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QUALITATIVE RESPONSE MODELS 

BY TAKESHI AMEMIYA* 

This article gives a systematic discussion of various qualitative response models, with a special emphasis 
on multi-response and multivariate models. While some new models (notably, multivariate polytomous 
probit models) are defined, old models are given new interpretations. The article discusses the relative 
merits of two basically differing ways to formulate multivariate models: the one that specifies marginal 
probabilities first and the one that specifies conditional probabilities first. 

1. INTRODUCTION 

In this paper I will consider various ways to define qualitative resporse models. 

Qualitative response models may be defined generically as models that involve 

one or more discrete random variables whose conditional probability distribution 

given the values of the independent variables is specified up to a finite number of 

unknown parameters. These models have been extensiveiy discussed in the bio- 

metric literature. See, for example, Cox [1970] or Finney [1971] for a survey and 

references. However, since most of the papers have been concerned with the 

univariate dichotomous case, I believe a systematic account of polytomous and 

multivariate models attempted here will serve a useful purpose. 

I take for granted the merits of the normal or logistic transformation when 

I extend univariate dichotomous models to either polytomous or multivariate 

ones. Hence, all of the models discussed in this paper fall into the general category 

of normal or logistic models. Ideally, one should specify a model on the basis of 

realistic behavior assumptions about the respondent. The difficulty of this approach 

is, however, that it often leads to an estimation problem which is computationally 

intractable. In the univariate dichotomous case, probit and logit models have 

prov. d useful in explaining real data in addition to being computationally manage- 

able. Whether or not the same holds true for some of the polytomous and multi- 

variate models defined in this paper remains to be seen. 

While I detine a number of new models, I also discuss models that have been 

proposed by others giving them new interpretations and illuminating their 

differences. The univariate dichotomous model is well-known, but I outline it at 

the outset to provide a background for the subsequent development. The problem 

of estimation is mentioned only briefly, as I have discussed it fully in the context 

of the most general model (Amemiya [1974a and b)). 

2. UNIVARIATE CASE 

Models for a dichotomous and a trichotomous variable are presented in 

turn. The analysis of a trichotomous variable necessitates the adoption of one 

* This work was supported by National Science Foundation Grant GS-39906 at the Institute 
for Mathematical Studies in the Social Sciences, Stanford University. I am grateful to Fred Nolc for 
improving the style of the paper. The earlier version of the paper, entitled ““A Note on the Regression 
Analysis of Polychotomous Dependent Variables,” was reported at the NSF-NBER Conference on 
Decision Rules and Uncertainty on March 23, 1974 at the University of California, Berkeley. 
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of several types of models and raises many interesting problems. I will not discuss 

a general polytomous model because all the results for a trichotomous variable 

can be easily extended to the polytomous case and no new problems emerge. 

A. Dichotomous Variable 

The dichotomous random variable y,,f = 1,2,..., T, takes the values 0 and 1 

with the probabilities determined by 

(2.1) P(y, = 1) = F(B’x,) 

where x, is a vector of known constants and f is a vector of unknown parameters. 

The most commonly used forms of function F are 

(2.2) Normal ®('x,) 

where ® is the standard normal distribution function and 

(2.3) Logistic L(f’x,) 

where L(x) = [1 + exp(—x)]~'. These two distributions have been successfully 

used in many empirical applications. For theoretical and empirical reasons for 

using ‘these functions and their relative merits, see Berkson [1951], Cox [1966], 

and Finney [1971]. The logistic is a good approximation to the normal distribu- 

tion, and the estimates of B obtained by using the two distributions are often very 

close except for a multiplicative factor. A full discussion of the properties of the 

logistic distribution can be found in Johnson and Kotz [1970]. 

The linear function F(f’x,) = B’x, has also been frequently used, especially 

in economic applications. Its major deficiency is that its range, unlike the normal 

or logistic transformation, is not constrained to lie between 0 and 1. This and 

other difficulties encountered when using the linear probability model are pointed 

out by Goldberger [1964] and Nerlove and Press [1973]. In this paper I will 

confine my attention to the normal and logistic models. 

