(x7.;) given by (5). Consequently, 

the structure of the optimal policy rule derived from (9) resembles that of equation 

(7), but is modified to incorporate the difference just cited. The derived optimal 

policy rule is given as 

(10) uy—; =—[Rr_-1 + B’K-B + trK,V""} {BK (Axz-; +ér_1) 

+S7-1xX7-1 + Bk + (tr1KyV x7 + rK;V"} 

The functional equation (9) can then be rewritten as 

(11) Fey (X7—1) = 3%'p-1. Kp—1 X71 + kei X7-1 + hy, 

where 

(11a) Kr-1=[Qr-1+A'KpA + 7K;V™ 

— Wr_,(B’K7A + S7-, +(rK,V*"))}, 

kp_1 =[A'— Wr_,B'Krér-1 + kr) + 1K pV" — Wy, trK VV", 
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with 

Wr_, =(A'K7B + Sy_, + K,V“")[Ry_, + B'K7B + rK,V""7 '. 

Since the structural form of (11) is identical to that of (8), a repeated application of 

the dynamic program analysis yields the same results. Consequently (10) and 

(11a) constitute the general form of the solution with ¢ and t—1 replacing 

respectively T and T — 1 everywhere. The values of the shadow price variables, K, 

and k,, for t=(T, T—1,..., 1) can be determined by solving (11a) recursively 

given the boundary conditions K7,; = O7,, and k7,, = 0. Once these have been 

identified, the policy rule given by (10) is determined. 

‘Mf, e.g., both the B and Q matrices are 22, then the matrix given by the symbol 

Ors; Vv" is defined as rOV™” =q;; ye: +412 yer +42 VP182 +g, VE, 
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