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2 The Econometric
Methodology

2.1 The Models

The rational expectations hypothesis asserts that the market's subjec
tive probability distribution of any variable is identical to the objective
probability distribution of that variable, conditional on all available past
information. Following the literature, we will restrict our attention to
linear models and focus only on the first filoments of distributions; this
yields models which are analytically and errlpirically more tractable. The
rational expectations implication central to this book's analysis is the
following: the expectation assessed by the market equals the true con
ditional expectation using all available past information. For a variable
X, this can be written as

(1)

where

<Vt-l == the set of information available at time t - 1,
Em ( l<Vt-l) == the subjective expectation assessed by the market,

E( '<Vt-l) == the objective expectation conditional on <Vt-l'

The application of rational expectations to financial markets-where it
is referred to as market efficiency-shows ,;vhy the rational expectations
hypothesis should be taken seriously in explaining empirical phenomena.
Tests of market efficiency usually focus on either holding period returns
or prices of securities. For example, let Yt denote the return from holding
a particular security from t - 1 to t, where the return includes both capital
gains and intermediate cash income such as dividends or interest pay
ments. Rational expectations, as in equation (1), then implies the follow
ing condition:

(2)

9



10 Econometric Theory and Methodology

The condition above is too general to be testable. To give it empirical
content we must specify a model of market equilibrium that relates
EmCYtl<f>t-l) to some subset of past information, Ot-l,

(3)

where Ot-l is contained in <f>t-l. For ease of exposition, /(Ot-l), the
representation of the model of market equilibrium, will be denoted byYt.
Combining equations (2) and (3) yields the efficient markets condition

(4) E(yt - Ytl<f>t-l) = o.
This condition implies that Yt - 'Yt should be uncorrelated with any past
available information. When Y, the equilibrium return (or, in loose
parlance, a "normal" return), is viewed as determined by such factors as
risk and the covariance of Yt with the overall market return (see Fama
1976a), the above condition can be stated in a slightly different way.
Market efficiency, or equivalently rational expectations, implies that no
unexploited profit opportunities will exist in securities markets: at today's
price, market participants cannot expect to earn a higher than normal
return by investing in that security.

The condition in (4) is analogous to an arbitrage condition. Arbitra
geurs who are willing to speculate may perceive unexploited profit oppor
tunities and will purchase or sell securities until the price is driven to the
point where this condition holds approximately. An example may clarify
the intuition behind this argument. Assume that for a security, Yt - Yt,
which is sometimes called an "excess" return, is positively correlated with
some piece of past information known at time t - 1, let us say the
company's past earnings. If today the company's past earnings are known
to be high, then a higher return than normal for this security is to be
expected over the subsequent period. This is a contradiction because an
unexploited profit opportunity would now exist. Market efficiency im
plies that, if this opportunity occurred, the security would be bid up in
price until the expected return fell to the normal return. The positive
correlation between past earnings and the "excess" return for this secu
rity would then disappear.

Several costs involved in speculating could drive a wedge between the
left- and right-hand side of (4). Because the collection of information is
not costless, arbitrageurs would have to be compensated for that cost and
others incurred in their activities, as well as for the risk they bear.
(Indeed, as Grossman and Stiglitz (1976) point out, if (4) held exactly,
efficient-markets theory would imply a paradox. If all information were
fully reflected in a market as eq. [4] specifies, obtaining information
would have a zero return. Since there would be no incentive to collect
information, it would remain uncollected and unknown. The market
would then not reflect this information.) Transaction and storage costs
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would also result in violations of equation (4) . Yet financial securities
have the key feature of homogeneity, for the:y are merely paper claims to
income on real assets. Transactions and storage costs will then be small,
while compensation of arbitrageurs and the cost of collecting information
should not be large relative to the total value of securities traded. Thus
deviations from the condition in (4) should not be large.

There are two conclusions to be drawn from the discussion above.
First, although the efficient markets or rational expectations condition in
(4) may not hold exactly, it is an extremely useful approximation for
macroeconomic analysis. Second, this condition should be a useful
approximation even if not all market participants have expectations that
are rational. Indeed, even if most market participants were irrational, we
would still expect the market to be rational as long as some market
participants stand ready to eliminate unexploited profit opportunities. It
is important to emphasize this point when discussing whether survey
forecasts should be used in analyzing market behavior, as Chapter 4
indicates.

A model that satisfies the efficient-markets condition in (4) is

(5) Yt=Yt+(Xt-~)~+Et,

where

Et = a disturbance with the property E(EtI4>t-l) = O-thus Et is serially
uncorrelated and uncorrelated with ..~;

X t = the vector containing variables relevant to the pricing of the
security at time t;

~ = the vector of one-period-ahead rational forecasts of Xt, that is,
~ = Em(Xtl<f>t-l) = E(Xtl<f>t-1);

~ = vector of coefficients.

That the model above satisfies (4) is easily verified by taking expectations
conditional on <f>t-1 of both sides of (5). This yields

(6) E(Ytl<f>t-l) = E(Ytl<f>t-l) + E(Xt - ~I<f>t-l)~

+ E(€tl<f>t-1) = Yt
which clearly satisfies (4).

For expositional convenience, we refer to model (5) as "the efficient
markets model." Note, however, that the model embodies not only
market efficiency (or, equivalently, rational expectations) but also a
model of market equilibrium. This model stresses that only when new
information hits the market will Yt differ from Yt. This is equivalent to the
proposition that only unanticipated changes in X t can be correlated with
Yt - Yt·

As the empirical work later in the book demonstrates, the efficient-
markets model is useful in attacking such interesting questions as the
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rationality of interest rate and inflation forecasts in the bond market and
the relationship of monetary policy to interest rates. The econometric
methodology outlined here is worth studying for this reason alone. Yet it
is also worth studying because there are many other applications of the
efficient markets model (e.g., Dornbusch 1980; French, Ruback, and
Schwert 1981; Frenkel 1981; Hartley 1983; Hoffman and Schlagenhauf
1981b; Plosser 1982; Rozeff 1974; Schwert 1977a, 1977b).

The other model analyzed in the empirical section of this book displays
the neutrality property that only unanticipated and not anticipated coun
tercyclical policy will have an effect on business cycle fluctuations. This
model displays the policy ineffectiveness proposition of Sargent and
Wallace (1975) that a constant money growth rule is not dominated by
any rule with feedback. As usually estimated, it has the form

(7)

where

Yt = unemployment or real output at time t;
Yt = natural or equilibrium level of unemployment or real output at

time t;
X t = an aggregate demand variable, such as money growth, inflation or

nominal GNP growth;
~ = anticipated X t conditional on information available at t - 1;
r3i = coefficients;
Et = error term which might be serially correlated but is assumed to be

uncorrelated with the right-hand-side variable.

In the case where the number of lags, N, equals zero and Yt is a
distributed lag on past Yt, this is the model estimated by Sargent (1976a).
The Barra (1977, 1978) model has N > 0 and Yt is represented as a time
trend or a linear combination of such variables as the minimum wage and
a measure of military conscription. Other empirical applications of this
model include Barro 1979; Barro and Hercowitz 1980; Barro and Rush
1980; Bj6rkland and Holmlund 1981; Germany and Srivastava 1979;
Gordon 1979; Grossman 1979; Hoffman and Schlagenhauf 1981a;
Leiderman 1979, 1980; Makin 1982; Sheffrin 1979; Small 1979; and
Wogin 1980. Following Modigliani (1977), this model will be referred to
as the Macro Rational Expectations (MRE) model.

The methodology discussed here is also worth studying for its useful
applications in many recent empirical studies which analyze the differen
tial effects of anticipated versus unanticipated movements in explanatory
variables. These studies make use of the general model

(8)
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for different definitions of Yt, Yt, and Xt. They include Bernanke 1982;
Bilson 1980; Bodie 1976; Carr and Darby 1981; Fama and Schwert 1977,
1979; Fischer 1981; Flavin 1981; Jaffee and Mandelkar 1976; Makin 1981;
Nelson 1976; Schwert 1981; and Shiller 1980.

2.2 The Methodology

2.2.1 Estimation and Testing

The form of the efficient-markets equation is just a special case of the
MRE equation where N = 0; hence the discussion here needs to focus
only on the estimation and testing methodology for equations (7) and (8).
To simplify the exposition, we will limit ourselves to the case where X t is a
single variable. Modifications of the analysis for the case where X t is a
vector of variables is straightforward.

Rational expectations implies that the anticipations of X t will be
formed optimally, using all available infornlation, and, as is usual in the
literature, forecasting models are assumed to be linear. A forecasting
equation that can be used to generate these anticipations is

(9)

where

Zt-l = a vector of variables used to forecast X t which are available at
time t - 1 (this includes variables known at t - 1, t - 2, t - 3,
etc.),

~ = a vector of coefficients,
U t = an error term which is assumed to be uncorrelated with any

information available at t - 1 (which includes Zt-l or Ut-l for
all i 2:: 1, and hence U t is serially uncorrelated).

