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SECOND-ORDER APPROXIMATIONS FOR ESTIMATING PRODUC- 

TION FUNCTIONS 

BY VITTORIO CORBO* 

This paper shows that the CES and VES production functions have the same second order approximation. 
Furthermore it is shown that in most cases the second order approximation is better for the VES than the 
CES. Therefore second order approximations should not be used to make inferences with respect to 
parameters of a CES function without strong independent evidence that the “true” production model is 
indeed CES. 

INTRODUCTION 

In the estimation of production functions the usual hypothesis is that the function 

is one of a restricted class which satisfies some a priori restrictions in technology. 

The production fuctions most frequently used are the Cobb-Douglas, CES and 

VES, in that order. If relevant data on factor inputs and output are available, 

these data can be used, in principle, to identify the relevant production function, 

using quality of fit as a criterion. 

The CES and VES production functions are non-linear in the parameters; 

therefore, direct estimation of these functions requires non-linear estimation 

procedures. To avoid complications arising from a non-linear estimation proce- 

dure' Kmenta (1967a) proposed to approximate the CES function with a Taylor- 

series expansion. Since then, this procedure has been widely, used (e.g., Griliches 

(1967), Zarembka (1970), Griliches and Ringstad (1971)). 

G. S. Maddala and J. B. Kadane (1967) have shown, using Monte Carlo 

techniques, that for samples built using a CES production function, Kmenta’s 

procedure does not give reliable estimates of the elasticity of substitution, 

although it gives reliable estimates of the returns to scale parameter. Further, in 

the Kmenta approximation to the CES, only the scale parameter is free of units of 

measurement in the output and factor inputs. 

Further, in a direct non-linear estimation, only scale and substitution 

parameters are free of units of measurement in the output and factor inputs. 

Griliches (1967) and Griliches and Ringstad (1971) have also used Kmenta’s 

approximation, not to estimate the CES production function, but to test for 

departures from the Cobb-Douglas function. The power of such a test depends on 

the particular alternative hypothesis being used; in the strict sense, Griliches is 

testing the null hypothesis that the production function is Cobb-Douglas against 

* 1 would like to thank Professors Marcel Dagenais, Franklin Fisher, and Robert S. Pindyck for 
their remarks which helped considerably to improve the presentation of this paper. I am also grateful 
to Dr. Mohan Munasinghe, Research Associate at the International Institute of Quantitative 
Economics (1.1.0.E.) who commented upon this paper and improved its style. This research was 
financed in part by a grant from the Quebec Department of Education and by the I.1.Q.E. 

Direct use of non-linear estimation procedures have led to problems such as: slow convergence, 
obtaining of a local maximum but without information about the presence of other maxima, important 
cancellation errors in the computation of derivates, use of substantial amounts of computer time, etc. 
On this see S. M. Goldfield and R. E. Quandt (1972, 26-27). 

65 



the alternative hypothesis that the production function itself is of the Kmenta 

form. However, this type of hypothesis is not of common interest. Usually, we 

wish to choose specifically between a Cobb-Douglas and a CES production 

function, and this objective is not accomplished by the Griliches procedure. 

More generally, the purpose of this paper is to show that when we wish to use 

the data to test the hypothesis that the production function is a CES by using 

Kmenta’s approximation (as a matter of fact, only the scale parameter is free of 

the units of measurements), then the problem becomes more fundamental. 

Another well-known production function—the variable elasticity of substitution 

(VES), of which the CES is a special case, first used by G. H. Hildebrand and T. C. 

Liu (1965) and developed by M. Bruno (see also Y. Lu and L. B. Fletcher (1968), 

R. Sato and R. Hoffman (1968), Lovell (1973))—has the same form as Kmenta’s 

approximation of the CES function when second-order approximation of it is 

developed. 