Example 1. When the dosage x, of an insecticide is given to the t-th insect, it 

dies (y, = 1) if its tolerance u, is less than x,. If one assumes that u, is distributed 

as normal with mean yp and variance o”, one has P(y, = 1) = ®[(x, — p)/o], 

which is model (2.2). If one assumes that u, is distributed as logistic with mean py 

and variance o”, one has P(y, = 1) = L[ x(x, — p)/o,/3], which is model (2.3). 

Example 2. A coal miner develops breathlessness (y, = 1) when his tolerance u, 

is less than an unknown constant y. If one assumes that u, is distributed as normal 

or logistic with mean a, + a,x, and variance co? where x, is the coal miner’s 

age, then one again has model (2.2) or (2.3). 

Example 3. A consumer buys a car (y, = 1) when his net utility u, of buying a car 

exceeds 0. As one assumes that u, is distributed as normal or logistic with mean 

%> + «,x, and variance a2, where x, is the consumer’s income, model (2.2) or 

(2.3) results. 
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B. Trichotomous Variable 

The following notation is henceforth used: 

P,= Piy,=i), i=0,1,2. 

1. Ordered Response 

The ordered normal model is defined as 

P, = O(f'x) 

(2.4) P, + P, = O(f’x + a) 

P, = 1 — O(f’x + a), 

where « is a positive constant. Note that the subscript f has been suppressed from x 

in the above. 

The ordered logistic model is similarly defined as 

(2.5) P, + P, = L(p’x + @) 

Py = L(-—fx — a). 

Example 4.(Gurland, Lee, and Dahm [1960]). When the dosage x, of an insecticide 

is given to the f-th insect, it dies (y, = 2) if its tolerance u, < x, and it becomes 

moribund (y, = 1) ifu, — y < x,. The assumption that u, is distributed as normal 

with mean yp and variance a? leads to model (2.4) and the assumption that u, is 

distributed as logistic leads to model (2.5). 
Other examples of univariate polytomous models with ordered response may 

be found in Aitchison and Silvey [1957] and Ashford [1959]. 

2. Unordered Response 

I will mention three types of models for this situation. One can obviously 

think of other models. 

First, assume that given any pair of responses the selection is made according 

to model (2.3). Then we have 

(2.6) P,(P, + P,)"' = L(p',x) 

(2.7) P,(P, + Po) ' = L(B5x) 

(2.8) P(P, + P,)~' = L(px). 

Probabilities P), P,;, P, are uniquely determined from (2.6) and (2.7) so that one 

must have B, = 8B, — B. This leads to the unordered logistic model 

P, = D~‘ exp(B,x) 

(2.9) P, = D~' exp(Bx) 

Py = p-* 

where D = 1 + exp(f',x) + exp(f x). This model was suggested by Cox [1966] 

and a similar model was applied to explaining the selection of highway routes in 

California by McFadden [1968]. 
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The second model assumes that selection is made sequentially. That is, one 

first determines whether y, = 2 or #2, and then, given y, # 2, one determines 

whether y, = 1 or 0. Using normal model (2.2) for each selection leads to the 

following sequential unordered normal mode! 

P, = O(B,x) 

(2.10) P, = [1 — O(B,x)]} (Bx) 

Po = [1 — O(6,x))[1 — (B;,x)). 

The sequential unordered logistic model can be similarly defined. An advantage 

of sequential models is that the likelihood function can be maximized by maximizing 

the likelihood of the dichotomous case repeatedly. 

Computational ease is a major consideration in defining the preceding two 

models. However, one may specify a model solely on the basis of theoretical 

consideration of the behavior of the respondent. For example, if the responses 

are the outcome of the free choice of the respondent, it is natural to assume that 

P(y, = i) = P(U{x) > Ux), j # i) where U;,, given a vector of exogenous variables 

x, is the random utility associated with the i-th choice. Such a model has been 

proposed by Quandt [1968] and Aitchison and Bennett [1970]. The difficulty of 

this approach is that if a realistic distribution of U; is assumed the estimation 

problem becomes intractable, whereas if a convenient distribution is chosen for 

U; the model becomes as arbitrary as the preceding two models. In fact, McFadden 

[1974] has shown that model (2.9) follows from the maximum utility mode! if 

{U,} are assumed to be independent each following the double exponential 

distribution. 