An optimal forecast for X t then simply involves taking expectations of
equation (2) conditional on information available at t - 1. Hence

(10)

and, substituting into equation (7), we have
N

(11) Yt=Yt+ I ~lXt-i-Zt-l-i~)+Et·
i=O

Two identification problems occur in the equation (11) model. Some
assumption about the correlation of the error term, E, and the right-hand
side variables is necessary in order to identify the ~ coefficients. The usual
assumption-the one that is used in the tests here as well as in previous
empirical work on this subject-holds that all the right-hand-side vari
ables are exogenous and are uncorrelated with the error term. This
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assumption, that (11) is a true reduced form, implies that least-squares
estimation methods will yield consistent estimates of the ~'s.

The other identification problem has been raised by Sargent (1976b). If
Zt - 1 includes only lagged values of X t and there are no restrictions on the
lag length N, the MRE model in (11) is observationally equivalent to "an
unnatural rate model" where anticipated aggregate demand policy also
matters. Hence, in this case, we cannot distinguish between the two
competing hypotheses. To see Sargent's point, we can write the forecast
ing equation where only lagged X's are explanatory variables as,

(12)

where
00

~(L) = polynomial in the lag operator L = I ~iLi.
i=1

Taking expectations of (12) conditional on 4>t-l and substituting into (7)
where N is not restricted, we have the MRE model

(13)
00

Yt = Yt + I ~i[Xt-i - ~(L)Xt-i-l] + Et,
i=O

and this can be written as

(14)

where

00

Yt =Yt + I \fIiXt-i + Et,
i=O

\flo = ~o,
i-I

\fIi = ~i - .I ~j~i-j-l for i~ 1.
J=O

If the forecasting equation in (12) is used to derive expectations in
equation (8) where anticipated as well as unanticipated aggregate de
mand matters, we have

00

(15) Yt=Yt+ I ~i[Xt-i-~(L)Xt-i-l]
i=O

00

+ I 8i 'Y(L)Xt - i - 1 + Et
i=O

which also can be written as (14), where

\flo = ~o
i-I

\fIi = ~i + .2 (8j - ~j)'Yi-j-l for i~ 1.
J=O

Because both models can be written down as (14), the two models are
observationally equivalent: that is, the data cannot discriminate between
them because parameters are unidentified.
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The problem of observational equivalence: has arisen in empirical work
on whether anticipated aggregate demand policy matters, in particular,
Grossman (1979). Grossman analyzes the MRE model where the aggre
gate demand variable is nominal GNP growth. His forecasting equation,
however, includes only lags of nominal C..NP growth as explanatory
variables. Because of the resulting observational equivalence problem,
Grossman cannot and does not test whether the anticipated nominal
GNP growth variables have significant additional explanatory power.
Instead, he reports results supporting the MRE hypothesis which rely on
flimsy grounds for identification, namely, the assumption that the lag
length on nominal GNP growth cuts off at six quarters.

It is possible to discriminate between the two competing models by
means of identifying restrictions. These are derived by checking what
conditions must be imposed to keep the MRE model and the model in
which anticipated aggregate demand matters from being observationally
equivalent. This exercise is carried out in i\.ppendix 2.1. The observa
tional equivalence problem is overcome, parameters are identified, and
tests of the MRE model are feasible, by either of two conditions particu
larly important in this book's empirical applications. They are: (1) N is
known to be zero, as in the efficient markets model; or (2) Zt-1 includes
lagged values of at least one other variable besides X which does not enter
equation (11) separately from the ~i(Xt-i -- Zt-1-i"l) terms.

The method for estimating the MRE model involves joint, nonlinear
estimation of the equations (9) and (11) system, which we rewrite as

(16) X t = Zt-1"1 + Ut,
N

Yt=Yt+ ~ (Xt-i-Zt-1-i')')~i+Et·
i=O

System (16) embodies two sets of constraints. Rationality of expecta
tions is imposed since the coefficient')' which appears in the equation for
X t also appears in the equation for Yt. The neutrality property, that
anticipated policy is not correlated with Yt - Yt, is also imposed because
the 8 coefficients on Xr-i are constrained to be zero. Relaxing the
neutrality and rationality constraints, the system (16) becomes

(17) X t = Zt-1')' + Ut,
N

Yt =Yt + ~ (Xt- i - Zt-1-i')'*)f3i
i=O I

N

+ I Zt-1-i"l*8i + Et •
i=O

A likelihood ratio test comparing both the constrained system (16) and
the unconstrained system (17) provides a joint test of both the rationality
constraints')' = ')'* and the neutrality constraints 8i = 0, conditional on
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the maintained hypothesis of the model of equilibrium output. Note that
(17) can also be written as

(18) X t = Zt-l'Y* + Ut,
N N

Yt =Yt + I ~i(Xt-i - Zt-l-i'Y) + I '8iX t- i + Et,i=O i=O

where ~~ = ~i - '8i • This is the form used by Barro (1977) in his tests of
neutrality.

As an alternative to relaxing both the neutrality and the rationality
constraints, we can relax one set of constraints only. For example,
maintaining the hypothesis of rationality but relaxing the assumption of
neutrality, system (16) becomes

(19) X t = Zt-l'Y + Ut,
N N

Yt=Yt+ I (Xt-i-Zt-l-i'Y)~i+ I Zt-l-i'Y'8i + Et·i=O i=O

Under the maintained hypothesis of rational expectations, the null
hypothesis of neutrality, that is, '8i = 0, can be tested by comparing the
estimated systems (16) and (19).

Rather than maintain the hypothesis of rationality of expectations and
then test for neutrality, one can maintain the hypothesis of neutrality and
then test for rationality. The unconstrained system used to perform this
test is:

(20) X t = Zt-l'Y + Ut,

N

Yt=Yt+ I (Xt-i-Zt-l-i'Y*)~i+Et·
i=O

A comparison of the estimated systems (16) and (20) provides a test of the
null hypothesis of rationality, that is, 'Y = 'Y*, under the maintained
hypothesis of neutrality. In the efficient-markets case where N = 0,
neutrality is a reasonable maintained hypothesis since the absence of
neutrality would indicate the presence of unexploited profit opportuni
ties. It must be noted, however, that a rejection of the null hypothesis
that'Y = 'Y* may result from a breakdown of rationality, neutrality, or the
model of market equilibrium. Furthermore, as is demonstrated in
Appendix 2.1, when N = 0 this test is equivalent to that generated by
comparing the systems (16) and (17), which jointly tests '80 = 0 and 'Y =
'Y* .

The X2 statistic for the joint hypothesis of rationality and neutrality can
be partitioned into the contribution from each component hypothesis by
relaxing the constraints sequentially. These constraints can be relaxed in
two different orders. A priori economic reasoning may suggest an
appropriate sequence for relaxing constraints. For example, in testing
whether anticipated policy is correlated with output, it seems appropriate
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first to relax Ci == 0 and test neutrality under the maintained hypothesis of
rationality. Then, without maintaining neutrality, the constraint ~ == ~*

can be relaxed, and rationality can be tested. This is the procedure that is
followed in tests of the MRE hypothesis in Chapter 6.

Under the alternative sequence for relaxing constraints, we first relax
the constraint ~ == ~* and test for rationality under the maintained
hypothesis of neutrality. The next step in relaxing constraints permits a
test of neutrality without maintaining the hypothesis of rational expecta
tions. Yet neutrality has meaning only if we have a theory of expectations
such as rational expectations. Realize that the test of neutrality is con
ducted on the assumption that the expectations of X t in the second
equation of the system (17) are formed with the same information set
Zt-1 as the time-series model of X t in the first equation. Yet, if we are not
willing to assume that expectations are rational, there seems to be no
reason to assume that the same set of variables belongs in Z in both
equations in (17). Therefore, it is not clear that this test yields useful
information.

One way to generate the likelihood ratio statistics for the above tests is
to estimate both the constrained and unconstrained systems with full
information-maximum-likelihood (FIML). Estimation proceeds under
the identifying assumption used in previous research on the MRE
hypothesis, that the y equation is a true reduced form. 1 This assumption
implies that the covariance of the error term.s in the two equations of the
system is zero. The estimated variance-covariance matrix of the residuals
is then

SSRx == the sum of squared residuals of the X equation,
SSRy == the sum of squared residuals of the y equation,
n == the number of observations.

The systems analyzed here are triangular, so FIML involves maximizing
the concentrated log likelihood function,

(22) log L = constant - ~ log (det I),

1. In the case where N = 0, even if the asumption is untrue, its imposition will not
invalidate the test statistics (see Chap. 3). However, it is not clear that this desirable
result-that the assumption does not matter to the tests of interest here--earries over to the
case where N > O.
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where det i = determinant of i. The resulting likelihood ratio statistic

[
LC(iC) ] A A

- 2 log --A- = nlog (det ~c/det ~U)
LU(~U)

is distributed asymptotically as X2
( q), where

q = the number of constraints (Appendix 2.1 discusses how to count
them),

LC= maximized likelihood of the constrained system,
I:u = maximized likelihood o( the unconstrained system,
~c = the resulting estimated ~ for the constrained system,
~u = the resulting estimated ~ for the unconstrained system.

Comparison of this statistic with the critical X2
( q) then tests the null

hypothesis.
Test procedures used in this book proceed in a slightly different way

from that described above, in that they make use of nonlinear least
squares estimation. Estimation is conducted with nonlinear least squares
primarily for algorithmic reasons. FIML computer packages are usually
not capable of handling large numbers of parameters, and this is required
in some of the models analyzed empirically in this book. In addition,
FIML packages do not allow us easily to impose the necessary covariance
restrictions in (21) or to make a desirable degree of freedom correction,
described below, which results in more conservative likelihood ratio
statistics. In contrast, the nonlinear least-squares procedure outlined
here easily implements the covariance restriction and degrees-of
freedom correction and makes use of a computer package (SAS Institute
1979) that can estimate systems with large numbers of parameters.

