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Annals of Economic and Social Measurement, 4/2, 1975 

A MODEL OF A PROJECT ACTIVITY* 

BY EDWARD A. STOHR 

This paper presents a simple model of a project activity in which the objective is to complete a given task 
at minimum cost. The problem is formulated as a decision problem with an uncertain number of stages. 
The optimal solution is found for the time-invariant case and the implications for the design of activity 
control systems are discussed. 

1. INTRODUCTION 

This paper discusses a simple model of a project activity. It will be assumed that 

a given task must be completed at minimum cost. The time taken to complete 

the task is not specified beforehand and will not be known exactly until after the 

task has been finished. The expected duration of the activities may not be long 

enough to allow them to be described by stochastic processes which have achieved 

a steady state. Thus the activities have a “project” rather than a “process” 

orientation. When the task has been completed, the organization which performed 

the work either disbands or goes on to perform another task. In the mathematical 

model the system will have to move from an initial state to a final state ; attainment 

of the latter will represent completion of the task. The problem will be stated as 

a single-person multi-stage decision problem under uncertainty. It will be assumed 

that the state, x,, of the system at time t is a scalar variable representing the amount 

of work remaining to be completed. The decision at time t, a,€ R™ , specifies the 

levels of m different resources which are to be used at time t. 

Examples of economic activities which might be modelled in this way are: 

(i) (simple) construction projects in which the total amount of work involved 

can be aggregated and represented by a scalar quantity, (ii) a single activity from 

a PERT or CPM network, or (iii) a single production run from a job shop (see 

[8] for further details). The objective of the paper is to study the design of manage- 

ment control systems for this type of activity. 

The project activity model described here has several unusual features. 

In the first place, the objective is to design a control system for a single activity 

rather than for a network of activities as in PERT or CPM. In network models 

the problem of controlling individual activities is not explicitly considered and 

each activity is described either in terms of a given probability distribution of 

finishing times as in PERT or by a given cost-time trade-off curve as in “CPM 

cost”’ [9]. One possible use of the type of model developed in this paper would be 

to provide a rational method of developing data concerning the characteristics 

of individual activities for inclusion in these network models. In addition, the 

* This paper is based on a part of my Ph.D. dissertation submitted to the University of California, 
Berkeley. I am indebted to the members of my dissertation Committee—Prof. T. A. Marshak (Chairman), 
Prof. R. C. Grinold and Prof. P. P. Varaiya—for their guidance and comments. I am also indebted to 
Prof. S. Deshmukh for his comments on an earlier draft of this paper. The research was supported by 
NSF Grant No. GS-2078. 
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model in this paper involves an uncertain time horizon, while the management 

science literature concerning production activities has usually assumed either 

finite time horizons or infinite time horizons. A typical example is the aggregate 

production planning and smoothing model of Holt et al. [4]. 

In Section 2, the activity control system design problem is described. Section 3 

analyzes a version of the activity model in which it is assumed that the actions can 

be adjusted continuously over time, while Section 4 is concerned with the case 

where the decision stages are discrete. The optimal solution for the continuous 

case has a very simple and convenient form. The results for the discrete case 

approximate those for the continuous case for activities of long expected duration. 

Section 5 states solutions of the activity control problem for some commonly used 

cost and production functions. Section 6 uses the results of the previous sections 

to discuss the general problem of designing control systems for activities of 

random duration. 

- 

2. THE ACTIVITY CONTROL SYSTEM PROBLEM 

Both continuous and discrete-time versions of the activity model will be dis- 

cussed in this paper. However, organizational decisions cannot usually be adjusted 

continuously over time, and it seems more appropriate to introduce the activity 

control system model initially as a problem with discrete decision stages. 