Further, for a person willing to test the null hypothesis that the production 

function is CES using Kmenta’s approximation, the crucial point has been 

summarised by Kmenta (1967b, p. 193): “An inevitable implication of using a 

functior f; as an approximation to another function f, is that f, is also an 

approximation to functions other than f,. This is obvious and hardly relevant; 

what is relevant is how well f,; approximates f, within some range of practical 

importance.”” But Kmenta’s approximation to the VES also meets the above 

requirement. It is shown here that almost always, Kmenta’s approximation is a 

better approximation to a VES than to a CES production function. 

Therefore, Kmenta’s approximation should not be used to make inferences 

with respect to parameters of a CES function, without strong independent 

evidence that the “‘true”’ production model is indeed a CES. Although in most 

studies the data is used to identify the type of production function, in this case 

Kmenta’s approximation cannot be used for this purpose. As a matter of fact, it 

cannot be used to make inferences with respect to parameters of a VES function 

either, because in that case all the parameters are under-identified. 

The organization of the rest of this paper is as follows. In Section 1, the 

second-order approximations to the CES and VES production functions are 

examined. Next, in Section 2 the “goodness” of the approximation is studied. In 

the Appendix a derivation of the error behaviour in the approximation is 

presented. 

1. THE CES AND VES FUNCTIONS AND THEIR SECOND-ORDER APPROXIMA- 

TIONS 

The CES production function allowing for non-constant returns to scale is 

given by: 

(1) V=y[l6K °+(1-S)L °°)” +withO<p<1, p>-1, y>0, v>0 

where: 

V = Output 

L = Input of labor services 

K = Input of capital services 
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Kmenta approximated it with a Taylor series expansion of the first- and second- 

order terms around p = 0 to obtain: 

(1') In V=In y+ v5 In K+ v(1—85) In L —5 vp8(1—5)(In K —In L)’ 

Nerlove (1967) presents a VES function with constant returns to scale which 

he attributes to Bruno. The same type of function has been presented recently also 

by Lu and Fletcher (1968). The Nerlove nomenclature is followed here. 

The Bruno production function allowing for non-constant returns to scale 

can be written as: 

(2) V=y[6K °+(1-5)K L?™” 7", ~—s with »>0 

V=K’yl6+(1—8)k™" 7", 3=—s where k= K/L >0. 

To have a real valued function with positive output the following restrictions 

are imposed: 

y>Oand 6+(1—8)k*""™ >0. 

For any positive v, a positive marginal product of labor requires: 

(1—m)(1—8)k?"-™ 

6+(1-8)k°-™ 
>0, 

and a positive marginal product of capital requires: 

&+(1—8)mk?"-™ 

s+(1-aykem 9 

Strict quasi-concavity of the production function requires: 

pd(1—m)+6+m(1—5)k?"""” >0 

(This condition and the positive marginal product conditions imply that the 

elasticity of substitution is greater than zero.) 

Function (2) is homogeneous of degree v and has a variable elasticity of 

substitution given by: 

1 

l+p aie 
aK 

where a, is the partial elasticity of output with respect to capital. 

From the above constraints the following inequalities can be derived: 

c= 

(i) v>0, y>0, k>O0 

(ii) 5+(1—5)k”""-™ >0 

(iii) (1—m)(1-8)>0 

(iv) 6+m(1—8)k*""" >0 

(v) p8(1—m)+8+m(1—8)k*"-™>0_ 

? Within a range of K and L this function has diminishing marginal returns to each factor. This 
range depends on y, 5, p, and m. 
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Let us impose the additional restrictions: 

(vi) 0<6<1 

(vii) 1+p>0 

Inequalities (iii) and (vi) imply 1 — m > 0. If a Taylor-series expansion of (2) is 

taken around p = 0, and if only the first- and second-order terms are considered, 

the following is obtained: 

(3) In V=In y+vr[6+m(1—8)] In K —v(m—1)(1—-8) In L 

Fm ~1)?8(1—8)[In K-In LP 

This equation is under-identified, its estimation is not of interest. Rather, the 

important point is that (3) is of the same form as (1’), and therefore (1’) cannot be 

used to estimate the coefficients of a CES function, without further a priori 

information that the CES is indeed the true model. 