The procedure is as follows. Given an initial estimate for the variance
covariance matrix of the residuals, i, estimate the system with nonlinear
generalized least squares (GLS). (The initial i can be obtained from
unconstrained ordinary least-squares estimates of the X and y equations
or from preyiously estimated systems.) Given the particular diagonal
form of the ~ matrix, nonlinear GLS is equivalent to nonlinear weighted
least squares (WLS) using the estimates from~: that is, the observations
for the X forecasting equation are weighted by YSSRx/SSRy . Appendix
2.2 contains an annotated computer program describing this procedure in
great detail. A new i matrix can be estimated using the resulting re~
siduals and the system reestimated again with nonlinear WLS. This
iterative procedure is continued until there is little change in the i matrix.
Because the system is triangular, this procedure will converge to max
imum-likelihood estimates, since theorems showing that iterative three
stage-least-squares is equivalent to FIML then apply to this nonlinear
case as well. High computation costs required that iterations were con
tinued only until the estimated variance of all the weighted equations in
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the system differed by less than 5 percent. Some experimentation indi
cated that further iterations would have altered the likelihood ratio
statistics in the book by at most 1 or 2 percent. This would only lead to a
negligible effect on the inference drawn from these statistics. 2

If the same procedure is followed for estimating the unconstrained
system, then the likelihood ratio statistic in (23) is easily calculated and
can be used to test the null hypothesis. Although (23) yields valid asymp
totic tests, it could be misleading in a small sample like that used here.
The problem is that, in the maximum-likelihood calculation of the i u

matrix of the unconstrained system, no correction is made for substantial
relative differences in the degrees of freedom in estimates of each uncon
strained equation. Thus the finite sample distribution of the test statistic
might differ substantially from the asymptotic distribution. For example,
in Chapter 6, model2.1 (see tables 6.1 and 6.2), the unconstrained money
growth equation is estimated with 79 degrees of freedom, while the
unconstrained output equation is estimated with only 70 degrees of
freedom. This is a difference of over 10 percent. The problem is even
more severe in the case of model A16.1 (see tables 6.A.16 and 6.A.17) in
Appendix 6.3 of Chapter 6: the degrees of freedom for the unconstrained
money growth and output equations are now 79 and 32, respectively, a
difference of 50 percent. Another way of stating this problem is to say
that the weighting matrix for GLS will have a biased estimate of the
variance of one equation relative to another. The bias occurs because the
estimated variances are the maximum-likelihood estimates (the sum of
squared residuals divided by the number of observations in each equa
tion) rather than the unbiased estimates (the sum of squared residuals
divided by the degrees of freedom).

The likelihood ratio statistics reported here are corrected for the small
sample problem as follows: the constrained system is estimated with the
iterative procedure, and the resulting i c nlatrix from the constrained
system is then again used with nonlinear WLS to estimate the uncon
strained system. This corrects the degrees-of-freedom problem because,
in the systems where there are cross-equation constraints, the degrees of
freedom do not differ across equations. Thus i c does not suffer from the
degrees-of-freedom problem of i u

• The resulting likelihood ratio statis
tic, which is also distributed asymptotically as X2

( q) under the null
hypothesis, is (Goldfeld and Quandt 1972)

- 2 log [U(~C)] = 2n log (SSRc/SSRU
),

LU(!C)

2. In the empirical analysis in this book, when Goldfeld-Quandt (1965) tests revealed the
presence of heteroscedasticity within an equation, the time-trend procedure outlined by
Glesjer (1969) was used to weight each observation to eliminate this heteroscedasticity.
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where the superscripts on the I indicate that the maximized likelihoods
of both the constrained and unconstrained systems were estimated with
the same weighting matrix IC and

SSRC = the sum of squared residuals from the constrained weighted
system,

SSRU = the sum of squared residuals from the unconstrained weighted
system.

Although asymptotically the two test statistics are equivalent, in finite
samples the likelihood ratio statistic in (24) is smaller than the alternative
in (23) and is more conservative on rejecting the null hypothesis. 3 To see
this, realize that LU(IU) ~ LU(IC), which implies

[
LC(IC)] [LC(IC)]- 2 10 --- <: - 2 10 --

g uCiC) - g L U(iU) .

Using (24) rather than (23) will thus give more credibility to rejections if
they occur.

One issue concerning estimation remains to be discussed. Since the
standard test statistics assume serially uncorrelated error terms, we need
to eliminate serial correlation from the residuals. If this is not done, then,
as Granger and Newbold (1974) and Plosser and Schwert (1978) have
pointed out, we are likely to encounter the spurious regression phe
nomenon, where significant relationships appear in the data only because
there has been no correction for serial correlation. As long as we include
lagged dependent variables in the forecasting equation there should be
little serial correlation in the U t residuals and no serial correlation correc
tion will be needed. In the case of the efficient-markets model, theory
specifies that E(Etl<f>t-l) = 0 and hence Et should be serially uncorrelated.
Again no serial correlation correction is needed. However, in the MRE
output or unemployment model there is no theoretical argument guaran
teeing that the error term is serially uncorrelated. To correct for potential
serial correlation and thus avoid the spurious regression problem, the

3. The likelihood ratio statistics here are frequently not appreciably different whether
they are calculated using (23) or (24). E.g., in Chapter 6's model 2.1 the likelihood ratio
statistic for the joint hypothesis calculated from (23) is 22.81 vs. the value 22.69 reported in
table 6.1. In the models found in Appendix 3 (Chapter 6), which use up more degrees of
freedom, the difference between statistics calculated from (23) and (24) is more appreci
able: e.g., in model A.16.1 the likelihood ratio statistic for the joint hypothesis calculated
from (23) is 76.33 vs. the value 66.90 reported in table 6.A.13. Note that the statistic in (24)
is essentially the statistic for a Lagrange multiplier test where the percentage change in the
sum of squares is approximated by a change in the logs. It is well known that the Lagrange
multiplier test is less likely to reject the null hypothesis than a likelihood ratio test, so these
results are not surprising. For a further discussion of the Lagrange multiplier test, see Engle
(1980).
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error term in the MRE output or unemployrnent models estimated later
is assumed to be a fourth-order autoregressive process. This specification
for the error term was chosen because fourth-order autoregressions
usually eliminate most serial correlation in quarterly, macro time series.
Indeed, Durbin-Watson statistics and the residual autocorrelations of the
estimated models indicate that this correction for serial correlation is
successful in reducing the residuals to white~ noise.

2.2.2 Specification of the Forecasting Equation

Rational expectations theory implies that )(~ is an optimal, one-period
ahead forecast, conditional on available information. Thus an appropri
ate forecasting equation for X t should rely only on lagged explanatory
variables. Economic theory may not be very valuable in generating an
accurate model of expectations formation because it is difficult on theo
retical grounds to exclude any piece of inforrn,ation available at time t - 1
from the 2 vector as a useful predictor of a policy variable. Any particular
variable may be a useful predictor of X t even if there is no strong
theoretical reason to include it in the 2 t - 1 vector, because the personali
ties involved in policymaking may be such that they react to this variable
nonetheless. For example, if the Board of Governors of the Federal
Reserve System were to link monetary policy to the level of unemploy
ment, even though there is no good reason for doing so in a world where
the policy ineffectiveness proposition holds, 'we would still expect to find
that the unemployment rate would be highly useful in predicting money
growth. This suggests that an atheoretical statistical procedure may/ be
superior to economic theory for deciding on the forecasting equation's
specification.

Two procedures are used in this book to specify the forecasting equa
tions. The simplest uses univariate time-series models of the autoregres
sive type. In the empirical studies later in the book these models are
usually subject to unstable coefficients and, nlore important, should only
be used in the efficient-markets model where N = 0 because of the
observational equivalence problem discussed earlier. Multivariate fore
casting models are therefore needed. The (}ranger (1969) "causality"
concept is a natural way to approach the specification of the multivariate
models. A variable 2 is said to Granger-cause another variable X, if X
can be predicted better from past values of 2 and X than from past values
of X alone. Our forecasting equation for )( should definitely include
lagged values of X to eliminate any serial correlation in the residuals. If 2
Ganger-causes X, then it should be used also in an optimal forecast of X.
Hence, as is also argued in Sargent (1981), it belongs as an explanatory
variable in the forecasting equation. Note that the issue here is the
predictive content of information-which is what Granger-causality is
really meant to analyze-and does not involve the tricky concept and
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issue of economic causality which has led to so much confusion in the
literature (see Zellner 1979).

The Granger-criterion for specifying the multivariate forecasting equa
tion is as follows. The X variable is regressed on its own four lagged
values (four lags usually ensure white noise residuals in the quarterly data
used in this study) as well as on four lagged values of a wide-ranging set of
macro variables. The four lagged values of each of these variables are
retained in the equation only if they are jointly significant at some
marginal significance level (the 5 percent level is one choice). This
procedure has the advantage of imposing a discipline on the researcher
that prevents his searching for a forecasting equation specification that
yields results confirming his prior on the validity of the null hypothesis.
Note that a stepwise regression procedure might miss significant explana
tory variables because of the order that it chooses to run the regressions.
Some judgment must be used in conducting a more general search to find
a specification that includes any variables with significant explanatory
power.