Knowledge of the technology of the activity will be described by a sequence of 

cost functions, c,(a,) and production functions, f,(a,), t = 0,1,2,.... In general, 

uncertainty will exist concerning these functions. For example, uncertainty about 

future factor prices will prevent exact specification of the function, c,, and uncer- 

tainty with respect to such factors as the quality of the work force, quality of 

material inputs, and future weather conditions will prevent exact specification 

of the production function, f,. These uncertainties are modelled by including 

additive random disturbance terms, y, and ¢,, in the cost and production functions 

as shown in (1) below. The functions c, and f, are themselves assumed to be deter- 

ministic and continuous. Uncertainty will also exist with respect to the total 

quantity of work, x°, involved in the task. In a construction context this uncertainty 

occurs for example, because estimates of the quantity of work involved are 

obtained from blueprints which may be based on only approximate data con- 

cerning actual topological and geological conditions. In a production setting, 

x° might represent the total orders outstanding for a product at the beginning of 

the production run. Uncertainty here might be due to inaccuracies or delays in 

the information system. Although in general, the states x, cannot be observed 

exactly, an assumption of perfect observation will be made throughout this paper. 

It will be shown that this assumption is not of great importance in that the expected 

value of perfect information will usually be small for the problems analyzed. 

The objective of the activity manager is to choose actions, a, € A,, t = 0,1, 

2,..., Which will minimize the expected cost of the activity. The action possibility 

set, A, S R" , defines a constraint on the actions available at time t. It is assumed 

that f,(a,) + ¢,, a,€ A,, is always non-negative, or in other words, that the amount 

of work remaining to be completed decreases monotonically over time. Informa- 

tion, concerning the current level of x,, becomes available at time t and an action, 
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a,€ A,, is selected according to a decision rule, «,. The decision rules can be 

functions of the history of prior observations, x‘ = (x,,x,,...,X,) and actions, 

a'~' = (ay),a,,...,@,-,). Thus the period t action is given, in general, by 

a, = a(x',a'~"). A policy, a, is a collection of decision rules, (a), a,,«>,...). 

The state of the system is a random variable with a probability distribution which 

depends on the policy, «, chosen. Sometimes this dependence on « will be recog- 

nized explicitly by denoting the state at time t by x7. The activity model can now 

be stated as follows. Find the policy, @, which solves 

r=2 
* (Cy_,(@p_4) + Yr-1)X7-1 

2 (c,(a,) + y,) + fla; _,) r ee. | (1) V(a) = min E| 

Subject to: 

(a) Initial condition: x, = x° 

(b) Dynamics: x,,, = x, — (f(a,) + ¢,), t = 0, 1,2,... 

(c) Final condition: 0 < xy_, < fy_,(@r_,) + Er-, 

(d) Admissible actions: a, = «,(x‘, a’~ '), t=0,1,2 9 Hye eee 

In (1) the expectation is taken with respect to x°, €,,é,,..., i ee The time 

of the last decision, T — 1, is a random variable. It is assumed that the output, 

f{a,) + €,, and cost, c,a,) + y,, occur uniformly over time. The random variable 

defined by the ratio, x7_,/[fr-,(ay_-,) + €;-;], in the objective function is 

therefore the fraction of the last time period in which work takes place and the 

term, (cy_ ,(@7_,) + Yr—s)/Ufr-s(@r-1) + €7-1])%7-1, in (1) is the cost incurred 

in the last time period. In the following discussion the activity model (1) will be 

specialized to the time-invariant case where c, = c, f, = f, A, = A, t = 0,1,2,... 

and {y,,t = 0,1,2,...} and {,,¢ = 0,1,2,...} are each assumed to be identically 

distributed sequences of random variables. It is also assumed that x°, &,€,,..., 

Yo. Y1>--- are independent. 

As stated above, the possibility of imperfect information concerning the 

states of the system is not considered in this model. However it is worth noting 

that the general problem of activity control system design would modify (1) to 

allow for imperfect observation and would explicitly take into account the cost of 

generating information concerning the system states. The modified model would 

then be solved to find the expected cost of completing the activity for each available 

information system and finally, the optimal information system would be chosen 

(see [6)). 