C. Partition of a Probability Space 

It is useful to associate the values taken by a polytomous variable with the 

partition of a probability space. That is, one can define 

(2.11) P(y, = k) = P(S,) 

where U, S, may be taken as a subset of Euclidean space with P generated by a 

set of random variables. All the models considered thus far may be interpreted 

in this way. 

One can characterize the ordered models simply as the case where the basic 

probability space is the real line. If one uses an ordered model when the true model 

is unordered, one could get into serious trouble, whereas the loss in using an 

unordered model in the ordered situation is only in efficiency since consistent 

estimates are still obtained. 

3. MULTIVARIATE CASE 

There are two essentially different ways to specify multivariate models: 

(A) First specify marginal distributions and then specify joint distributions; 

(B) Specify conditional distributions. 
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A. Marginal Distribution 

Following the discussion of Section 2C, let us assume that random variables 

¥,, and y2, are distributed according to 

(3.1) P(y, = k) = P(Si), i= 1,2. 

Then one can define 

(3.2) P(y i, = k, Ya, = h) = P(S} @ S?) 

where the probability on the product space should be appropriately chosen. 

Note that (3.1) does not uniquely determine the probability on the product space. 

One can find a natural way to extend marginal! probabilities to a joint probability 

if each marginal probability is generated by a multivariate norma! distribution, 

but the extension is in general difficult with other distributions. In the univariate 

case logistic and normal models give similar results and therefore logistic models 

may be preferred because they require simpler computation. However, in the 

multivariate case normal models have an advantage because the multivariate 

normal distribution has nice properties, whereas there is no simple bivariate 

logistic distribution with a correlation coefficient which can freely vary. (See 

Gumbel [1961].) 

The dichotomous normal model (2.2) or the ordered normal model (2.4) can 

be easily extended to the multivariate case in the way indicated by (3.2). 

Example 5. (Ashford and Sowden [1970}.) Let y, be as defined in Example 2 with 

u, normally distributed. Similarly assume that a coal miner develops wheeze 

(z, = 1) when his tolerance v, against wheeze is less than a constant 5 where », is 

distributed normally with mean B, + 8,x, and a constant variance. Then one 

can naturally specify the joint probabilities of y and z by assuming that u and pv 

have a bivariate normal distribution with correlation p. 

The sequential unordered normal model (2.10) may be extended to the 

bivariate case as follows. For each i = 1, 2, rewrite (2.10) as 

P(y, = 2) = Plu; < Bi2x) 

(3.3) P(y; = 1) = Plu; > Bi2x, 0; < Bix) 

Ply; = 0) = Plu; > Bi2x, v1, > Bix) 

where I have suppressed subscript t and assumed that for each i, u; and v, are 

mutually independent and distributed as standard normal. One simple way to 

extend this to the bivariate case is to assume Eu,u, = p, and Ev,v, -: p, where 

p, and p, are parameters to be estimated. 

The log likelihood function of this model is given by 

(3.4) log L = }' {y22 log F, + (21 + Y20) log [(Bi 2x) — F,] 
t 

+(Yi2 + Yor) log [O(B22x) — Fi] 

+(Vi1 + Yio + You + Yoo) log {1 — (8, 2x) — O(B22x) + F,] 

+y,, log F, + yo log [®(B; x) — F,] + yo; log [®(B2,x) — F,] 
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+ Yoo log [1 — ®(f',,x) — O(82,x) + F,] + 12 log O(B; , x) 

+ Yo2 log [1 — @(B;,x)] + y21 log ®(B2,x) 

+Y2o log [1 — ®(B,,x)]} 

where F, = F(8',.x, B22, p,), F being the bivariate standard normal distribution 

function, F,, = F(B', x, B24, p,), and 

Vinh = 1 if y, <= k and y2 = h 

=0 otherwise. 

Thus we know that so far as 8,5, 82, and p, are concerned, the maximization of 

log L above is identical with the maximum likelihood estimation of the bivariate 

dichotomous normal model (see Example 5). But for the estimation of B,, and 

B,,;, the last four terms constitute the additional terms that contain information 

and must be taken into account if fully efficient estimates are to be obtained. 

In the minimum chi-square approach (Amemiya [1972]), the last four terms can 

be taken into account by estimating P(y, = 1) with 

Ye O12 + Yar + Vio) 

Y: O12 + Vis + Yio + Yor + You + Yoo) 

and a similar equation for P(y, = 1). 