2.2.3 Specification of the Lag Length, N

The theory of efficient markets indicates that only contemporaneous
surprises will be correlated with Yt - Yt, and hence N = O. However, the
theoretical framework for the MRE model does not specify what the lag
length, N, should be. For example, McCallum (1979a) argues that if all
the state variables are included in the MRE output or unemployment
equation, then the theory does imply that N = O. However, since rel
evant state variables are almost surely excluded from estimated MRE
equations, the lag length is not known. In studying the MRE model here,
a primary objective is to obtain information on the robustness of results.
As discussed in Leamer (1978), experimenting with plausible, less restric
tive models is a necessary strategy for verifying robustness of results.

The addition of irrelevant variables to an estimated model only has the
disadvantage of a potential decrease in power of the likelihood ratio tests
so that we would be less likely to reject the null hypothesis if it were
untrue. It will not result in invalid test statistics; that is, the test statistics
will have the assumed asymptotic distributions. However, excluding
relevant variables will render test statistics invalid. Furthermore, because
rejections of the null hypothesis are less likely when the power of a test is
reduced by the addition of irrelevant variables, a rejection in this case at a
standard significance level is even stronger evidence against the null
hypothesis. This is the rationale behind Leamer's (1978) suggestion that
when the power of a test decreases-that is, the probability of Type II
error increases-then the significance level used to signify rejection
should be increased as well. The reasoning above suggests that less
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restrictive models with longer lags are worth studying, and they are a
feature of the later empirical work.

2.2.4 Specification of y
Depending on the model studied, many different specifications of Yt

may be appropriate. This becomes apparent in the empirical analysis
later in the book. Is a correct specification of Yt always a necessary
requirement for generating reliable tests of the models described here?
This question is particularly important because some specifications ofYt
used in the empirical studies in this book are crude, which makes us
suspect that they may not be entirely accurate.

The answer to this question is central to an understanding of much of
the empirical literature on efficient markets and the policy ineffectiveness
proposition. For example, tests of market efficiency have often assumed
that Yt, the equilibrium nominal return on a security such as a stock or
bond, is constant. This is clearly a very crude model of market equilib
rium, and we might expect that it will result in a rejection of the efficient
markets model. Yet this often does not occur. Why? The answer is that as
long as the variation ofYt is small relative to the variation of Yt - Yt, then
the specification of Yt will have little impact on tests of the efficient
markets model. The reason in this case is that the correct Yt model will
only explain a small percentage of the variation in Yt and thus will have
little explanatory power. Then alterations in theYt specification will make
little difference to the fit of the model and hence to its test statistics. This
is what we would expect to find in cases where the security is long-lived,
such as a long-term bond or common stock, and the holding period is
short, say three months. Then the actual return, Yo has large variation,
while any reasonable model of market equilibrium for Yt indicates that it
has only small variation. It is exactly in such cases as these where the
crude model of the constancy of Yt does not lead to rejections of market
efficiency.

The interested reader can find a further discussion of this issue along
with clarifying figures in Fama (1976a). The point raised here has been
made in a different context by Nelson and Schwert (1977) in their com
ment on Fama (1975). They stress that, if Yt has little variation relative to
that of Yt - Yt, then tests for the specifications of Yt have little statistical
power.

Proponents of equilibrium or natural rate models in which the policy
ineffectiveness proposition holds usually enlphasize deviations from the
natural rate in their explanations of unelnployment or output. This
emphasis makes sense because they believe that the bulk of the cyclical
variation in unemployment or output can be attributed to these devia
tions. This is exactly the case in which the variation in Yt (removing its
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trend, if there is one, as in the output case) is small relative to the
variation in Yt - Yt. Then, as is argued above, tests of the policy ineffec
tiveness proposition are insensitive to the specification of the model for
the natural rate of unemployment or output (as long as the trend is
removed).

2.3 A Comparison with Previous Methodology

Previous empirical work has tested the neutrality implications of the
MRE hypothesis. How does the methodology of this chapter compare
with that used in the work cited earlier?

Barro (1977, 1979), Barro and Rush (1980), and Small (1979), among
others, use a two-step procedure. They first estimate a forecasting equa
tion by ordinary least squares (OLS) over the sample period and calculate
the residuals, that is,

(26)

Then the residuals are used as the unanticipated aggregate demand
variable in the MRE Y equation,

(27)

which is then also estimated by OLS. Another way of describing this
two-step procedure is to say that the 'Y in the Y equation is assumed to
equal the OLS estimate of 'Y from the forecasting equation. Tests of the
neutrality proposition then involve adding current and lagged values of X
to the Y equation to yield an equation similar to (18),

(28)

and testing with a standard F test the null hypothesis that the 8 coef
ficients of X t - i are equal to zero.

This methodology raises several issues, the most important of which
deal with the econometrics. The two-step procedure will yield consistent
parameter estimates. However, it does not generate valid F test statistics.
This procedure implicitly assumes that there is no uncertainty in the
estimate of 'Y. This results in inconsistent estimates of the standard errors
of the parameters and hence test statistics that do not have the assumed F
distribution. This can lead to inappropriate inference (see Pagan [1981]
for a formal proof of this statement).

The joint estimation procedure generates valid test statistics because it
does not ignore the uncertainty in the estimate of 'Y. It has two other
advantages over the two-step procedure. The joint procedure will result
in more efficient estimates of parameters because the X and Y equations
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each make use of the other's information in the estimation process. The
joint procedure also generates tests of both the neutrality and rationality
implications of the MRE hypothesis, whereas the two-step procedure
cannot test for rationality and is capable of testing only for neutrality.

What relationship exists between tests of neutrality using the joint
versus the two-step procedure? Is the joint procedure more likely than
the two-step procedure to lead to a rejection of neutrality? The answer is
no: the opposite is true. By the nature of likelihood maximization in
constrained systems, the joint procedure must attain as high or higher a
likelihood than if the forecasting equation is forced to remain unchanged,
as in the two-step procedure. The likelihood ratio statistic from the joint
procedure should be smaller than the corresponding statistic from the
two-step procedure. Therefore, the joint estimation procedure used in
this book will be even more favorable to the neutrality hypothesis.

That the two-step procedure is biased toward rejecting neutrality and is
less favorable to this null hypothesis than the joint procedure is borne out
by a comparison of actual neutrality tests using both procedures. For
example, in Chapter 6, model 4.1 (see table 6.4), the likelihood ratio
statistic from the two-step procedure testing the neutrality constraints is
X2

( 4) = 22.14, with a marginal significance level of .0002 rejecting
neutrality. The corresponding F statistic is F(4,78) = 5.31 with a mar
ginal significance level of .0008. (The marginal significance level is the
probability of obtaining as high a value of th{~ test statistic or higher under
the null hypothesis. A marginal significance level less than .01 indicates
rejection of the null hypothesis at the 1 percent level.) In table 6.1, the
test statistic using the joint procedure is only X2(4) = 15.45, with a
marginal significance level of .0039. Obviously, the bias of the two-step
procedure against the neutrality null hypothesis is not negligible.

The two-step procedure suffers also from a conceptual problem more
minor than the econometric criticisms of the procedure. It assumes that
the OLS 'Y, the estimate of ~ which minimizes the mean-squared forecast
ing error, is used in forming expectations in the y equation. Rationality of
expectations implies only that subjective probability distributions do not
differ from the true probability distributions. This implies that the ~

which is expected to minimize the mean-squared forecasting error is used
in forming expectations and not the actual )' which minimizes the mean
squared error. Thus, in finite samples, the two-step procedure makes an
overly strong assumption about expectations formation. This criticism is
another way of stating the conceptual difficulty with using regression
equations to measure anticipations of variable values early in the sample
period when later data are used in estimating the regression relationship.
Anticipations are made with information from the future as well as from
the past, which clearly goes beyond the rational expectations principle.
Note that the joint estimation procedure does not suffer from this prob-
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lem. As rationality implies in this case, the 'Y which is expected to
minimize the mean-squared forecasting error is used to form expectations
in the y equation. As a practical matter, however, this criticism of the
two-step procedure is not extremely important, because the OLS .y's are
not very different from the jointly estimated .y's and asymptomatically
they will not differ.