3. CONTINUOUS-TIME RANDOM DURATION MODEL 

The results for a continuous time version of problem (1) are much simpler 

and will therefore be presented first. Thus, in this section it will be assumed that 

the levei of resources applied to the task can be adjusted continuously. In other 

words, the set of possible times at which a decision can be made is the positive 

real line R'. = [0, 00]. Let x,¢.R', be the amount of work left at time t. A con- 

tinuous, time-invariant version of the dynamic equation, (1b), is dx, = —f(a,) dt — 
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dé,, where f:R™ — R', is the production function and €, is a continuous martingale 

with constant mean, g. Let ¢, = g + u,, where u, is a continuous martingale with 

a zero mean. The system equation becomes: 

(2) dx, = —f(a,)dt — gdt — du,. 

Similarly, a continuous, time-invariant version of the cost equation in (1) 

dc, = c(a,) dt + dy,, 

where c:R™ — R', is the cost function and y, is a continuous martingale with 

constant mean h. Let y, = h + w,, where w, is a continuous martingale with a 

zero mean. The instantaneous cost is therefore: 

(3) dc, = c(a,) dt + hdt + dw,. 

The initial condition, x, , will be a random variable with mean py. The random 

variables, x9, u,,w,,t = 0 will be, assumed to be independent of one another. 

For t > 0, let F, be the o-algebra generated by {xo,u,,w,,s < t}. Let (Q,, FZ, p,) 

be the probability space of the dynamic process defined by (2) at time t. Let 

A © R"™ be a compact set of feasible actions. The admissible decision functions 

a,:Q, + A at time t will be measurable with respect to F,. The objective of the 

system will be to finish the task (drive x, to zero) at minimum cost. Let 

T = inf {t|x, = 0}. Then the objective is to find the admissible policy, «*, which 

solves 

T T 
(4) V(a*) = min} E| f (c(a,) + h) dt + { aw,|} 

a 0 0 

T 
= min S| j (c(a,) + h) ar) 

s 0 

where the second equality follows since w, is continuous with zero mean. 

Now consider a constant policy «, = a,t > 0 and let x, be given. Then, 

T 

(5) xp = 0= x5 — | (f(a) + g)dt — uy. 
0 

From the independence assumption, and since u,,t > 0 is a zero-mean martingale, 

E{uz|xXo] = Eluz] = 0. So, from (4), E[T|x.] = xo/(f(a) + g). From (4) the cost 

of the constant policy is therefore 

V(a, Xo) = (cla) + h)E[T|xo] 

_ (e(a) + h) 

f@+2,° 

Let a* be a solution of min,., {c(a) + h/f(a) + g}; a* = a*,t > 0 is an optimal 

constant strategy. Letc* = (c(a*) + h)/( f(a*) + g)anddefineafunctionv:R! — R! 

by 

etm. . 
= a") + g) : e = c* x, x > ©. 
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Theorem 1:' 

Given X,, the optimal strategy for the continuous-time problem is the 

constant policy a* = a*,t > 0. 

Proof. Let B be any other admissible strategy, b, the action taken at time f, 

T, the random-activity completion time using policy B, and x’, t > 0, the cor- 

responding trajectory. 

By the Ité differential rule, [10], 

dv (x*) = v, dx’ + 4v,,. dR, 

— c*[ —f(b,) ar g) a=+¢ du,, 

where dR, is the incremental covariance of ¢, and the second equality follows from 

(2) and (6), since v,, = 0. Taking the stochastic integral of the last equation and 

then taking expectations gives 

Tp 
(7) —o(Xq) + Elo(x4,)] = -E| { (F(b,) + 8) ar| 

0 

where, again, use has been made of the fact that u, is a zero-mean martingale so 

that Eff >’ u, dt] = 0. Now, v(x4,) = 0 by definition of T, since xz, = 0 a.e. and 

by definition of c*, c(b,) + h > c*(f(b,) + g),t => 0. So, using these facts in (6): 

(8) (Xo) = c*Xo 

< e| { (c(b,) + h) a| = V(B, x9). 
0 

On the other hand, if b, =a*, t>0, equality is obtained in (7), since 

(Xo) = V(a*, xo). 
Corollary. The optimal policy for the continuous-time problem, defined by 

(2) to (4) is the constant action: a* = a*, t > 0, where a* is a solution of 

MiN,e4 (c(a) + h)/( f(a) + g). 
The minimum expected cost is 

(fa*)+h) 
fla*)+e@ +8 Ho = C'Uo- 

The expected completion time using the optimal policy is given by 

Ho 

FUT] = Fas) + 8 

Proof. The proof of the corollary follows immediately from the theorem 

after taking expectations with respect to xo. 