In general the error in approximating the VES function by (3) is given by: 

(4) In Vappr—In Vexact = — (1 —m)(1—8) In k 

-F( —m)*6(1—85)[In kP += in[5+(1 —5)k*"-™] 

2. MEASURING THE ““GOODNESS”’ OF THE APPROXIMATION 

To study how well (3) approximates (2), numerical experiments were per- 

formed for different values of the parameters. For the first case, let us employ the 

same parameter values as Kmenta (v = 0.9 and 5 = 4/9), so that the results will be 

comparable. However, there is an additional parameter, m, for which values are 

needed. It is already known (Section 1) that m<1. In order to obtain a more 

restricted range of values for this parameter, the Hildebrand and Liu estimates 

(presented by Nerlove, (1967)) can be used; these estimates are presented in 

Table 1. These estimates must be used cautiously because they were derived for 

the constant-returns-to-scale case. In any event, only those cases within the 

neighbourhood of constant returns are of interest. 

Table 1 shows that in 135 of 17 cases m is a number less than one in absolute 

value and, in 10 of the 13, m lies between zero and one. Thus, in the experiments 

the following values were used for m: —1.00, —0.80, —0.60, —0.40, —0.20, 0, 0.20, 

0.40, 0.60, 0.80, 1.00. 

When m = 0, (2) reduces to (1) so that the results are equal to those obtained 

by Kmenta. When m= 1, (2) reduces to a Leontief production function, and 

therefore the approximation in (3) becomes an exact one. The ratio of V,,,, to 

V exact Was Calculated for the same range of values of p and k used by Kmenta. The 

numerical experiments indicate that for the most common empirical case of 

0<m<1 (10 out of 17 industries in the Hildebrand and Liu estimates), (3) is 

* These constraints are consistent with the assumption that the associated CES production 
function also should be a positive real valued function with positive marginal product of the factors and 
be strictly quasi-concave (i.e. by substituting m = 0 in (iii), (iv) and (v)). 
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TABLE 1 

VALUE OF THE PARAMETER ™ IN DIFFERENT INDUSTRIES 

Industry 

Food and kindred products 
Textile mill products 
Apparel and related products 
Lumber and wood products 
Furniture and fixtures 
Pulp, paper, and products 
Chemicals and products 
Petroleum and coal products 
Rubber products 
Leather and leather goods 
Stone, clay, and glass products 
Primary metal products 
Fabricated metal products 
Machinery except electrical 
Electrical machinery 
Transportation equipment 
Instruments and related products 

Source: Nerlove (1967, p. 78). 

almost a better approximation of (2) than of (1) (case m = 0). Further, in over 98 

percent of the cases considered, the approximation improves monotonically as m 

increases from zero to one. 

Table 2 presents the value of V.55-/ Vexact for the pair of values (4/9, 0.90) for 

the parameters 6 and v respectively and for several values of the labor-capital 

ratio and parameters p and m. 

For experiments performed with the pairs of values (0.44, 1.16), (0.56, 0.90), 

(0.56, 1.10) for the parameters 5 and v respectively, the conclusions do not 

change.* 

TABLE 2 

VALUEs OF V,,,,/ V ; appr/ * exact 

Labor-Capital Ratios 

Control values are: m = —1.00, 6 = 0.44, v= 0.90 

p 0.10 0.50 1.00 2.00 5.00 - 10.00 

—1.00 2.1651 1.0055 1.0000 1.0242 1.4396 2.8184 
—0.50 1.1312 0.9994 1.0000 1.0046 1.0821 1.2913 
—0.10 0.9980 0.9999 1.0000 1.0001 1.0018 1.0059 

0.10 0.9941 0.9999 1.0000 1.0001 1.0009 1.0020 
0.20 0.9704 0.9994 1.0000 1.0003 1.0015 0.9996 
0.50 0.7744 0.9954 1.0000 1.0006 0.9761 0.8840 

1.00 0.3548 0.9763 1.0000 0.9945 0.7963 0.4619 
10.00 0.0000 0.1952 1.0000 0.2198 0.0000 0.0000 