B. Conditional Distribution 

In the univariate case there was no essential difference between Example 2 

of a coal miner developing breathlessness and Example 3 of a consumer buying 

a car. However, a bivariate model of a consumer buying a car and a house cannot 

be specified in the same way as Example 5 of a coal miner developing breathlessness 

and wheeze. The reason is that the probability of buying a car depends on whether 

or not the consumer buys a house because the latter decision changes the level of 

the independent variable “income,” whereas breathlessness or wheeze does not 

directly affect each other as neither affects the independent variable “age”’. 

Therefore, in the former case it is better to specify conditional probabilities and 
in the latter case marginal probabilities. 

Example 6. Let y, = 1 if a consumer buys a car and y, = 1 if he buys a house. 

We assume that the conditional probabilities are given by 

(3.5) P(y, = Aly2) = L(B\x + Bi2y2) 

and 

(3.6) P(y2 = lly,) = L(BLx + B21y3) 

where f',x and #',x are linear functions of the consumer’s income. Define 

P,; = Ply, = i, y2 = j). 

Then, from (3.5) we have 

(3.7) P,, = exp (Bx + By2)Po. 

368 

AER wi, REL IY 



7 TT RE 

REAR RATES 

(3.8) Pio = exp (Bx)Poo 

and from (3.6) we have 

(3.9) P,, = exp (Bx + B21)Pi0 

(3.10) Po, = exp (Bx)Poo. 

We can evaluate P,,/Po,. either from (3.7) and (3.10) or from (3.8) and (3.9). 

Therefore, we must have f,. = B,,.' Thus, we can write the joint probability as 

(3.11) P(y;,¥2) = D~* exp (Bi xy, + Baxy2 + By2¥1¥2) 

where 

D = 1 + exp(B,x) + exp (Bx) + exp (Bix + Bx + Bi). 

Example 6 can be generalized to the case of three dichotomous variables 

as follows. We have 

P(y, = lly2, ¥3) = L(BX + Bizy2 + Bis¥s + Bi23¥2¥s) 

(3.12) P(y2 = 1ly,, ¥3) = L(BLX + Baiyi + Bos¥3 + Bais¥iVs) 

P(y; = 1ly,, ¥2) = L(B3x + Bsi¥1 + Bs2v2 + Bs12¥1)2)- 

Putting each of y’s equal to 0 in turn in the above and using the results of Example 6 

we have 

(3.13) Bi2 = Ba, Bi3 = Bs;, B23 = B32. 

Define P;,, = P(y, = i, y2 = j, y3 = h). Then we have 

(3.14) Pris Por _ Pais Prot _ Pans Pi10 

Poss Pooo Pro1 Pooo Pito Pooo 

where each of the six probability ratios can be written as an exponential function 

using (3.12). But, because of (3.13), the three terms in (3.14) differ only in the 8 

coefficient with three subscripts. Therefore (3.14) implies 

(3.15) Bi23 = Bais = Bai2- 

Now, it is easy to show that the joint probability 

(3.16) Pi, ¥2, ¥3) = D7" exp (Bi xy, + Boxy. + B3xy3 + Bi2viv2 + BisyiVs 

+B23¥2¥3 + Bi23¥i1¥2Y3) 

where D is chosen so as to make the sum of probabilities to add up to 1, implies 

the conditional probability (3.12) with the constraints (3.13) and (3.15). But, since 

’ After this paper was written, I was made aware of a paper by Schmidt and Strauss [1974] which 
notes this equality. 
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the conditional probabilities determine at most one set of joint probabilities,” 

(3.12) implies (3.16). 

The generalization to the case of J dichotomous variables each taking values 0 

and 1 can be easily inferred from above. Thus, the conditional probabilities 

(3.17) Ply; =1ly,i4# )j=L Bix 5 > B iyi +  B > B iinYiVh +... 
i#j i#jh#j 

+B ja jp agje tga + Vj jaa-- ») 

imply the joint probabilities 

(3.18) P(V1,Y25--++a) — D~* exp JE Aix» ad Y By + j ‘ 
i<i 

2 , BitnVViYn +--+. + By aVi¥2--- m1} 
j<i< 

where D is chosen so as to make the sum of the probabilities equal to 1. 