The optimal solution of the continuous-time problem depends on the distri- 

butions of ¢, and y, only through the means h and g. Hence, theorem | is an example 

of a “certainty equivalent” result. Furthermore, the expected cost due to the 

uncertainty in x° and ¢,,t > 0 is zero. Since the optimal policy is a constant 

independent of x,,t > 0 there is no advantage to be gained from making observa- 

tions of the system state. 

V*(a*) = 

' | am indebted to Professor P. F. Varaiya for his help with the proof of this theorem. 
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4. FREE END TIME PROBLEMS WITH DISCRETE DECISION STAGES 

In this Section the analysis will be concerned with the discrete stages activity 

model (1). In the discrete case the random elements in the problem complicate 

the analysis and the simple solution obtained in the previous section no longer 

holds. To illustrate the effect of the random elements consider first the deterministic 

time-invariant free-end time problem (9) which is obtained from (1) by omitting 

the random disturbance terms: 

T-2 
(9) V(8) = min ¥, (a, + oe 

t=0 x f(ar-,) 

subject to: 

(a) Initial condition: x4 = x° > 0 

(b) Dynamics: x7, , = x7 — f(a,), t = 0,1,2,... 

(c) Final condition: 0 < xt, < f(az_;) 

(d) Admissible actions: a, = a,(x?) € A, LA eee 

Note that the time, T — 1, of the last decision is determined implicitly by the 

chosen policy and the constraint (9c). Define the fraction of the last time period in 

which work takes place under policy « by 

aatah bon XT(a)-1 

be 9) Ferm) 

where the dependence of T and m on « has been made explicit. Let « be the constant 

policy, «, = a, t = 0,1,.... From (9c) and (10) and the assumption that work is 

completed at a uniform pace during each time period: T(«) — 1 + m(a) = x,/f(a). 

Hence: 

T(a)-2 
Vay=| > cal + m(a)c(a) 

t=0 

a) | 
f(a ° 

Let Ge R™ be a solution to @ = c(d)/f(a) = min,., c(a)/f(a). The cost of the 

optimal constant policy, &, = a; t > 0, is given by V(a) = @x,. Let B be any other 

admissible policy, b, the action taken at time t, and T(f) — 1 + m() the activity 

duration. The cost of policy, B, is 

= (T(a) — 1 + m(a))c(a) = 

T(p)-2 

V(B)= Yb.) + m(B)c(bry)- 1). 
t=0 

Now, e(b,) = c(a)/f(a) f(b,), t = 0, so 

T(p)—2 

ViB)>=el Y f(b) + m(B)f(br,)-1) 
t=0 

= @xy = V(Q). 
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Hence @ is the optimal policy, the minimum cost of completing the activity is 

V(&) = éx° and the optimal completion is T = x°/f (4). These results are similar 

to those which were obtained in Section 2 for the stochastic continuous-time 

problem. 

The remainder of this section is concerned with the “time invariant” version 

of problem (1) in which all of the parameters of the problem remain constant 

over time. The analysis of the stochastic discrete stages problem is complicated 

by the fact that the time, T — 1, at which the last decision is made is a random 

variable with a probability distribution which depends on the chosen policy. 