One last point about estimation methodology is worth discussing.
Someone used to analyzing the neutrality proposition with the two-step
procedure will tend to focus on the deterioration in fit from the imposi
tion of the neutrality constraints of the y equation alone. Such a tendency
will be highly misleading in the case of the estimated equations from the
joint procedure. In the joint estimation procedure, if constraints are
imposed on the y equation, the deterioration in fit is spreaa over both this
equation and the forecasting equation. Thus the deterioration in the y
equation fit will not be as severe as when the fit of the forecasting
equation is not allowed to change, as in the two-step procedure. How
ever, the likelihood ratio statistic in either (23) or (24) demonstrates that
the deterioration of fit in both equations is involved in testing constraints.
Therefore, strong rejections can occur even though there is only a small
decline in R2 (or rise in the standard error) of the y equation. 4

The specification of the forecasting equation in previous empirical
work sometimes violates a rational expectations principle. The theory of
rational expectations implies that ~ in the y equation should be an
optimal, one-period-ahead forecast conditional on information available
at time t - 1. Thus, an appropriate forecasting equation should rely only
on lagged explanatory variables. The procedure for specifying the fore
casting equations here does satisfy this principle. However, this is not
true in empirical studies which have used the Barro (1977) specification
for the money growth forecasting equation. They include a contempora
neous variable (FEDVt , the deviation of federal expenditures from the

4. The most striking example in Chapter 6 occurs when results of the model 2.1 (see
tables 6.1 and 6.2) are compared with the 5.1 results (see table 6.5). The comparison is a
little tricky because the model 2.1 is not strictly nested in model 5.1 because of the
polynomial distributed lag specification, but it is still interesting to see what test statistics
arise if we ignore this problem. The pseudolikelihood ratio statistic using (23) of the null
hypothesis 80 = 81 ••• = 820 = 0 and ~8 = ... ~20 = 0 equals 11.69 with a marginal
significance level of .0199. Thus the hypothesis is rejected at the 5 percent level even though
there is only a small change in the R2 and standard error of the output equation in going from
2.1 to 5.1. A numerical explanation of the pseudolikelihood ratio statistic illustrates the
point in the text. The maximum likelihood estimates of the standard errors of the 2.1 and 5.1
output equations are, respectively, .00796 and .00774. The percentage difference, calcu
lated as the change in the logs, is 2.8 percent. The maximum likelihood standard errors for
2.1 and 5.1 money growth equations are, respectively, .00409 and .00394, with a percentage
difference of 3.7 percent. Both of these percentage differences are added up in calculating
the likelihood ratio statistic in (23), which is 92[2 (.028 + .037)] = 12.
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normal level) as an explanatory variable in the forecasting equation. Yet
it is unlikely that the market has complete knowledge of this variable at
time t - 1. That this is a possibly serious misspecification can be seen as
follows. Denoting the contemporaneous variable by At, the forecasting
equation can be written as

(29) X t = Zt-1 "Y + ~At + Ute

Using rational expectations and denoting E( . .. l<Pt-l) by Et - 1 , unantici
pated X t is

(30) X t - Xr = X t - Et- 1X t = X t - (Zt-1"Y + ~Et-1At)

= (Xt - Zt-1"Y - ~At) + ~(At - Et-1At)

= Ut + ~(At - Et- 1.llt)·

Expression (30) is not equivalent to the residual from the forecasting
equation, for it differs by an expression involving unanticipated At. It is
valid to use residuals from the forecasting equation to proxy for unantici
pated X only if there are no errors in forecasting At. As is shown in the
next chapter, this misspecification can render test statistics for rationality
invalid. Note, however, the more accurately .L4 t can be predicted, the less
serious this misspecification becomes.

This chapter's discussion of the specification of the lag length N sug
gests that MRE models with fairly long lags deserve study. The criterion
for specifying the lag length N in earlier studies, on the other hand, results
in a fairly short lag length-on the order of two years. The lag length is
chosen by cutting off the lags when the coefficients on the unanticipated
variables are no longer statistically significant in the MRE equation. If
the MRE hypothesis is not valid, then choosing the lag length from an
MRE equation is inappropriate for testing this hypothesis. This is then a
further justification for experimenting with MRE models with longer lag
lengths, as is done in Chapter 6.

Appendix 2.1: Identification and Testing

The various tests discussed in this chapter depend on estimation of the
parameters 8i and "y* in the unconstrained system (17). More specifically,
neutrality requires that the estimate of 8i not differ significantly from
zero, and rationality requires that the estimate of "y* not differ signifi
cantly from 'Y. These restrictions are testable only if the relevant para
meters are identified, that is, if observational equivalence is avoided. If
not all of the parameters are identified, then only some of the restrictions
or linear combinations of restrictions are testable.

Appendix 2.1 is based on joint work with Andrew Abel (Abel and Mishkin 1983, sec. 5).
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A procedure is outlined here for determining identification by analyz
ing an interesting special case of systems (16)-(20), where Zt-1 is rewrit
ten as shown below in system (17):

(AI)

where

M

X t = I Zt-i~i + Uti=1

X t = a k-element row vector of variables relevant for determining Yt;

k ~ 1.
Zt- i = a (p + k)-element row vector of variables dated t - i which are

used in predicting X t • It contains the k elements of X t - i as well
as p other variables; p ~ o.

Yt = a scalar.

~i and ~i = (p + k) matrices of parameters.
~i and 8j = k x 1 column vectors of parameters.

Observe that this system embodies the exclusion restriction that Zt-i
does not enter the Y equation except as it enters terms representing~- i.

The exclusion restriction is crucial to the discussion of identification and
hypothesis testing. Note that (AI) embodies the following simplifying
assumptions: (a) the same lag length applies to all variables used to
predict X t in the first equation; and, (b) in the second equation the same
lag length, N, is used for both anticipated and unanticipated X t • These
assumptions, which are made for expositional clarity, can be relaxed and
the following discussion can be generalized in a straightforward manner.
Note also that the row vector Zt-h which is used in the time-series model
for predicting X t , contains the k-element row vector X t - h since lagged
values of the dependent variable are often useful in prediction. In addi
tion, the row vector Zt- i contains p other variables at time t - i, where p
~ O. It is assumed that Ut and Et are uncorrelated and that E(utl<f>t-l) =
E(Etl<f>t-1) = O. Finally, recall that the rationality restriction is 'Vi = 'Vi, i
= 1, ... , M, and the neutrality restriction is 8j = 0, j = 0, ... , N.

The first step in determining identification is to analyze the order
condition. Consider, for example, the most unconstrained system (AI) in
which ~i, ~i , ~j, and 8j are the free parameters to be estimated. Observe
that 'Vi can be estimated by OLS on the first equation in (AI). The
remaining parameters ~i, ~j, and 8j are estimated from the second
equation in (AI). The most constrained form of this second equation is
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(A2)

where
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at = a (p + k) x 1 column vector of parameters which is zero if
Bj = 0, j = 0, ... , N and ~t == ~i' i = 1, ... , M

= ~ [(~i - ~t)~j + ~tBj], 1 ~ i ~; M and °~ j ~ N.
t+]=l

Note that for j = 1, . . . ,N, the residual at _j can be expressed as a linear
combination of the other right-hand-side variables Zt-1, ... ,Zt-M - N.

That is, only the residual at time t, at, is not perfectly correlated with the
other right-hand-side variables. Hence, the most unconstrained form of
this equation that can be estimated by Ol.JS is

M+N
(A3) Yt = at~o + I Zt-lal + E:t·

1=1

Since there are k elements in ~o and (M + N) (p + k) elements in the a
coefficients, equation (A3) can be used to estimate at most k + (M + N)
(p + k) parameters. As long as this nUIIlber of estimable parameters
exceeds the number of free parameters contained in the ~, B, and ~*

coefficients, the order condition is satisfied.
Identification depends on the rank condition as well as the order

condition. The rank condition is particularly important in the identifica
tion of (A3) because, in general, it need not be satisfied at the same time
as the order condition. This failure to satisfy the rank condition becomes
clear if we rewrite (AI) as

(A4)
M

xi = I Zt-i~l + ui
i=1

where x:, ~r, ~ts, and u: are the sth columns of Xt, ~i' ~t, and ut ,

respectively. The scalars ~} and B} are the sth elements of ~j and Bj ,

respectively.
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Note that for any particular s, say So, the system will be unchanged by a
doubling of all the elements of ~tSo for all i and a halving of S;o - ~;o for
all j. Because of this observational equivalence, the parameters S;o - ~;o

and ~tso are not identified even when the order condition is satisfied. A
restriction on any element of S;o or ~tSo is sufficient to identify these
parameters. If we apply this argument to each of the k values of s, it is
clear that k additional restrictions are needed for identification. The
restrictions will be provided if either neutrality (Sj == 0) or rationality
(~i == ~t) is treated as a maintained hypothesis. Thus, only if neither
neutrality nor rationality is maintained will the rank condition fail to be
satisfied in situations when the order condition is satisfied.

Tests of hypotheses are conducted by comparing the residual sums of
squares from constrained and unconstrained systems. The number of
restrictions tested (and hence the number of degrees of freedom in the X2

statistic) equals the number of identified parameters estimated in the
unconstrained system, less the number of identified parameters esti
mated in the constrained system. To illustrate this calculation using the
procedures above, consider in the efficient-markets case in which N == 0,
the test of rationality under the maintained hypothesis of neutrality. The
last equation in the constrained system (where So == 0, ~i == ~t) contains k
parameters (the elements of ~), all of which are identified. The last
equation in the unconstrained system (where So == 0) contains k + Mk(p
+ k) parameters. However, as explained above, only k + M(p + k)
parameters can be estimated. Only if k == 1 will all of the parameters in
the unconstrained system be identified. However, even if k > 1, there are
M(p + k) testable restrictions. These restrictions are linear combinations
of the restrictions ~ - ~* == 0 (see the next chapter for an example).

Another test which may be conducted in the efficient-markets
framework (N == 0) is a test of the null hypothesis of neutrality under the
maintained hypothesis of rationality. Recall that the last equation of the
constrained system (~i == ~t, So == 0) contains k parameters (the elements
of ~), and observe that the last equation of the unconstrained system
(~i == ~t) contains 2k parameters (the elements of ~ and So). In both the
constrained and unconstrained systems, all parameters are identified and
all k neutrality restrictions are testable.

