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Annals of Economic and Social Measurement, 4/1, 1975. 

MIXED ESTIMATION OF A COMPLETE SYSTEM 

OF CONSUMER DEMAND EQUATIONS 

BY JOHN D. PAULUS* 

The Theil-Goldberger **mixed estimator” (1.E.R, 1961) is used to estimate the parameters of a complete 
system of consumer ¢zmand equations. The mixed estimator combines the sample evidence, which consists 
of observations on the consumption of each of 14 goods in the Netherlands from 1922 to 1963, with sto- 
chastic prior estimates of the income elasticities of all goods (complete ignorance is assumed regarding 
price elasticities). This provides a simple yet flexible method of reducing multicollinearity among the 
predetermined price and income variables. A statistical test of the compatibility of the prior and sample 
information is carried out and measures of the posterior precision of the point estimates attributable to the 
two information sources are computed. It is shown that the use of stochastic restrictions against the income 
coefficients reduces the “effective number of unconstrained parameters” in the demand model by about 
one-third. 

1. INTRODUCTION 

In this study the parameters of a complete system of consumer demand equations 

will be estimated using Barten’s [2] Dutch data on 14 commodity groups. Demand 

systems involving large numbers of commodities, say 10 or more, are usuaily 

characterized by multicollinearity among the independent variables. See, for 

example, the recent empirical studies of complete demand systems by Barten [4] 

and Byron [5]. 

In order to avoid the multicollinearity problem two types of constraints will 

be imposed on the parameters of the demand model. First, it is assumed that the 

utility function is strongly separable. This enables us to eliminate many price 

coefficients from the model. Secondly, the model is further restricted by imposing 

“probabilistic” constraints on a subset of the parameter vector. Specifically, we 

utilize subjective prior estimates of the income elasticities of the 14 commodities 

together with a covariance matrix of these estimates to constrain the income 

coefficients of the model. The statistical device to be used in combining the prior 

and sample information is the Theil-Goldberger [27] “mixed estimator.” It 

will be shown that the imposition of probabilistic constraints reduces the “effective 

number of unconstrained parameters” in the model by about 35 percent. 

2. MIXED AND BAYESIAN METHODS 

If certain axioms on rational behavior under uncertainty are accepted, it can 

be shown that a decision maker will act as though he has assigned prior probabilities 

to the various outcomes of an uncertain event, and was trying to maximize expected 

utility.' The existence of these prior probabilities in a decision theoretic model 

* This work was undertaken as part of a doctoral dissertation at the University of Chicago. I am 
indebted to H. Theil for his careful supervision of that-work and for making many helpful comments 
on an earlier draft of this paper. I also wish to thank P. A. V. B. Swamy for his assistance in pointing 
out and explaining the fiducial probability interpretation of the mixed estimator. 

' See Ferguson [8], pp. 11-21. 
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supports the Bayesian position in econometrics that a joint prior distribution on 

the relevant parameter vector always exists. Consider the linear stochastic model 

(1) y=XB+e Ecs=0 V(e)=2 

where y is a T-vector of observations on the dependent variable, X is a T by k 

matrix of fixed independent variables, < is a T-vector of random errors, f isa random 

k-vector of parameters, and Q is a known T by T covariance matrix of ¢. The 

Bayesian analyst combines his prior pdf on f, p(f), with the likelihood function 

to produce the posterior distribution of £, 

P(Bly, X, Qhap(B)l(y|X, B, Q). 

This distribution contains all the information available on f. Ifa point estimate of f 

is desired, the Bayesian selects that estimate that minimizes the expected value of a 

loss function defined over f. 

The major objection to the Bayesian model concerns the difficulty of defining 

an operational prior pdf over B, especially when the number of parameters is large. 