To begin the analysis note that the final condition, (Ic), is equivalent to the 

definition of the last decision stage: 

T= min }s > 
s-1i 

Y (f(a) + &) = ah 
t=0 

Now a, is a function of x°, &, &,,..., ¢,-, and the event {T < i} is equivalent to 

the event {}'=4 (f(a, + ¢,) = x°}. Hence T is a stopping time for the dynamic 

process defined by (1b). It follows from the Wald identity [7, p. 38] that: 

' reed 

(11) e| y | = E{T] - Eléc]. 

Before proceeding with a more general analysis it will be useful to consider 

the class of policies involving a constant action in each time-period. Let « be any 

such constant policy, «, = a,t = 0,1,2,.... By definition: 

7=3 

a (f (a) + ¢,) - (f(a) + er-1) + X7-1,= . 
t=0 

Taking expectations and using (11): 

E[T](f(a) + El[éo}) — f(a) — El[ép_,] + Elxy_,] = Elx®), 

or 

E[T — 1}(f(a) + Eléo]) + f(a) + Eléo] — f(@ — Eléz_,] + Elxy_,] = E(x*). 

Rearranging, and defining v4, = E[x®): 

Mo — E[xy_,] — Elo] + Elér_,] 12 E[T - 1] = 
a ik: f(a) + Elo) 

From (1) and the time invariance assumption, the expected cost of the constant 

policy, «, is given by 

2 m » 
(cla) + Yr-1)Xr- | 

Via) = E (c{a) + y,.) + —————">—— I. 
| b fla) + G1 

Now, T— 1 is determined by x° and &,¢;,..., €;_, and by assumption, 

Yo: 71> Y2>--- are independent of x°, é,¢,,.... Hence it follows that T — 2 is 
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independent of 79,7,,...,?r—2, that yr_, is independent of €;_, and x,;_,, 

and finally, that E[y;_,] = E[yo]. Therefore from (12): 

si - : XT-1 (13)  V(a) = ELT — 1](c(a) + Elyo]) + (cla) + EtraDE| et — + =| 

te c(a) + E[yo] 

M0 F(a) + Eléo] 

Beis E(ér-1] 
+ (c(a) + Etro {E| 775 + — | ? f(@ + Elo] 

a oe 

f(a) + EfSo) f(a) + Eléo)) 

Let a* be the solution to 

. _ dat) + Elyo) _ {a + Bus) 
(14) = F(a") + Eléol ae | f(@) + Elbo) 

and a* = a*,t = 0,1,.... The policy a* is the ‘certainty equivalent’’ policy 

obtained from the optimal deterministic policy by replacing the random distur- 

bance terms by their expectations. Let a* be the optimal constant policy, af = a’, 

t > 0. This policy must minimize the value of V(«) given by (13). Because of the 

last term in (13), a* depends on the distributions of x°, €,, €,,... and not just on 

their mean values. 

We turn now to a consideration of the class of all admissible policies and 

attempt to follow the approach adopted earlier for the deterministic problem. 

Let 2 be any admissible policy and b,€ R™ the action actually taken at time ¢. 

Since the action can be any function of the past history of the process, b, isa random 

vector. Let S — 1 be the random variable denoting the last time at which a decision 

is made. The duration of the activity under this policy is the random variable, 

S — 1+ xs_,/(f(bs_1) + ¢s_1). The expected cost is given by: 
ree 

(c(bs_,) + aa V(6) = el, PPS Gy e-1) 
S-2 

. e| ¥ (cb) + Elyo)) + x5-1 Os 
+ mud) 

t=0 f(bs-1) + Ss-1 

where the second line follows since § — 2 depends only on x°, &,&,,... 5-3, 

Ys-—1 is independent of x,_,, and E[ys_,] = E[yo]. Now for t = 0,1,...,c(b,) + 

E{yo] = c*(f(b,) + ElSo]), so: 

orl X5—i(f(bs-3) + aod 
(15) Vip) >¢ e| (f(b) + E{éo) + Heres = 

= c*K, 

where K represents the term under the expectation. By definition, 

S-2 

x° = > (f(b,) + oy) + Xs-}. 
t=0 
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Taking expectations and using (11) and (15): 