A third test in the efficient-markets framework is a test of the joint
hypothesis of neutrality and rationality. As in the first two tests, all k
parameters of the last equation in the constrained system are identified.
In the unconstrained system the last equation contains 2k + Mk(p + k)
parameters (k elements of~, k elements of So and Mk(p + k) elements of
~t, i == 1, ... , M), but, as explained above, only k + M(p + k)
parameters can be estimated. Therefore, under no circumstances will all
parameters of this equation be identified. However, there are M(p + k)
testable restrictions that are linear combinations of the restrictions ~ 
~* == 0 and So == o.
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The interpretation of these efficient-markets tests depends on what
hypothesis is maintained. In particular, the test statistic associated with
the joint test of rationality and neutrality is identical to the test statistic
for the test of rationality, under the maintained hypothesis of neutrality.
This follows because, although the free parameters in the unconstrained
systems are different, the estimated coef1icients are identical. Further
more, the constrained systems are the samle. Because of the equivalence
of the two tests, one cannot determine whether a rejection is due to a
violation of rationality alone or a violation of both rationality and neu
trality.

Tests of policy neutrality under the maintained hypothesis of rational
ity as in Barro (1977, 1978) and in Chapter 6 furnish another interesting
case. These models assume that the deviation of current output from its
natural level is affected only by the current and N lagged surprises in a
single policy variable (i.e., k == 1 and N > 0). To obtain identification of
the coefficients on surprises in the policy variable, these studies implicitly
place restrictions on the covariance of E( with both U t and with lagged
disturbances. There are two alternative conditions sufficient for iden
tification of the & coefficients, that is, the coefficients on anticipated
policy. One condition, discussed and used by Barro (1977,1978, 1979),
Leiderman (1980), and in Chapter 6, is the exclusion restriction p 2:: 1.
That is, the time-series model for the policy variable X t contains at least
one variable that is not directly included in the y equation. The y equation
in the constrained system (where &i == 0 and ~i == ~t) contains N + 1
parameters ((30' ... , (3N), and in the unconstrained system (where
~i == ~t) it contains 2 (N + 1) parameters (130'· .. ,(3N and &0'· .. ,&N)·
In each of these systems, all of the parameters are identified because the
number of free parameters is less than the number of estimable parame
ters, 1 + (M + N) (p + 1). Therefore all of the N + 1 neutrality
restrictions are testable.

The alternative sufficient condition for identification is M > N; that is,
the number of lags in the time-series model for the policy variable X t

exceeds the number of lagged surprises in the y equation. Although this
condition formally leads to identification, it requires strong a priori
knowledge of lag lengths. Without this prior knov/ledge we are faced with
the observational equivalence problepl raised by Sargent (1976b).

To identify &i at least one of the two conditions above must hold. One
recent example in which this does not occur is in Grossman (1979). His
specification of the time-series equation describing his policy variable
(nominal GNP growth) does not include any variable other than lagged
dependent variables. Moreover, the number of lags in the output equa
tion exceeds that in the time-series equation for the policy variable.
Therefore, the & coefficients in his model are not identified, with the
result that not all the neutrality constraints can be tested.
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Appendix 2.2: An Annotated Computer Program

The computer program here demonstrates how the models discussed in
this book can be estimated. The particular example is chosen from
Chapter 6 to illustrate the general principle of estimating models where
(1) current and lagged values of both anticipated and unanticipated
variables have explanatory power, and (2) the error term is specified to
follow an autoregressive process. The program makes use of the PROC
NLIN nonlinear estimation procedure in the widely available computer
package SAS, described in the SAS User's Guide (1979). The detailed
discussion of this sample program should not only allow a user of SAS to
exploit the techniques described in this book, but also should provide
enough of the program's logic so that it can be modified for use with other
econometric packages with nonlinear estimation capabilities. It should be
noted that the PROC NLIN procedure of SAS does have one major
advantage: it can handle extremely large problems that are beyond the
capability of other packages. This is not important for a small estimation
problem, but it is crucial for estimation of models such as those found in
Chapter 6 which have over fifty parameters. My experience with SAS's
nonlinear estimation routine has been a happy one: it converges quickly
and is not prohibitively expensive to use.

The program here estimates over the period 1954:1-1976:4 a model
consisting of (A5), a forecasting equation for money growth, and (A6),
an output equation in which both anticipated and unanticipated money
growth matter.

(A5)

(A6)

where

4 4
MIG = 'Yo + I 'Yi M1Gt-i + I 'Yi+4 RTBt-i

i=1 i=1

4

+ I 'Yi+8 SURPt - i + U t ,
i=1

7

log (GNP t) = C + 'TTIME + I ~i(MIGt-i - MIG~-i)
i=O

7
+ I 8iMIG~-i + Et ,

i=O

Et = PI Et-l + P2 Et-2 + P3 Et-3 + P4 Et-4 + 1")t,

444
MIG~ = 'Yo + I 'Yi MIGt - i + I 'Yi+4 RTBt - i + I 'Yi+8 SURPt - i ·

i=1 i=1 i=1

The cross-equation restrictions are that the 'Yi are identical in (A5) and
(A6). The variables are as defined in Chapter 6. Note that this example
does not make use of the polynomial distributed lag (PDL) restriction.
The interested reader is referred to Kmenta (1971) to see how the PDL
restriction can be imposed by "scrambling" variables.
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The basic idea of the program is to stack the data so that the system of
the two linear equations, (AS) and (A6) , can be written as one equation
with the appropriate nonlinear constraints. I~stimationwith the nonlinear
procedure PROC NLIN is then fairly straightforward.

Notes for Program Listing in Exhibit Al

The SAS data set ONE contains the data used in estimation. The 120
quarterly observations run from 1947:1 to 1976:4. A number appended to
the variable name indicates how many times it is lagged. For example,
MIG is unlagged money growth while MIG! is money growth lagged one
period. LGNP equals log (GNP) and C is the constant term.

Lines 1-17: The new data set ONEA created from ONE weights the
variables in the forecasting equation by HElrA in order to correct for the
heteroscedasticity across equations. The value of HETA is chosen so that
the weighted sum of squared residuals in each equation approach each
other. The procedure for doing this will be: explained when the output
from the program is discussed.

Lines 18-21: The LGNP variable is dropped from the data set and the
MIG variable is renamed as LGNP. This operation is necessary for the
stacking operation conducted later.

Lines 22-24: The new data set ONER will correspond to the output
equation and it adds the constant term to the data set ONE.

Lines 25-76: Here the stacking operation is conducted in order to
create the data set EST used in estimation. The outcome of this operation
will be discussed first so that we may more easily follow the steps taken to
achieve it. Each variable will have 240 observations with the first 120
corresponding to the output equation and the second 120 corresponding
to the forecasting equation. If the weighted variables are denoted by the
superscript A, then the resulting LGNP variable written in matrix nota
tion is:

LGNP1947:1

LGNP1976:4
LGNP =

M1G1947:1

MIG1976:4
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Hence the first 120 observations correspond to the dependent variable of
the output equation while the second 120 observations correspond to the
dependent variable of the forecasting equation (appropriately weighted
for heteroscedasticity). The variables with an A added to their names
correspond to the appropriately weighted explanatory variables in the
forecasting equation, while those without A (except for LGNP) corre
spond to the explanatory variables in the output equation. For example,

M1G11947:1 0

MIGI = MIG11976:4 M1G1A = 0

o MIG11947:1

o MIGl~76:4

In the case of MIGl, the 120 observations corresponding to the forecast
ing equation are set to zero, while in the case of MIGIA the 120 observa
tions corresponding to the output equation are set to zero.

Lines 25-26 conduct the first stacking operation to create data set
TWO. All the variables have 240 observations. The operations in lines
18-21 result in a LGNP variable of the form shown above, with the first
120 observations containing the dependent variable of the output equa
tion and the second 120 containing the dependent variable of the fore
casting equation. For all other variables, the first 120 observations from
the data set ONER correspond to the output equation, and the second
120 observations from the data set ONEA correspond to the forecasting
equation. Lines 27-35 add to a new data set THREE the variables with an
A which are identical to their counterparts without A. Lines 36-37 have
data set EST created from data set THREE. Lines 38-63 set to zero the
second 120 observations of the variables with no A, and lines 64-76 set to
zero the first 120 observations of the variables with an A. The stacked
variables described above are the outcome of these operations.

Lines 77-78: These lines set the first twenty-eight observations of both
sets of 120 observations in LGNP to a missing value. This ensures that
when PROC NLIN is used in the following lines, the 1947:1-1953:4
observations are excluded from the sample period and estimation over
the 1954:1-1976:4 sample period results.
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Lines 79-247: Here the actual estimation is carried out with PROC
NLIN. The parameters have slightly different names than in (A5) and
(A6) above: CO corresponds to c, T to ~r, MD-M7 to ~O-~7' ED-E7 to
00-07, AD-A12 to ~O-~12, and RH01-RH04 to PI-P4.

Lines 79-80: The convergence criterion is set and the residuals from
the estimation are stored as the variable RI~SID in the data set DRESID.

Lines 81-117: The starting values for the parameters are provided.
Lines 118-135: Variables are generated here to facilitate calculations

of the derivatives in lines 193-247. If these derivatives are not needed,
then these lines can be deleted.