This problem is widely recognized by Bayesian and classical econometricians 

alike.” A simple alternative to working with a complete prior pdf is to utilize only 

the first two moments of the prior. Chipman [6], pp. 1104-1106 considers the 

problem of finding a linear minimum mean squared error (MMSE) estimator of 

the random parameter vector f in (1) when prior information of the form 

EB=B V(p)= E(B — BB — BY = V 

is available. Formaily the problem is to minimize the “risk matrix,” E(f — f) 

-(B — By, subject to 8 = a + By, where a and B are to be determined. The problem 

is analogous to the Bayesian point estimation problem of finding a measure of 

central tendency that minimizes expected loss. Chipman’s MMSE estimator is 

(2) B=Bp+ (xX’'Q-'X + V~')-'x'Q- “yp — XB) 

=(X'QN°'X + V7") XQ 'y +(1 — (X'Q7SX + V7") XQ X-6B 

= (X’'N7'X + V~-*)> (xX’Q-'y + VB) 

where, as in the full Bayesian model, y and f are interpreted as fixed observations.* 

The Theil—Goldberger [27] mixed estimator is the classical analogue of 

Chipman’s MMSE estimator. See Swamy and Mehta [19] and Mehta and Swamy 

[12] for an analysis of the finite sample distribution of the mixed estimator and 

other properties. The mixed estimator is developed from the classical linear model 

(3.1) y=XBPr+e Es = 0 V(e) = Q 

where f is taken as a fixed k-vector of parameters. Now, suppose stochastic prior 

information is available on a subset of the parameter vector 

(3.2) r=RB +0 Ev = 0 Viv) = V 

? See e.g.,G. Kaufman [11], p. 206. Also see T. J. Rothenberg [18] and A. Zellner [30], p. 239 for 
remarks on problems relating to the use of natural conjugate priors in the multivariate regression 
model. 

> The estimator (2) was developed independently by Rao [17], p. 192. See also Ericson [7]. 
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where r is a g-vector of random prior estimates of Rf, R isa q x k(q < k) matrix* 

of full row rank and v is a q-vector of random errors. Combining (3.1) ad (3.2) and 

applying GLS yields the mixed estimator 

(4) By = (X’'Q7'X + R'V—™!R)-(X'Q-"y + RV!) 

with covariance matrix 

(5) V(Buy) = (X'Q7 1X + R'V™ IER). 

The estimator (4) is the MVLU of £ and is based on the assumption that the prior 

information is uncorrelated with the sample evidence.* When f,, is computed, 

both r and y are regarded as realizations of random variables. 

When R = / (prior assessments are available on all parameters), the mixed 

estimator is algebraically (and hence computationally) equivalent to Chipman’s 

MMSE estimator. Conceptually the two estimators differ because 8 and y are 

considered to be fixed in (2), while r and y are random in (4). 

Frazer’s [9, 10] frequency interpretation of fiducial probability may be used 

to justify the interpretation of r as a random variable in (4). (See also Mehta and 

Swamy [14] and Swamy and Mehta [20]). For example, suppose we have a random 

variable * = B — o, Ei = 0, V(é) < «0, which represents data based prior informa- 

tion on the parameter £. Now consider a drawing from this distribution yielding 

the fixed value r. Using Frazer’s linear translation rules, we can define the fiducial 

probability distribution of 8 in terms of the random variable f = r + 5 = 

+(r — 6B) +i=8 +a, Ei =r — B # 0. This equation corresponds to equation 

(3.2) when R = J. Note that the assumption of unbiased prior information is 

dropped. We therefore consider the implications of relaxing the requirement, 

Ev = 0 in (3.2). 

Consider the system (3.1) and (3.2) with Ev = d #0 replacing Ev = 0 in 

(3.2). The covariance matrix of v will be E(v — d)(v — dy) = Evv' — (Ed)(Edy 

= V, — dd' = V, so that Evv’ = V, = V + dd’. The mixed estimator (4) is biased 

when Ev = d and the second moment matrix of f,, around f is 

(6) E(Bu — BY Bu — BY = (X’'Q°'X + R'V-'R)! 

+ (X’Q-'X + R'V~'R)~ (R'V~ 'dd'V~!RY(X'Q7X + R'V™ ER) *. 