<a _fy (f(bs-1) + El€o)) 
K — uo = E[S — 1)E[Eo) ES a] + [as Tbs...) + Se. 5-1] 

ae E{és- 1] a E{é,] + A eteere * E[éo)) Ta ss-1| 

f(bs-1) + Ss-1 

Xs - (é5-, ou E{éo)) . oa 
= E[é._,) — Efé - £| ** > 0 with probability 1. [ s 1] [ ol f(bs_,) + ey p y 

The final inequality above follows since, from equation, (1b), and the definition 

of S,0 < xs_;/f(bs-,) + €s-; S 1 with probability 1 and therefore 

g| *8=1Gs-1 7 a) 

L S(bs-1) + Ss-1 

with probability 1. It follows that V(f) > c*u,. for any admissible policy . 

Evidently, the certainty equivalent policy, a*, the optimal constant policy, a’, 

and the optimal admissible policy @, satisfy: 

(16) V(a*) > Via") > V(a) = c* yo. 

S |E[Ss-1 — Elo] 

Temporarily, let x° be a known constant. For a constant action the dynamics 

of the time invariant random duration control problem with the stated indepen- 

dence assumptions define a’renewal process (in the “amount of work completed” 

rather than in “time” as in the usual interpretation of renewal processes). In fact, 

the problem reduces to the usual definition of a “renewal reward process,” [7], 

except for the terminating condition (1c) and the assumption that costs are in- 

curred, and progress of work is achieved, uniformly over time. From (13): 

V(a*) = E[T — 1}(c(a*) + Elyo]) + (cla*) + EtyaDE| 757-+— | 

hence using (14): 

- ~ i: Reamer 
f(a*) + Elo] f(a) + Sr-1 

x (c(a*) + E[yo)). 

Now E[T — 1] can be regarded as a function of x° (the “renewal function’’) and 

has the following property (2, p. 366): 

(17) V(a*) — c*x® = {ELT — 1} 

x? El(f(a*) + &0)7] E(T = 1) ei f(a*) + E[éo] 2 f (a*) - E{&o))? 
—1 asx° +o. 

Using the “Key Renewal Theorem” [7, p. 42] it can be shown that 

bo Miee Res 
| aate—| 2? 
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as x° — oo. Hence substituting in (17): 

V 2). pt, a ani var [Eo] (c(a*) i E{yo]) 

OO ee eT apie + He 

From (16) and (18) it is clear that 0 < V(a*) -- V(@) < L if po is suitably large. 

This gives some measure of the expected loss incurred by following the “certainty 

equivalent” policy, «*, rather than the true optimal policy @. 

It can be seen from (13) that a* is the optimal constant action ifthe contribution 

of the final term in the objective of (1) is neglected. Furthermore, a* > a* as ty — 00 

since the last terms in the expression for V(«) have finite limits. In order to compare 

a* with the optimal policy, &, it will be necessary to introduce some more ter- 

minology. For simplicity it will be temporarily assumed that the random variables, 

¢,,t 2 0, may have any non-negative value and that A = {ae R”a > a,,;,, > 0}. 

Define A(x) = {alanin < 4; f(a) => x} and let A‘(x) be the complement of A(x). 

A(x,) is the set of feasible actions which will guarantee completion of the task 

before time t + 1. From the assumption about A, A(x) is non-empty for all x > 0. 

If ae A(x), then under the above assumptions the activity may or may not be 

completed before t + 1. Let v{x,) be the expected cost of completing the project 

given that the state is x, at time t. Then: 

as x° + oo. 

(19) v(x,) = min {g,(x,), g2(x,)} 

where: 

(20) 8 1(X,) = min ja) + Elyo] oi E{v(x, = f(a,) iy C DIF (x, we f (a,)) 
@,€A“(X¢) 

c(a,) + 7, 
+ x| oo a la = Fix, — f cap} 

(21) &2(x,) = x, nin | e| Sa + Al 

and F is the probability distribution function for €, €,,.... 