Lines 136-139: Anticipated money gro'wth, EM, is generated.
Lines 140-151: Unanticipated money growth, UAJ, and its lags are

generated.
Lines 152-162: Lags of EM are generated.
Lines 163-178: The fourth-order autoregressive correction for serial

correlation in the output equation (A6) requires the transformation here
of the UM and EM variables into RUM and REM, as shown.

Lines 179-192: The model consisting of both the output and forecasting
equation is written down here. Note that it incorporates the necessary
transformation to allow for the serial correlation correction. The stacking
operation in previous lines ensures also that this model captures the
cross-equation restrictions and the appropriate heteroscedasticity correc
tion.

Lines 193-247: The derivatives of the model in lines 179-192 are
calculated here. The version of SAS used to estimate this model required
these derivatives. Later versions of SAS mlay not require them, in which
case these lines and lines 118-135 can be deleted.

Lines 248-259: Here the standard errors of both output and forecasting
equations are calculated. They are used., as will be shown below, to
calculate RETA for the heteroscedasticity correction and to decide when
the last iteration is reached. Lines 248-250 retain only the residuals in the
data set DRESID. Lines 251-259 use PROC MEANS to calculate the
standard error first of the output equation and then of the weighted
forecasting equation.

Discussion of the Output in Exhibit A2

The first page of the SAS output shows the convergence to the mini
mum sum of squared residuals, and pages 3-5 show the asymptotic
correlation matrix of the parameter estimates. Only pages 2, 6, and 7 are
displayed as they are of the greatest interest. Page 2 contains the parame
ter estimates, their asymptotic standard errors, and the sum of squared
residuals of the system. For example, the coefficient of the constant term
in the output equation is 6.18857905 with an asymptotic standard error of
.04752109. The sum of squared residuals of the system, which is needed
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to calculate the likelihood ratio tests discussed in the chapter, is
.01012971. Pages 6 and 7 show the standard errors of the output equation
and the weighted forecasting equation, respectively, in the standard
deviation column. The standard error of the output equation is
.00738342, and the standard error of the weighted forecasting equation is
.00753653.

The iterative procedure that corrects for heteroscedasticity across the
equations continues as follows. The variables in the forecasting equation
are weighted by the ratio from the previous iteration of the standard error
of the forecasting equation to the standard error of the output equation.
This means that the weighting variable RETA from the previous iteration
needs to be multiplied by the standard error of the weighted forecasting
equation divided by the standard error of the output equation. In the
example here, the next iteration would therefore multiply the previous
iteration's RETA by .00753653 -;- .00738432, which equals 1.020612595.
That is, line 3 of the program would be modified to insert *1.020612595
just before the semicolon, and the program would then be run. Note that
computational costs have been lowered by using the last iteration's
parameter estimates as starting values in lines 81-117. The criterion for
terminating the iterative procedure can be varied but, in the empirical
work reported in this book, if the standard errors of the weighted fore
casting equation and the output equation differed by less than 2V2 per
cent, then no further iterations were performed. Thus the results re
ported in Exhibit A2 are the final iteration.

Procedures for Calculating the
Likelihood Ratio Tests

To carry out the tests in Chapter 6, the first system estimated was the
most constrained where anticipated money has no effect on output but
rationality is still imposed. The only changes needed in the computer
program are to eliminate terms involving REM and EM from the model
and derivative statements and to delete lines 92-99 and 203-210. The
next, less constrained system estimated has anticipated money affecting
output and makes use of the program in Exhibit AI. The first iteration
uses the same HETA value used in the final iteration of the most con
strained system. The likelihood ratio test of neutrality described in Chap
ter 2 is conducted by comparing the sum of squares of the less constrained
system obtained from the first iteration, with the sum of squares for the
final iteration of the most constrained system. Further iterations are then
performed for this system in which anticipated money matters until the
termination criterion is reached.

The most unconstrained system is subject neither to rationality nor to
neutrality, and as there are now no binding constraints across the two
equations of the system, each can be estimated separately. The forecast-
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ing equation can be estimated by OLS while the output equation is
estimated by deleting lines 1-21,25-76,78, and 188-191 from the pro
gram in Exhibit Al and modifying the derivatives statements appropri
ately. Note that the CO and AO parameters are not identified and so one
of them should be set to a constant. As discussed in Appendix 2.1, at least
one other parameter will not be identified and PROC NLIN will auto
matically set it to a constant in estimation. In some cases when more
parameters are unidentified, the most unconstrained output equation is
even more linear, and so takes an even sirnpler form.

The likelihood ratio tests of neutrality and rationality jointly, or of
rationality alone, compare the sum of squared residuals of the appro
priately weighted most unconstrained system with those of the more
constrained systems, estimation of which is discussed above. The appro
priately weighted sum of squared residuals for the most unconstrained
system equals the sum of squared residuals from the most unconstrained
output equation, added to the sum of squared residuals from the OLS
estimated forecasting equation, divided by the square of the HETA value
used in the constrained system's final iteration.



Exhibit At

Line No.

Program Listing and Output

1. DATA ONEA;
2. SET ONE;
3. HETA = .4204183267*1.200367097*1.02580668*1.06044268;
4. MIG = MIG/HETA;
5. MIGI MIGI/HETA;
6. MIG2 MIG2/HETA;
7. MIG3 MIG3/HETA;
8. MIG4 MIG4/HETA;
9. RTBI RTB1/HETA;

10. RTB2 RTB2/HETA;
11. RTB3 RTB3/HETA;
12. RTB4 RTB4/HETA;
13. SURP1 SURP1/HETA;
14. SURP2 = SURP2/HETA;
15. SURP3 = SURP3/HETA;
16. SURP4 = SURP4/HETA;
17. C = l/HETA;
18. DATA ONEA;
19. SET ONEA;
20. DROP LGNP;
21. RENAME MIG=LGNP;
22. DATA ONER;
23. SET ONE;
24. C = 1;
25. DATA TWO;
26. SET ONER ONEA;
27. DATA TWOA~

28. SET TWO;
29. RENAME
30. M1G1=MIGIA MIG2=MIG2A MIG3=MIG3A MIG4=M1G4A
31. RTB1=RTB1A RTB2=RTB2A RTB3=RTB3A RTB4=RTB4A
32. SURP1=SURP1A SURP2=SURP2A SURP3=SURP3A SURP4=SURP4A
33. C=CA;
34. DATA THREE;
35. MERGE TWO TWOA;
36. DATA EST;
37. SET THREE;
38. IF N >=121 THEN M1G=0;
39. IF -N->=121 THEN C=O;
40. IF -N->=121 THEN TIME=O;
41. IF -N->=121 THEN TIME1=0
42. IF -N->=121 THEN TIME2=0
43. IF -N->=121 THEN TIME3=0
44. IF -N->=121 THEN TIME4=0
45. IF -N->=121 THEN M1G1=0~
46. IF -N->=121 THEN M1G2=O;
47. IF -N->=121 THEN MIG3=0;
48. IF -N->=121 THEN M1G4=0;
49. IF -N->=121 THEN M1G5=Q;
50. IF -N->=121 THEN RTB1=0;
51. IF -N->=121 THEN RTB2=O;
52. IF -N->=121 THEN RTB3=0~

53. IF -N->=121 THEN RTB4=O;
54. IF -N->=121 THEN RTB5=0;
55. IF -N->=121 THEN SURP1=0
56. IF -N->=121 THEN SURP2=0
57. IF -N->=121 THEN SURP3=0
58. IF -N->=121 THEN SURP4=0
59. IF -N->=121 THEN SURP5=0
60. IF -N->=121 THEN LGNP1=0
61. IF -N->=121 THEN LGNP2~0

62. IF -N->=121 THEN LGNP3=0
63. IF -N->=121 THEN LGNP4=0
64. IF -N-<121 THEN M1G1A=0;
65. IF -N-<121 THEN M1G2A=0;
66. IF -N-<121 THEN MIG3A=0;
67. IF -N-<121 THEN MIG4A=0;
68. IF -N-<121 THEN RTBIA=O~

69. IF -N-<121 THEN RTB2A=0;
70. IF -N-<121 THEN RTB3A=0~

71. IF -N-<121 THEN RTB4A=0;
72. IF -N-<121 THEN SURPIA=O
73. IF -N-<121 THEN SURP2A=0
74. IF -N-<121 THEN SURP3A=0
75. IF -N-<121 THEN SURP4A=0



IF N <121 THEN CA=O;
IF N <=28 THEN LGNP=.;
IF -N->120 AND N <=148 THEN LGNP=.;
PROC NLIN CONVERGENCE=.OOOl;
OUTPUT OUT=DR~SID PREDICTED=PRED RESIDUAL=RESID;
PARAMETERS