From (6) it is seen that the true second moment matrix around P is equal to V(Byyld 

= 0) plus the positive semidefinite matrix on the second line of (6). Computed 

standard errors based on (X’Q~'X + R’'V~'R)~' will therefore understate the 

true variability of the mixed point estimates when d # 0. 

Alternatively, suppose we compute f,, = (X'Q-'X + R'V5'R)~ '(X’'Q"'y + 

R'V, ‘r) where V, = Evv’. Theil [24], p. 352, (prob 8.3) points out that the matrix 

(X’Q-'!X + R’'V5'R)~! is then the matrix of second moments of f,, around . 

The mixed estimator, though still biased, is then a better estimator of 8 in a mean 

squared error sense than the sample GLS estimator, § = (X'Q~'X)~'X’Q™ 'y, 

* The usual form of R is [J,:0] which indicates that prior assessments are entered against the first 
q parameters. 

5 H. Theil [26] has recently developed an extended mixed estimator that allows the prior informa- 
tion to be correlated with the sample. 
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since V(B) = (X'Q-'X)~! exceeds (X’Q"'X + R'V>'R)~' by a positive semi- 

definite matrix. The requirement Ev = 0 in (3.2) is therefore unnecessary provided 

the second moment matrix around zero (rather than the covariance matrix) of 

the prior error terms is used in the computation of the mixed estimator. 

3. CHOOSING AN ESTIMATOR 

The mixed estimator provides a flexible method for introducing stochastic 

prior information against a subset of the parameter vector. In contrast, Chipman’s 

MMSE estimator requires that prior information be available on every element of 

the parameter vector,° while the Bayesian has to resort to “mixed” prior pdfs— 

partly proper and partly diffuse—when informative prior information is available 

on only a proper subset of the parameter vector. The number of parameters to be 

directly estimated in this study is 17. It would be a most difficult problem to define 

a joint prior pdf, even over a subset of these parameters, which satisfies the various 

constraints imposed on the parameters of the model by economic theory (see 

Section 4). It does, however, seem reasonable to work with the first and second 

moments of a subset of the parameter vector. The mixed estimator will therefore 

be used in Section 6 to obtain estimates of the demand parameters. Other important, 

though less compelling reasons for preferring the mixed procedure to the Bayesian 

model in this study are given below. 

There is some evidence that the prior distributions or odds developed by 

empirical analysts are often not, in Raiffa’s terminology, empirically validated. 

That is, they conflict with accurate post-sample measurements of the unknown 

parameters. In cases where the true values of the parameters are not revealed by 

the sample, as in econometric model building and estimation, it would be desirable 

to have a statistical test of the compatibility of the prior and sample information. 

Theil [21] develops such a test within the framework of the mixed estimation 

problem. The hypothesis to be considered is 

H,:E(r — Rp) = 0 

where B = (X’Q-'X)~'!X’Q™"'y is the GLS estimator of the model (3.1) based on 

the sample information. In words, the test considers the equality of the expectations 

of the prior and sample estimates. The test statistic is 

(7.1) (r — RBY(R(X’Q-'X)-'R’ + Vi) “(r — RB) 

which is distributed y?(q) under H, when the sample disturbances and the prior 

errors are normally distributed. The number of degrees of freedom, g, is equal to 

the number of elements in r (the number of linearly independent prior assessments 

of B).’ 

If Hy is accepted, it would then be interesting to determine what share of the 

precision of the mixed estimates is contributed by the prior estimates. Theil [21] 

° This objection can be weakened by letting the variance of a parameter about which we are 
uninformed grow arbitrarily large. This diminishes the weight given to the unknown prior mean in (2). 

? See Mehta and Swamy [13] for the finite sample distribution of the compatibility statistic. 
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developed such a measure based on four rather simple axioms. His prior and sample 
precision shares are 

1 
a, = tr R'V6 'R(X'Q-'X + R'V5'R)"! 