From the previous analysis the optimal action, a*, for large values of x, will 

approximate the action, a*, which minimizes (c(a) + E[y9])/(f(a) + E[é,)). 

However, if x, > 0 is small enough and the decision is made to complete the 

activity during the next time period then, from (14) and the independence assump- 

tion, the optimal action 4, = a’, where a’ solves: 

(2) £| + =i) on £| + al 

f(a’) + & acA f(a’) + & 

Evidently if 0 < x, < f(a’) then the optimal policy, &,(x,) = a’. Finally, the follow- 

ing proposition gives a relationship between a* and a’ which provides upper and 

lower bounds for the optimal actions, @,(x,), x, > 0,t > 0 under certain conditions. 

Proposition. If (c(a) + E[yo])/(f(a) + E[é,]) is convex in a for ae A, and 

f{a) => 0, 1 < i<m, then a; > a¥, 1 <i < m, where a* and a’ are defined by 

[14] and [22] respectively. 
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Proof. For any random variable x > 0, 1/E[x] < E[1/x] and so: 

afl -~(-Gl( 

Let x = f(a*) + € , then: 

| 1 1 
FE] == —_ | - El — = | CS 9 
f(a*) + ElEo] Eo + =| Fen + =| ° 

From the optimality condition for a*: 

= ca") l<i<m 
f(a*) + ElEo] ~~ f{a*)(cla*) + Ely)’ seit) 

Substituting in the previous inequality, and multiplying through by the positive 

quantity, f{a*)(c(a*) + E[y9]), it follows that: 

"ai Ska*)((a*) + Efyo)) 
-{a*)E| _—_—_-| - E 
eal Fe ‘ (f(a*) + So) 

é c(a) + Ely] 
= — EE}; —————— 0, l< 

6a; | f(a) + Go a=a* . naae 

Now by definition of a’, 

6 c(a) + Elyo] 
.- E| ——— = = (0, l<ics 
6a; | f(@) + oo Wana A 

and from the convexity assumption, E[c(a) + E[y9]/f(a) + &] is also convex in a, 

which proves the proposition. 

The formulation (19) to (21) provides insight both for the activity problem 

considered here and for renewal reward processes in general. For large x,, 

v(x,) = g,(x,) => c*x,. Also, since F(x) is a distribution function, lim,_.,, xF(x — k) 

= 0. Hence the first two terms in (20) will predominate for large values of x,, 

so that: 

81(%;) _ _min , {c(a,) v Ely] + c*(x, 35 f(a,) a E{éo))}- 

This functional equation is obviously solved by a* as defined in (14). This confirms 

that the optimizing action for large.x, approximately minimizes the ratio of the 

expected cost to the expected output in each period (rather than the expectation 

of the ratio of the cost to output in each period—which seems, at first sight, to 

be an equally intuitive result). 

The introduction of finite bounds on the possible values of the disturbances, 

€,, and on the possible actions a,, would complicate the dynamic programming 

formulation (19) to (21) without adding anything essential to the analysis. The 

results for the discrete stages time-invariant random duration control problem 

can be summarized as follows: 
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Theorem 2: 

The constant policy, a* = a*,t = 0 defined by (14), the optimal constant 

policy, «’, and the optimal policy, &, satisfy: . 

V(a*) = Via") = V(Q) = c¥ Uo. 

If uo is large enough, the opportunity cost involved in using a “certainty equiv- 

alent” policy, a*, rather than the true optimal policy, &, satisfies: 

var [€o](c(a*) + E[yo]) 
0 < V(a*) — V(@) < 

we)  ) < —Ffla) + Eleal? 

As x, -+ co the optimal action 4, ~ a*. Also, if 0 < x, < f(a’) then &(x,) = a’ 

where a’ is defined by (22). Finally, under the conditions of the proposition, the 

optimal policy satisfies a* < &,(x,) < a’, x, => 0,¢ = 0,1,2,.... 