ZC C*(1-RHOI-RH02-RH03-RH04);
MZC = ZC*(-MO-MI-M2-M3-M4-M5-M6-M7);
EZC=ZC*(EO+El+E2+E3+E4+E5+E6+E7);
ZM = MIGI - RHOl*MlG2 - RH02*MIG3 - RH03*MIG4 - RH04*MIG5;
MZM = -MO*ZM - Ml*LAGl(ZM) -M2*LAG2(ZM) - M3*LAG3(ZM) -M4*LAG4(ZM)
-M5*LAG5(ZM) - M6*LAG6(ZM) -M7*LAG7(ZM);
ZR = RTBI - RHOl*RTB2 - RH02*RTB3 - RH03*RTB4 - RH04*RTB5;
MZR = -MO*ZR - Ml*LAGl(ZR) -M2*LAG2(ZR) - M3*LAG3(ZR) -M4*LAG4(ZR)
-M5*LAG5(ZR) - M6*LAG6(ZR) -M7*LAG7(ZR);
ZH = SURPI - RH01*SURP2 - RH02*SURP3 - RH03*SURP4 - RH04*SURP5;
MZH = -MO*ZH - M1*LAGl(ZH) -M2*LAG2(ZH) - M3*LAG3(ZH) -M4*LAG4(ZH)
-M5*LAG5(ZH) - M6*LAG6(ZH) -M7*LAG7(ZH);
EZM = EO*ZM + E1*LAG1(ZM) + E2*LAG2(ZM) + E3*LAG3(ZM) + E4*LAG4(ZM)
+ E5*LAG5(ZM) + E6*LAG6(ZM) + E7*LAG7(ZM)
EZR = EO*ZR + E1*LAGl(ZR) + E2*LAG2(ZR) + E3*LAG3(ZR) + E4*LAG4(ZR)
+ E5*LAG5(ZR) + E6*LAG6(ZR) + E7*LAG7(ZR)
EZH = EO*ZH + El*LAG1(ZH) + E2*LAG2(ZH) + E3*LAG3(ZH) + E4*LAG4(ZH)
+ E5*LAG5(ZH) + E6*LAG6(ZH) + E7*LAG7(ZH)
EM = AO*C + Al*MlGl + A2*MIG2 + A3*MIG3 + A4*MIG4
+ A5*RTBI + A6*RTB2 + A7*RTB3 + A8*RTB4
+ A9*SURP1 + A10*SURP2 + Al1*SURP3
A12*SURP4 ;
UM = MIG - EM;
UMI LAGl(UM);
UM2 LAG2(UM);
UM3 LAG3 (UM) ;
UM4 LAG4(UM);
UM 5 LAG 5 ( UM) ;
UM6 LAG6(UM);
UM 7 LAG 7 ( UM) ;
UM8 LAG8(UM);
UM9 LAG9(UM);
UMI0 = LAG10(UM);
UM11 = LAGll(UM);
EMI LAGl(EM);
EM2 LAG2(EM);
EM3 LAG3 (EM) ;
Etv14 LAG4 (EM) ;
EM5 LAG5(EM);

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.

CO
T
MO
Ml
M2
M3
M4
M5
M6
M7
EO
E1
E2
E3
E4
E5
E6
E7
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AI0
All
A12
RH01
RH02
RH03
RH04

6.18409321
0.00818261
0.70203726
1.02226901
1.96325236
2.39452781
2.81242963
2.59002714
2.28592198
1.31723568
0.76382117

-0.19910460
0.24108277

-0.40288643
-0.07456418
-0.59607729

0.47914434
0.95216249
0.00210000
0.73200405
0.02305185

-0.08331019
-0.13184558
-0.00226408
.Q.00451728

-0.00132287
-0.00035536
-0.00017881

0.00019747
-0.00000643
-0.00012937

1.19896060
-0.42906225

0.12553469
0.03276445



Exhibit At (continued)

Line No.

lS7.
lSB.
lS9.
160.
161.
162.
163.
164.
16S.
166.
167.
16B.
169.
170.
171.
172.
173.
174.
17S.
176.
177.
17B.
179.
IBO.
IBI.
1B2.
IB3.
IB4.
18S.
186.
167.
18B.
189.
190.
291.
192.
193.
194.
19S.
196.
197.
19B.
199.
200.
201.
202.
203.
204.
20S.
206.
207.
20B.
209.
210.
211.
212.
213:
214 ..
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
22S.
226.
227.
228.
229.
230.
231.
232.
233.

EM6 LAG6 (EM) ;
EM 7 LAG 7 ( EM) ;
EM 8 LAG 8 ( EM) ;
EM9 LAG9(EM);
EMI0 = LAGI0(EM);
EMIl = LAG11(EM);
RUM= UM - RHOl*UMl - RH02*UM2 - RH03*UM3 - RH04*UM4
RUMI LAGl(RUM);
RUM2 LAG2(RUM);
RUM3 LAG3(RUM);
RUM4 LAG4(RUM);
RUM5 LAGS(RUM);
RUM6 LAG6(RUM);
RUM7 LAG7(RUM);
REM= EM - RH01*EM1 - RH02*EM2 - RH03*EM3 - RH04*EM4
REMI LAG1(REM);
REM2 LAG2(REM);
REM3 LAG3 (REM) ;
REM4 LAG4(REM);
REMS LAGS(REM);
REM6 LAG6(REM);
REM7 LAG7(REM);
MODEL LGNP =
RH01*LGNPI + RH02*LGNP2 + RH03*LGNP3 + RH04*LGNP4
CO*C*(1-RHOI-RH02-RH03-RH04) +
T*(TIME - RH01*(TIMEl) - RH02*(TIME2) - RH03*(TIME3)
- RH04*(TIME4»
+ EO*REM + El*REMl + E2*REM2 + E3*REM3 + E4*REM4
+ E5*REMS + E6*REM6 + E7*REM7
~ MO*RUM + Ml*RUMl + M2*RUM2 + M3*RUM3 + M4*RUM4
+ M5*RUM5 + M6*RUM6 + M7*RUM7

AO*CA + Al*MlGlA + A2*MIG2A + A3*MIG3A + A4*MIG4A
+ A5*RTBIA + A6*RTB2A + A7*RTB3A + A8*RTB4A
+ A9*SURPIA + AI0*SURP2A + Al1*SURP3A
A12*SURP4A

DER.CO = C*(1-RHOI-RH02-RH03-RH04);
DER.T= (TIME - RHOl*TIMEl -RH02*TIME2 -RH03*TIME3 -RH04*TIME4);
DER.MO RUM;
DER.Ml RUM1;
DER.M2 RUM2;
DER.M3 RUM3;
DER.M4 RUM4;
DER.MS RUMS;
DER.M6 RUM6;
DER.M7 RUM7;
DER.EO REM;
DER.El REMl;
DER. E2 REM2;
DER.E3 REM3;
DER.E4 REM4;
DER.ES REM5;
DER.E6 REM6;
DER.E7 REM7;
DER.AO MZC + EZC;
DER.Al MZM + EZM + MIGIA;
DER.A2 LAGl(MZM) + LAGl(EZM) MIG2A
DER.A3 LAG2(MZM) + LAG2(EZM) MIG3A
DER.A4 LAG3(MZM) + LAG3(EZM) + MIG4A
DER.A5 MZR + EZR RTBIA;
DER.A6 LAG1(MZR) LAG1(EZR) + RTB2A;
DER.A7 LAG2(MZR) LAG2(EZR) + RTB3A;
DER.A8 LAG3(MZR) + LAG3(EZR) + RTB4A;
DER.A9 MZH + EZH + SURPIA;
DER.AI0 = LAG1(MZH) + LAG1(EZH) + SURP2A
DER.All = LAG2(MZH) + LAG2(EZH) + SURP3A
DER.A12 = LAG3(MZH) + LAG3(EZH) + SURP4A
DER.RH01 = LGNPI - Co*c - T*(TIMEl)
-EO*EMI - El*EM2 - E2*EM3 - E3*EM4 - E4*EM5
-E5*EM6 - E6*EM7 - E7*EMB
-MO*UMI - Ml*UM2 - M2*UM3 - M3*UM4 - M4*UMS
-M5*UM6 - M6*UM7 - M7*UMB

DER.RH02 = LGNP2 - co*c - T*(TIME2)
-EO*EM2 - El*EM3 - E2*EM4 - E3*EMS - E4*EM6
-E5*EM7 - E6*EM8 - E7*EM9
-MO*UM2 - Ml*UM3 - M2*UM4 - M3*UM5 - M4*UM6



234. -M5*UM7 - M6*UM8 - M7*UM9
235.
236. DER.RH03 = LGNP3 - CO*C - T*(TIME3)
237. -EO*EM3 - E1*EM4 - E2*EM5 - E3*EM6 - E4*EM7
238. -E5*EM8 - E6*EM9 - E7*EM10
239. -MO*UM3 - M1*UM4 - M2*UM5 - M3*UM6 - M4*UM7
240. -M5*UM8 - M6*UM9 - M7*UM10
241.
242. DER.RH04 = LGNP4 - CO*C - T*(TIME4)
243. -EO*EM4 - E1*EM5 - E2*EM6 - E3*EM7 - E4*EM8
244. -E5*EM9 - E6*EM10 - E7*EM11
245. -MO*UM4 - M1*UM5 - M2*UM6 - M3*UM7 - M4*UM8
246. -M5*UM9 - M6*UM10 - M7*UMl1
247.
248. DATA DRESID;
249. SET DRESID;
250. KEEP RESID
251. DATA DRESID4;
252. SET DRESID;
253. IF N <29 THEN DELETE~

254. IF -N->120 THEN DELETE;
255. PROC MEANS;
256. DATA DRESID4;
257. SET DRESID;
258. IF N <149 THEN DELETE;
259. PROC MEANS;
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