The further generalization to the case of J polytomous variables is simple as 

one can describe an n-response variable by n — 1 dichotomous variables. Let y' 

be the i-th polytomous variable taking values 1, 2,...,n; and define the dichoto- 

mous variable yj, j = 1,2,...,n; — 1, by y = 1 if y' = j and 0 otherwise. Then, 

the result of the preceding paragraph holds by treating y'; as one of the y’s as 

long as we add the restriction that (3.17) and (3.18) hold only when only one of 

y; is equal to 1 for every i. 

The joint probabilities of the form of (3.18) without the x variable were 

considered by Goodman in a series of papers. For example, see Goodman [1970]. 

Mantel [1966] and Cox [1972] provide pedagogical discussions of the same subject. 

Nerlove and Press [1973] were the first to consider the inclusion of the x variable 

in the probabilities. These authors have shown that (3.18) implies (3.17) with the 

constraint corresponding to (3.13) and (3.15). I have indicated in this paper that 

(3.17) implies the constraint and hence (3.18). Equation (3.18) contains as many 

B parameters (counting fx as one) as the number of probabilities minus 1. One 

may wish to put certain of these parameters equal to 0 a priori to obtain more 

efficient estimators of the remaining parameters. 

In case (A) the maximization of each marginal probability will give consistent 

estimators of the regression parameters which are computationally simpler than 

the full maximum likelihood estimators. Similarly, in case (B) the maximization 

of each conditional probability will give computationally simpler consistent 

estimates. I will give a heuristic proof of this below. 

2 Let yj, j= 1,2,...,J, bea discrete random variable taking values 1,2,...,N,. Suppose the 
conditional probability P(y;|y,,..-,¥j-1»¥j+1>---» Ys) is given for every j and is positive. Then there 
is at most one set of joint probabilities consistent with the given conditional probabilities. This can - 
be proved as follows: Let J = 2 and define P,, = P(y, = i, y, = j). Then, given P,,, conditional 
probabilities at most uniquely determine P,;, = a,,P,,. But there is only one value of P, , which satisfies 
=P;, = 1. Next, suppose the proposition is true for J — 1. Define the composite random variable y 
which takes []j-{ N, number of values with probabilities determined by the joint probabilities of 
Y1>¥2>--->¥y-1- Then, by the assumption, P(y|y,) and P(y,|y) are at most uniquely determined. 
Hence the desired result, using the result for J = 2. 
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For simplicity consider the bivariate dichotomous case. Suppose one 

maximizes 

1 
(3.19) L=—)Y Di logP + (1 — y,) log (1 — P)j 

t 

with respect to 6 where P depends on @ and y,. Write L = L, + L, where 

1 
Lo = FLD 1 log Po + (1 — y,)log(1 — Po)) 

0 

1 
L,= Ful log P, + (1 — y,)log(1 — P,)) 

1 

where subscripts 0 and 1 indicate whether y, is 0 or 1. Therefore, 

(3.20) plim L = plim Ly, + plim L, 

= P*(y, = 0)[P6 log P, + (1 — P§)log(1 — P,)) 

+P*(y, = 1)[Ft log P, + (1 — Pt) log {1 — P,)) 

where superscript * indicates that the probability is evaluated at the true value 

6* of 6. Thus, clearly the above is maximized at 0 = 6*, implying the consistency 

of the estimator. Its asymptoti¢ variance-covariance matrix is given by 

1 oP 6P|\~' 
(3.21) + | —P) 36 =|} 

where the expectation is taken with respect to y5. 

4. CONCLUSIONS 

In this paper I have attempted to give a systematic discussion of various 

qualitative response models, with a special emphasis on multivariate models. 

I have defined some new models (notably, multivariate polytomous probit models) 

and give new interpretations on old models. I have contrasted two basically 

differing ways to formulate multivari:te models: the one that specifies marginal 

probabilities first and the one that specifies conditional probabilities first. Depend- 

ing upon the nature of the problem at hand, one model is more appropriate than 

the other. An interesting topic of research seems to be to investigate how good 

one model performs when the other is the true model. For each model one can 

define a simplified maximum likelihood estimator maximizing a marginal prob- 

ability or a conditional probability as the case may be. Thus, another interesting 

problem is to compare the efficiency of the simplified estimator with the full 

maximum likelihood estimator in each model. One needs also to investigate the 

computational feasibility of the maximum likelihood estimator in multivariate 

probit models when the number of dependent variables exceeds 2. If multivariate 

logistic distributions with convenient properties cannot be found, one may have 

to search for another useful approximation to the multivariate normal distribution. 
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It is possible that the Nerlove and Press model, setting aside its intrinsic merits, 

is useful even when it is merely regarded as a substitute for the multivariate probit 

model. 