5. OPTIMAL SOLUTIONS FOR SOME PARTICULAR TECHNOLOGIES 

The optimal (or nearly optimal) action, a*, for the time-invariant free end 

time problems discussed in the previous sections is the solution to a problem of 

the form, min,,, (c(a) + d)/(f(a) + g), where d and g are constants representing 

the means of the additive disturbance terms in the cost and production functions. 

Since it has been assumed that c and f are continuous and that A is compact this 

problem always has a solution. Some simple examples are now stated, however 

the computational task involved in solving this problem is not always trivial. 

Let the cost and production functions be given by: 

ca) +d = co +c,a,+c,a7, t20 

S(a,) + g = ea,, t20 

where Cy, ¢;,C, € R’ and co, ¢,,e > 0. Then a* = \/Co/C2 if Amin S \/Co/C2 S Omax 

and the optima! solution does not depend cn any parameters of the production 

equation. However, this is a very special case. If a non-zero constant term is 

present in the production function, an optima! solution to this problem is the 

solution to a quadratic equation involving parameters from both the cost and 

production functions. If c, = 0 in the preceding example the solution would be 

unbounded except for the constraint on the actions. The optimal action is then: 

* ay if c1eo = Coe, 
qa" = 

Ama, if Cy€o S Coey. 

As another example, let the cost function be linear and the production function 

be of the Cobb-Douglas type: 

C(a,) + d = Cy + ¢4a,, t20 

f(a) + g = bo [] als, t>0 
i=l 

where ¢o,c; > 0, co€ R', c, ER", b, > 0, be R', 0 < i <s mand Xb, < 1. Also 
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let A = {ae R\a > 0}. Then the optimal action is given by: 

Cob; 
= — Eby,’ lsism. a 

If £b; = 1 the Cobb-Douglas production function gives constant returns 

to scale and if 2b, > 1 it gives increasing returns to scale. In both of these cases 

the solution would be unbounded if the action were not constrained. 

For more general cases it will be necessary to use numerical approximation 

or specially devised algorithms in order to solve this problem. For the case of 

multidimensional linear cost and production functions for example, the algorithm 

given in [3] might be adopted. 

6. THE DESIGN OF CONTROL SYSTEMS FOR ECONOMIC ACTIVITIES OF 

RANDOM DURATION 

The significance of the results obtained for the time-invariant, free-end time 

activity models analyzed in the previous sections will now be discussed. It has 

been shown that a constant policy, a*, is optimal for the continuous random 

duration and deterministic versions of this problem and that a constant policy 

is approximately optimal for the discrete random duration version. Intuitively, 

the action, a*, minimizes the cost per unit output in each time period. This is 

also the action which minimizes the long-run average cost per unit of time in the 

corresponding infinite-horizon problem (see [7}}. 

The fact that the optimal action is approximately constant, independent of 

the state, x,, of the system, is quite surprising. This means that the choice of the 

optimal action is never affected by chance events. In a construction context for 

example, the action taken after two weeks of heavy rain and poor production 

should be the same as the action taken after two weeks of fine weather and good 

production. Of course, this result depends on the time invariance assumption. 

It is no longer true, for example, when additional penalties are incurred, if the 

activity is not finished before some given target date. The solutions for free-end 

time and fixed duration activity models can be very different. For the fixed-duration 

problem, where the production functions are linear and the cost functions are 

quadratic, the optimal action is linear and expected cost is quadratic in the state of 

the system, (see [1]). In the time invariant free-end time problem, however, the 

optimal (or near optimal) action is a constant and the expected cost is a linear 

function of the state of the system. 

Perhaps the most interesting property of this activity model is that information 
systems which report the state of the system (amount of work remaining) have 

little or no value. The additional freedom of a “‘free-end time” makes the optimal 

actions less dependent on the state of the system and more a function of the 

particular technology. The benefits to be derived from the traditional information 

system which produces periodic “progress reports’’ may not, therefore, be very 

significant. Again, this conclusion is dependent on the time invariance assumption. 

However, it does at least indicate the need for a careful economic analysis of the 

value and cost of this type of information in real problems. 

Northwestern University 
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