* These results are available from the author upon request. 
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TABLE 2 (Continued) 

Labor-Capital Ratios 

0.10 p 0.50 1.00 2.00 5.00 10.00 

Control values are: m = —0.80, 6 = 0.44, v= 0.90 

—1.00 1.7307 1.0029 1.0000 1.0169 1.3019 2.1565 
—0.50 1.0818 0.9994 1.0000 1.0032 1.0570 1.1993 
—0.10 0.9984 0.9999 1.0000 1.0001 1.0013 1.0042 

0.10 0.9958 0.9999 1.0000 1.0001 1.0007 1.0016 
0.20 0.9792 0.9996 1.0000 1.0002 1.0014 1.0009 
0.50 0.8338 0.9968 1.0000 1.0006 0.9861 0.9244 

1.90 0.4637 0.9834 1.0000 0.9971 0.8574 0.5778 
10.00 0.0000 0.2771 1.0000 0.3077 0.0004 0.0000 

Control values are: m = —0.60, 5 = 0.44, v= 0.90 

—1.00 1.4449 1.0013 1.0000 1.0113 1.2003 1.7255 
—0.50 1.0474 0.9995 1.0000 1.0022 1.0380 1.1315 
—0.10 0.9988 1.0000 1.0000 1.0001 1.0009 1.0028 

0.10 0.9972 0.9999 1.0000 1.0000 1.0005 1.0012 
0.20 0.9859 0.9997 1.0000 1.0002 1.0012 1.0015 
0.50 0.8838 0.9978 1.0000 1.0005 0.9929 0.9547 

1.00 0.5795 0.9888 1.0000 0.9987 0.9073 0.6921 
10.00 0.0000 0.3769 1.0000 0.4127 0.0021 0.0000 

Control values are: m = —0.40, 6 = 0.44, v= 0.90 

—1.00 1.2573 1.0003 1.0000 1.0072 1.1266 1.4419 
—0.50 1.0247 0.9996 1.0000 1.0014 1.0241 1.0825 
—0.10 0.9991 1.0000 1.0000 1.0000 1.0006 1.0018 

0.10 0.9982 1.0000 1.0000 1.0000 1.0004 1.0009 
0.20 0.9910 0.9998 1.0000 1.0001 1.0009 1.0015 
0.50 0.9237 0.9986 1.0000 1.0004 0.9972 0.9759 

1.00 0.6935 0.9928 1.0000 0.9997 0.9453 0.7954 
10.00 0.0000 0.4911 1.0000 0.5304 0.0102 0.0000 

Control values are: m = —0.20, 6 = 0.44, v= 0.90 

—1.00 1.1369 0.9998 1.0000 1.0043 1.0748 1.2558 
—0.50 1.0108 0.9997 1.0000 1.0008 1.0142 1.0485 
—0.10 0.9994 1.0000 1.0000 1.0000 1.0004 1.0011 

0.10 0.9989 1.0000 1.0000 1.0000 1.0002 1.0006 
0.20 0.9946 0.9999 1.0000 1.0001 1.0007 1.0013 
0.50 0.9538 0.9992 1.0000 1.0003 0.9995 0.9893 

1.00 0.7963 0.9957 1.0000 1.0002 0.9717 0.8796 
10.00 0.0006 0.6133 1.0000 0.6533 0.0387 0.0008 
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TABLE 2 (Continued) 

Labor-Capital Ratios 

p 0.10 0.50 1.00 2.00 5.00 10.00 

Control values are: m = 0.00, 5 = 0.44, v= 0.90 

—1.00 1.0636 0.9997 1.0000 1.0023 1.0403 1.1363 
—0.50 1.0034 0.9998 1.0000 1.0005 1.0077 1.0259 
-0.10 0.9996 1.0000 1.0000 1.0000 1.0002 1.0006 

0.10 0.9994 1.0000 1.0000 1.0000 1.0001 1.0004 
0.20 0.9970 0.9999 1.0000 1.0000 1.0004 1.0010 
0.50 0.9747 0.9995 1.0000 1.0002 1.0004 0.9967 