(7.2) 
1 

a, = pir X'Q"'X(X'Q™1X + RVG ' RY! 

where k is the number of parameters being estimated and tr is the “trace” operator. 

It is easily seen that if the elements of V grow without bound, a, converges to zero 

and «, to 1. Conversely, if Q increases indefinitely, the sample share will converge 

to zero and the prior share to one. Notice also that a, + a, = 1. 

In Section 7 the sample share of the posterior precision will be used to derive 

a measure of the “‘effective number of unconstrained parameters” in the model after 

probabilistic constraints are imposed on the income coefficients. This will tell us 

how effective the use of stochastic prior information has been in reducing the 
multicollinearity problem. 

4. THE DEMAND MODEL 

The Rotterdam model in finite changes is® 

(8) wiDdir a u,Da, a > Vi ADP jn a ¥ 4 DPy) 5 eit i=l,...m 
j k J 

where 

Dqi, = AQlog qj.) = log di, — 10g in 1 

Dp;, = A(log pj.) = og Pie — 108 Pin-1 

"t _ Hw; 1 v Wit) with Wit _ Pirdit m, 

Da, = > Wie DO: 
k 

WwW 

€;, = random disturbance term 

with p,, and q;, being, respectively, the i-th price and quantity at t, and m, is income 

at t. Dq, can be shown to be a very close approximation to the log change in the 

true index of real income evaluated at prices equal to the geometric mean of those 

prevailing in t — 1 and t. The parameters of the model are y;, the i-th marginal 

budget share (i.e., the proportion of an increment to the consumer’s budget which 

is allocated to good i), and v,,, the coefficient of the j-th deflated price in the i-th 

demand equation.° It can be shown that it is natural to define specific substitution 

and complementarity in terms of the sign of v,, as follows: 

v;; > 0 yoods i and j are specific substitutes 

vj; < 9 goods i and j are specific complements 

8 See Barten [1, 3,4] and Theil (22, 23, 24, 25] for a discussion of the Rotterdam model and its 
statistical implementation. ‘ 

° The parameters of (8) are, in principle, not constant, but functions of income and prices. When (8) 
is implemented, yi; and v,; are treated as constants to economize on the number of parameters and to 
make the estimation procedure more tractable. This amounts to a linearization of the demand equation 
(linear in Dq,, Dp;,, --: » DPjy)- 
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The parameters are subject to the following constraints : 

(9.1) Li = | 

(9.2) y Vij = Pu; 
j 

(9.3) Vij = Vii 

where ¢ is the so-called “income flexibility.”'° These constraints will be sub- 

stituted into (8) in Section 6 to eliminate many parameters from the model and 

to simplify the estimation procedure. 

5. DATA AND PRIOR JUDGEMENTS ON THE INCOME COEFFICIENTS 

The data in this study consist of annual observations on the consumption of 

goods and services in the Netherlands from 1922 to 1963.'' The 14 commodities 

are listed in column | of Table 1, while their average budget shares for the 29 

year sample period are given in column 2. Notice that the goods are partitioned 

into three basic groups. 

Prior estimates of the income elasticities of the 14 goods are given in column 3 

with “standard deviations” in parentheses.’ We confine ourselves to prior 

assessments of the income coefficients of the model because there have been 

numerous studies on the income sensitivity of the demand for goods and services 

that form the basis for at least a rough approximation to the true values of the 

unknown elasticities.'* In contrast, much uncertainty remains regarding price 

sensitivity, especially when interpreted as the effect of a price change compensated 

by an income change that restores the marginal utility of income (which is how the 

v,; coefficients are to be interpreted). 

The prior estimates of the first 13 elasticities are obtained by making pairwise 

comparisons of the luxury-necessity characteristics of goods in the same group 

(see the grouping in Table 1). For example, the prior estimate of the income 

elasticity of Fish is 0.8 which is halfway between the prior estimates for Dairy 

'° Formally, @ = [0 log 4/é log m)~' where 2 is the marginal utility of income. The income flexi- 
bility is therefore equal to the reciprocal of the income elasticity of the marginal utility of income. 

