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Annals of Economic and Social Measurement, 4/2, 1975 

SURVEY OF NASH AND STACKELBERG EQUILIBRIUM 

STRATEGIES IN DYNAMIC GAMES* 

BY J. B. Cruz, Jr. 

The characteristics of Nash and Stackelberg equilibrium strategies for dynamic games are reviewed. 
Both strategies are appropriate when cooperation is not possible or when cooperation cannot be guaranteed. 
Open-loop, feedback and sampled-data strategies are distinguished by differences in the information sets 
available to the players. These strategies are secure against attempts by a single player to deviate from 
the equilibrium strategy during the time-horizon of the game. 

I. INTRODUCTION 

A dynamic game is a system with the following attributes: 

(a) It has N persons, players, or decision-makers. 

(b) Player i chooses a control variable u“ from a set of admissible controls U“. 

(c) It has a time horizon which is defined by the interval [t,,t,] where t is 

known and fixed, and t, may be fixed or free and it may be finite or infinite. 

(d) It has a state x(t) at time t, te[t),t,] which is an element of a finite 

dimensional vector space X. The evolution of the state is such that x(t) is uniquely 

determined by the values of u on [t,,t],i = 1,..., N and x(t,) for any ¢, satisfying 

to < t, < t. We only consider state evolutions describable by differential equations 

or difference equations. 

(e) Each player i has a real scalar cost function J which is a mapping from 

X and U“,i = 1,..., N to the set of real numbers. 

(f) Each player i has knowledge of an information set J“ which may include 

the differential equations for state evolution, the state x, its: own cost function 

mapping as well as those of the other players, and control strategies of the other 

players. The set {J‘} is called the information structure of the game. 

(g) Each player i has a control law or strategy y“ ¢ I which is a mapping 

from the information set J“ to the control space U". 

A dynamic game whose state evolution is given by a differential equation 

(1) x = f(x,u™,...,u™,2) 

is called a differential game. We assume that f is continuously differentiable in 

all its arguments and t € [fo, t,]. We only consider the case when ft, is fixed. 

It is assumed that I“ for each i includes knowledge of f. Clearly, y is always 

part of J. Finally, we assume that J“ includes J and x(t). Possible additional 

information to be included in J“ will be considered later. 

Two types of strategies are reviewed in this paper. One strategy called the 

Nash or Cournot equilibrium strategy will be considered first. The second strategy 

we consider is known as the Stackelberg equilibrium strategy. 

* This work was supported in part by the National Science Foundation under Grant GK 36276, 
in part by the U.S. Air Force under Grant AFOSR-73-2570, and in part by the Joint Services Electronics 
Program under Contract DAAB-07-72-C-0259, with the Coordinated Science Laboratory, University 
of Illinois, Urbana, Illinois. 
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II. NASH EQUILIBRIUM STRATEGIES 

When all the cost function mappings are included in each J‘ in addition to 

the data enumerated in the previous section, and if there is a set of strategies 

ye). y*™ where y* er and 

( 1 i-1 i) .e(i+1 ay (N (2) JHy* , ae yell ) yr, yatit ) Ne os y* a 

i 1 i-1) .(i) .,#(i+1 N < J‘ Wy*! A aed ) y yi y seey a 

for all y eT and for each i = 1,..., N then y*",..., y*™ is defined as a set of 

Nash equilibrium strategies [1, 2]. 

We define three types of Nash strategies. When J for i = 1,..., N contain 

no other information, the Nash strategy is called an open-loop strategy. When 

I for i = 1,2,..., N include X(t) at the present time t for all values of present 

time; the Nash strategy is called a closed loop or feedback Nash strategy. When 

x(t;) is included in I for each i and each j where {t,} is a finite set of instants 

(countable set if t, is infinite) where t; < t (present time) the Nash equilibrium 

strategy is called a sampled-data Nash strategy. Open-loop and closed-loop 

Nash strategies are described in [1-8, 10] and sampled-data Nash strategies are 

reported in [9]. 

The Nash strategy has the property that if all but one player use their Nash 

strategies, the deviating player could not decrease the value of his or her own cost 

function. Thus the Nash strategy safeguards against a single player deviating 

from the equilibrium strategy. However, two or more players could form a 

coalition and possibly the coalition could gain by deviating from the Nash 

strategy. The Nash strategy is reasonable when cooperation or coalition cannot 

be guaranteed and when the information structure is as stated above. Generally, 

the open-loop, sampled-data, and closed-loop Nash strategies yield different 

values for cost functions since the information structures are different. 