1.00 0.8800 0.9977 1.0000 1.0003 0.9880 0.9402 
10.00 0.0066 0.7339 1.0000 0.7709 0.1169 0.0081 

Control values are: m = 0.20, 6 = 0.44, v = 0.90 

—1.00 1.0234 0.9997 1.0000 1.0011 1.0188 1.0637 
—0.50 1.0002 0.9999 1.0000 1.0002 1.0036 1.0121 
—0.10 0.9998 1.0000 1.0000 1.0000 1.0001 1.0003 

0.10 0.9997 1.0000 1.0000 1.0000 1.0001 1.0002 
0.20 0.9986 - 1.0000 1.0000 1.0000 1.0003 1.0006 
0.50 0.9880 0.9998 1.0000 1.0001 1.0006 0.9998 

1.00 0.9401 0.9989 1.0000 1.0003 0.9965 0.9771 
10.00 0.0457 0.8416 1.0000 0.8720 0.2805 0.0538 

Control values are: m = 0.40, 6 = 0.44, v = 0.90 

—1.00 1.0054 0.9998 1.0000 1.0004 1.0071 1.0239 
—0.50 0.9994 0.9999 1.0000 1.0001 1.0014 1.0046 
—0.10 0.9999 1.0000 1.0000 1.0000 1.0000 1.0001 

0.10 0.9999 1.0000 1.0000 1.0000 1.0000 1.0001 
0.20 0.9994 1.0000 1.0000 1.0000 1.9001 1.0003 
0.50 0.9954 0.9999 1.0000 1.0001 1.0004 1.0006 

1.00 0.9766 0.9996 1.0000 1.0002 0.9997 0.9946 
10.00 0.1977 0.9253 1.0000 0.9460 0.5346 0.2225 

APPENDIX 

The Behavior of the Error of Approximation 

Let us write: 

Vi, r 
E(m) = In Vappr—In Vexact = In P= 

é€xact 
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We are interested in studying the behavior of the absolute value of H(m), 

where H(m) is defined as: 

V == deal inion 1 

—_ F cence 

but we can rewrite H(m) as: 

H(m) =e" —1 

Now H(m) is a strictly increasing monotonic function of E(m). Further: 

E(m)>0@H(m)>0 

E(m)<0@H(m)<0 

This suggests that instead of working with |H(m)| we could work with 

|E(m)|. But 

|E(m)| = V(E(m)) 

Therefore 

JE(m)|_ 1 E(m) oem) 

am V(E(m))’ am 

So, sign of {ae} = sign of | E(m) =} 
om om 

We have: 

E(m) = v(1—m)(1—8) Ink ea ~m)?8(1—8)[In kP 

+v/p In[6+(1—8)k?"~”] 

From here we obtain: 

6E(m)__vd(1—5) i 1 aliahiid ‘ 

sees 5+(1—8)k ow! m){(1—k )ink+p(1—m) 

x(8+(1—-5)k?"~"”)(In k)”} 

Therefore: 

Be) 2 ws) = 1  pou-mp bt p(i—m) 

roma parent ek a weal eel Del ai E(m) 

+(In ky[-d —m)(1-—6)+(1-—m)(1 -8)xo-—™ 

+(1— m5 +(1-5)k?°"™] in (5 + (1-8) kK?) 

+(In K)*| -25a ~s)(1 —m)?+25(1 ~8)(1 —m)*ke-
™ 

—p(1—8)(1— m)°(5 + (1 -3)er-™)] 

2 

+(In Ky | - 80 ~8)(1—m)*(8+(1 —ayke-™ |] 
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This expression can be used to obtain the ranges of 5, p, m and k for which 

dE E(m) (m) 

om 

increases, particularly when we move away from the case m =0 (CES) to the 

region m>0 (the most common type of VES production function obtained in 

empirical studies). 

<0; i.e., where the error E(m) decreases in absolute value as m 
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