'! The data were collected by Barten [2]. The World War II transition period is omitted, leaving 29 
observations on each of the 14 commodities. See H. Theil [23], Ch. 5 for a reproduction of the relevant 
data. The data for the 14th commodity are derived from House rent (subscript H) and Services and 
other commodities (subscript S) as follows 

Wha eDdian = WirDau, + WED4s 

DPias > (wie DPu: + w3,Dps,) (wi, + Ww.) 

where wig, = (Wygs-1 + Wig,)/2 with wy4, = Wy, + Ws,. The data for i = 10 are similarly derived 
from the original data on Household durables and Other durables. 

'2 These “standard deviations” are chosen conservatively to reflect a sensible second moment of 
each estimate around the true parameter. We shall continue to use “standard deviation” in the text to 
refer to these second moments. 

'3 See, for example, Prais and Houthakker [16] and Wold [28]. H. Theil provided considerable 
insight into Dutch consumption habits, so that the estimates are partly subjective. 
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TABLE 1 

AVERAGE VALUE SHARES AND PRIOR ESTIMATES OF MARGINAL SHARzS FOR 14 ComMODITY GROUPS IN 
THE NETHERLANDS, 1922-63 

Average Prior Estimate and Standard Deviation of 
Value Income Marginal 
Share* Electricity Share 

Commodity Group (1) (2) (3) (4) 

Food 
1. Bread 0.0352 0.2 (0.10) 0.0070 (0.0035) 
2. Groceries 0.0565 0.4 (0.15) 0.0227 (0.0085) 
3. Dairy Products 0.0723 0.6 (0.15) 0.0424 (0.0108) 
4. Vegetables and fruit 0.0443 0.6 (0.20) 0.0265 (0.0088) 
5. Meat 0.0760 1.0 (0.20) 0.0760 (0.0152) 
6. Fish 0.0071 0.8 (0.25) 0.0057 (0.0018) 
7. Pastry, chocolate, ice cream 0.0312 0.8 (0.25) 0.0249 (0.0078) 

Beverages and Tobacco 
8. Beverages 0.0271 1.5 (0.30) 0.0406 (0.008 1) 
9. Tobacco 0.0375 0.6 (0.25) 0.0225 (0.0094) 

Durables/ Remainder 
10. Household and other durables 0.0941 2.0 (0.50) 0.1882 (0.0471) 
11. Water, light, and heat 0.0549 0.8 (0.30) 0.0439 (0.0165) 
12. Clothing and other textiles 0.1328 2.0 (0.40) 0.2656 (0.0531) 
13. Footwear 0.0143 1.5 (0.30) 0.0215 (0.0043) 
14. Other goods and services 0.3167 0.7 (0.35) 0.2115 (0.1100) 

* Share of total per capita expenditure in each year, averaged over all years of the sample 

products and Meat. It was felt that, though Fish has much in common with Meat, 

it probably has a lower income elasticity because the consumption of some Fish 

(such as Herring) is similar to certain Dairy products, such as cheese and eggs, 

which are often eaten with bread and crackers. 

The income elasticity of the 14th commodity is difficult to appraise because of 

its heterogeneous content. However, it appears in Section 6 that prior estimates of 

only the first 13 marginal shares are needed to co™pute mixed estimates, so that it 

is unnecessary to introduce a prior estimate of the 14th income elasticity. An 

estimate is given in Table 1 for the sake of completeness. It is based on the identity 

)'; wo; = 1 where a; is the income elasticity of the i-th good. 

The standard deviation of a point estimate reflects the confidence we have in 

the quality of the estimate. Those commodities with a more heterogeneous composi- 

tion are assigned larger standard deviations because it is felt that it is more difficult 

to assess the income sensitivity of such goods. Also, those goods with larger income 

elasticities are assigned larger standard deviations, reflecting a greater uncertainty 

about the income elasticity in absolute terms, though not necessarily in relative 

terms. 