In open-loop strategies, the players commit their control functions on 

[to,t,] before the start of the game. In sampled-data and closed-loop Nash 

strategies, the mappings from the space of x(t;) or x(t) to U are announced at the 

beginning of the game. However, the sampled-data and closed-loop Nash strategies 

satisfy the principle of optimality [9, 19]. This implies that if at any time t; during 

the game, the ith player recomputes his or her sampled-data Nash strategy for a 

game starting at t;, the desired sampled-data Nash strategy is identical to the 

previously computed strategy for t > t;. This property of the Nash strategy means 

that the equilibrium condition 1s secure against any single player who may con- 

_ sider changing strategy during the game. The closed loop Nash strategy also 

satisfies the principle of optimality so that it is secure against any initiative of a 

single player to deviate from the Nash equilibrium strategy during the game. 

The open-loop Nash strategy is of course a special case of sampled-data Nash 

strategy where the only sampling time is fo. 

Necessary conditions for obtaining Nash equilibrium strategies for dynamic 

games have been obtained using either the variational approach or <he optimal 

cost function approach via dynamic programming [1-4]. In general numerical 

algorithms based on these necessary conditions are complex and not easy to 

carry out [11]. When the differential equations or difference equations are linear 
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and when the cost functions are quadratic in state and controls, the solutions may 

be expressed in terms of coupled Riccati-type matrix quadratic differential or 

difference equations (2, 3, 6-10]. For the infinite horizon case, there is no general 

result concerning the stability of the dynamic system. Nevertheless, in specific 

classes of linear-quadratic dynamic games, sufficient conditions for stability are 

available (12, 14). 

We mention two situations in political science and economics where Nash 

strategies have been considered. In [12] arms race between two nations is modeled 

by a pair of first order differential equations where the control variables are 

expenditures in arms. These expenditures are chosen by the nations as Nash 

feedback strategies in a two-person dynamic game model. The cost functions are 

quadratic in arms level ; expenditures, and consumption. As expected, the strategies 

are linear in arms level. The resulting closed-loop model gives a way of explaining 

an earlier model by Richardson which contains no controls [12]. A similar formula- 

tion for a discrete-time model has been considered in [13). 

In [14], necessary conditions for Nash strategies have been obtained for a 

first order dynamic duopoly game. The concept of a dynamic demand function is 

introduced whereby the rate of change of price is modeled as a function of price 

and total quantity of goods in the market which is shared between two firms. 

The performance functions are the negative values of the profit. Specific results 

have been obtained when the dynamic demand is linear and when the cost is 

quadratic. ; 

The Nash strategy for dynamic games, particularly the sampled-data Nash 

strategy provides an attractive conceptual tool in dynamic economic problems 

where Cournot equilibria are already accepted concepts for static models when 

the horizon is short or static models for steady state equilibria. The dynamic 

game models are more appropriate for intermediate length horizons or for 

infinite horizons where the adjustment period for reaching steady state is not to 

be ignored. 

III. STACKELBERG EQUILIBRIUM STRATEGIES 

In this section we only consider two-person games, where one player is called 

the leader and the other player is called the follower. The leader knows the cost 

function mapping of the follower but the follower may not know the cost function 

mapping of the leader. However, the follower knows the control strategy of the 

leader, and the follower always takes this into account in computing his or her 

strategy. If player 1 is the follower, y") is restricted to those strategies which 

minimize J“) for a given y'?). The collection of pairs of such strategies is called 

the reaction set of player 1. If there exists a pair y*"), y*‘?) on the reaction set of 

player 1 such that 

(3) SA YOD, yO) x SONY, 9) 

for any pair (y"", y'”’) on the reaction set of player 1, the pair y*", y*? is defined 

as a Stackelberg strategy with player 2 as leader. Observe that )*"") is the minimizing 

strategy of player 1 (the follower) corresponding to a strategy y*'”’ of player 2 

[17-19, 22]. 
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If no other data are included in the information sets except those described 

above and in Section 1, the Stackelberg strategies are called open-loop strategies. 

If x(t) is added to the information sets of both players, the Stackelberg strategies 

are called closed-loop strategies. The Stackelberg strategy should be considered 

whenever a player has an option to declare his or her strategy in advance. 

So far as the follower is concerned the Stackelberg strategy is obtained from 

an ordinary minimization problem and so long as the leader sticks to his or her 

strategy the principle of optimality applies to the follower. Thus there is no 

incentive for the follower to attempt to change strategy during the game, unless 

the leader changes strategy also. However, for the leader, the principle of optimality 

does not apply in general [19]. If the leader is allowed to change strategy during 

the game, say during sampling times of a sampled-data game, the leader will do 

so if the new game starting at the new time will give a lower value for the remaining 

cost function. Thus the strategies for.all future times computed at a sampling time 

may not be implemented at all except for the first interval following the computa- 

tion, and the strategies may fluctuate. 