Stanford University 

REFERENCES 

Aitchison, J. and J. Bennett (1970), ‘““Polychotomous Quantal Resp«isise by Maximum Indicant,” 
Biometrika 57, 253-262. 

Aitchison, J. and 8. D. Silvey (1957), ““The Generalization of Probit Analysis to the Case of Multiple 
Responses,” Biometrika 44, 131-140. 

Amemiya, T. (1972), “Bivariate Probit Analysis: Minimum Chi-Square Methods,” Technical Report 
No. 76, Institute for Mathematical Studies in the Social Sciences, Stanford University (to appear 
in the Journal of the American Statistical Association). 

Amemiya, T. (1974a), “The Maximum Likelihood Estimator vs. the Minimum Chi-Square Estimator 
in the General Qualitative Response Model,” Technical Report No. 136, Institute for Mathe- 
matical Studies in the Social Sciences, Stanford University. 

Amemiya, T. (1974b), “The Equivalence of the Nonlinear Weighted Least Squares Method and the 
Method of Scoring in the General Qualitative Response Model,” Technical Report No. 137, 
Institute for Mathematical Studies in the Social Sciences, Stanford University. 

Ashford, J. R. (1959), “‘An Approach to the Analysis of Data for Semi-Quantal Responses in Bio- 
logical Assay,” Biometrics 15, 573-581. 

Ashford, J. R. and R. R. Sowden (1970), ‘“‘Multivariate Probit Analysis,” Biometrics 26, 535-546. 
Berkson, J. (1951), “Why I Prefer Logits to Probits,” Biometrics 7, 327-339. 
Cox, D. R. (1966), ““Some Procedures Connected With the Logistic Qualitative Response Curve,” 

Research Papers in Statistics, ed. by F. N. David, John Wiley, London, 55-71. 
Cox, D. R. (1970), Analysis of Binary Data, Methuen, London. 
Cox, D. R. (1972), “The Analysis of Multivariate Binary Data,” Applied Statistics 21, 113-120. 
Finney, D. J. (1971), Probit Analysis, Third Edition, University Press, Cambridge. 
Goldberger, A. S. (1964), Econometric Theory, John Wiley, New York. 
Goodman, L. A. (1970), “The Multivariate Analysis of Qualitative Data: Interactions Among 

Multiple Classifications,” Journal of the American Statistical Association 65, 226-256. 
Gumbel, E. J. (1961), “Bivariate Logistic Distributions,” Journal of the American Statistical Associa- 

tion 56, 335-349. 
Gurland, J., I. Lee, and P. A. Dahm (1960), ““Polychotomous Quantal Response in Biological Assay,” 

Biometrics 16, 382-398. 
Johnson, N. L. and S. Kotz (1970), Continuous Univariate Distributions 2, Houghton Mifflin, Boston. 
Mantel, N. (1966), ““Models for Complex Contingency Tables and Polychotomous Response Curves,” 

Biometrics 22, 83-110. 
McFadden, D. (1968), “The Revealed Preferences of a Government Bureaucracy,” Department of 

Economics, University of California at Berkeley. 
McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” Frontiers in 

Econometrics, ed. by P. Zarembka, Academic Press, New York. 
Nerlove, M. and S. J. Press (1973), “Univariate and Multivariate Log-Linear and Logistic Models,” 

R-1306-EDA/NIH, Rand Corporation, Santa Monica. 
Schmidt, P. and R. P. Strauss (1974), “Estimation of Models with Jointly Dependent Qualitative 

Variab‘es: A Simultaneous Logit Approach,” mimeographed. 
Quandt, R. (1968), “Estimation of Modal Splits,” Transportation Research 2, 41-50. 

372 

iTS ES 

TORI SMA. 

oe i) 

See Rea 

stem 

FEES 

PA TEEPE Te 