A modification of the Stackelberg strategy which satisfies the principle of 

optimality is now defined. This was previously called feedback Stackelberg strategy 

[19] (to distinguish it from closed loop Stackelberg strategy). However, because 

the terms closed-loop and feedback are interchangeably used in other contexts 

in many other areas, it is proposed that the modified Stackelberg strategy be called 

Stackelberg equilibrium strategy. The modified strategy is secure against potential 

changes by the leader during the game. Thus it is appropriate to call it an equi- 

librium strategy. The Stackelberg equilibrium strategy is simpler to compute 

than the Stackelberg strategy but it is still more difficult to compute compared 

to the Nash equilibrium strategy because of the requirement that the leader choose 

a strategy on the reaction curve of the follower. This imposes a complicated 

constraint for the optimization of the leader. 

Formally, we define the Stackelberg equilibrium strategy for a discrete-time 

system, 

(4) x(1 + 1) = f(x(I), 1, u,(D, u(D), x(0) = Xo, 1=0,...,.N-—1 

where the state x(/) and the decision variables u,(/) and u,(!) are n-dimensional, 

m,-dimensional, and m,-dimensional vectors of real numbers respectively. Let 

the cost functionals defined over the stages k,..., N be 
N-1 

(5) JO (x(k), k, uy, U2) = K{x(N)) + } LAx(D, |, uy(D, u2()). 
l=k 

Let u,(l) = y,,2() and u,(l) = y2,2(I) be the Stackelberg equilibrium strategies 

with player 2 as leader starting at stage | in the sense to be defined here. The 

strategies y;,,,{/) are mappings from the integer set [/,..., N — 1] and x(/) in the 

case of open-loop strategies, but in the case of closed loop strategies, these are 

mappings from the integer set [I,..., N — 1] and the state set {x(k):k = l,..., 

N — 1}, where x(k) is generated from (4), and the decision variables u, and u, 

belong to specified admissible sets. Denote the cost corresponding to the Stackel- 

berg equilibrium strategies starting at stage k + 1 by V'(x(k + 1),k + 1), 

(6) VO(K + 1),k + 1) = JO (k + 1),k + 1, yis2lk + 1), Yasalk + 1). 
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The admissible set for decision variables in defining the Stackelberg equilibrium , 

strategies at stage k is restricted to the set of decision variables which are also 

Stackelberg equilibrium strategies at stage k + 1. Thus 

(7) JO(x(k), k, uy, U2) = VOK + 1), k + 1) + Lectk), uy(k), ua(k)). 

With player 1 as follower and player 2 as leader, the Stackelberg equilibrium 

strategy is defined in the same way as the Stackelberg strategy in (3) except that 

instead ‘of using J“ in (5), we use J“ in (7), with the boundary condition 

(8) V(x(N), N) = K(x(N)). 

This definition is identical to the feedback Stackelberg strategy in [19] when the 

decision variables are closed-loop functions. However, in the present definition, 

the decision variables are not necessarily closed loop functions. 

The Stackelberg equilibrium strategy is attractive when one player has 

enough information to be a leader. However, the potential leader may find that 

it is preferable to be a follower, in which case, he or she would divulge enough 

information for the other player to be a potential leader instead. Such a move 

would not necessarily convince the latter player to play as leader. However, 

once a player decides to lead, the other player would have no better choice than 

to play Stackelberg equilibrium strategy as follower assuming of course that the 

leader announces his strategy first. 

The Stackelberg equilibrium strategy appears to be appropriate for the 

optimal stabilization problem considered in [15] where one player is the govern- 

ment policy maker and the other player is the competitive private sector. The 

private sector takes the government policy as given, and maximizes a consumer 

surplus objective function. The government policy maker must take into con- 

sideration the effect of their policy rules on the private sector’s decision rules. 

The government policy should be chosen to maximize some welfare function, 

assuming that the private sector is reacting optimally. Although the Nash equi- 

librium strategy could be justified for this problem, the Stackelberg equilibrium 

strategy appears to be a more suitable concept in this case. 

IV. CONCLUDING REMARKS 

The properties of Nash and Stackelberg equilibrium strategies for dynamic 

games have been reviewed. These strategies are appropriate when cooperation 

is not possible or when cooperation cannot be enforced. In two-player games, 

these strategies are secure against attempts by a single player to deviate from its 

dynamic equilibrium strategy during the time horizon of the game. In economic 

situations where Cournot and Stackelberg equilibria are already useful concepts 

for static models or short-horizon models, the dynamic game models reviewed 

here should prove to be more useful when the horizon is not too short such that 

the transient adjustment period for reaching steady state is not to be ignored. 

University of Illinois 
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