If we multiply the prior estimates of the income elasticities by the budget 

shares, we obtain prior estimates of the marginal budget shares. Similarly, by 

multiplying the standard deviations of the prior estimates of the income 

elasticities by the budget shares, we obtain the standard deviations of the prior 

estimates of the marginal budget shares.'* These are shown in column 4 of 

'* This follows from treating the budget shares as constants. 
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Table 1 where the average budget shares in column 2 are used to approximate 

the budget shares. : 

The implementation of the mixed estimation method requires a specification 

of the covariances of the prior estimates. The covariances should reflect the fact 

that the prior estimates of the first 13 income elasticities were based on pairwise 

comparisons of the luxury-necessity characteristics of the commodities in each of 

the three basic groups given in Table 1. This suggests that the errors associated 

with the prior estimates of goods within each group are positively correlated. We 

shall somewhat arbitrarily assign a value of 0.5 to the correlation of the estimates 

within each of the three blocks of goods.'* All other error terms will be postulated 

to be uncorrelated since, for example, the prior estimate of the income elasticity of 

Groceries is essentially unrelated to that of, say, Clothing or Footwear. 

If we define D as the 13 by 13 diagonal matrix whose diagonal elements 

consist of the first 13 standard deviations given in Table 1, column 4, the 13 by 13 

covariance matrix (matrix of second moments 2round y) can be written 

(10) Vo = DAD 

where A is the block-diagonal correlation matrix. Recalling that the prior estimate 

of o,, was computed from the identity }’w,o; = 1, which implies 2,, = 1 — 

i2 | Ay» we can easily compute the variance and covariances of fi,,. The variance 

is 'V,l where / is a 13-element vector of units. The square root of this value, 0.347, 

is given in Table 1. 

6. PARAMETERIZATION AND ESTIMATION 

Substituting the constraints (9.1) and (9.2) into (8), the demand model can 

be written 

(11) wiDqi, = uiDq, + PAu) + Z; V; ADP jn — Dp) + &: 
j#i 

where A,,(u) = w[(Dp;, — Dp,,) — i> u(Dp,y, — Dp,,)). Notice that all own-price 

coefficients are eliminated from (11) and that y,, does not appear. It is easily shown 

(see e.g., Theil [25] pp. 54-56) that the n-th equation in the system (11) is an exact 

linear combination of the first n — 1 equations. That equation (i = 14) may 

therefore be deleted and point estimates of the parameters of the deleted equation 

can be obtained from (9)."° We then directly estimate the parameters of only the 
first 13 equations. 

The price coefficient matrix N = [v,,] is of the form 

N= 

'S Experiments were undertaken on the sensitivity of the mixed estimates and standard errors to 
changes in this correlation. It was found that both the point estimates and standard errors were quite 
robust under changes in the correlation. 

1© See Theil [24], Ch. 6. 
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where N, is an 11 by il diagonal! matrix with v,,, i= 1,... , 11 on the diagonal’ 
and N, is the 3 by 3 matrix 

Yi2.12 Y12,13 12,14 

N, = Yi3,12 Ya313 “13,14 

Yiai2 Yiaazs Viaje 

The block diagonal form of N follows from declaring the utility function to be 

strongly separable with each of the first 11 goods being preference independent 

and the remaining three goods forming a single preference dependent block (see 

Theil [25] and Paulus [15] for details). Imposing the symmetry restriction (9.3) on 

N we find that only three price coefficients remain—v,, 13, Vy2 44 and V,3 14 

(recall that all own-price coefficients are eliminated from (11) by the constraint 

(9.2)). The parameter vector to be estimated then consists of 17 elements which 

includes the first 13 marginal budget shares, the income flexibility, and the three 

off-diagonal price coefficients. 

The model (11) is non-linear in the parameters with the source of non-linearity 

being the dependence of A;, (as defined below equation (11)) on the marginal 

budget shares. An iterative GLS procedure is therefore employed to obtain 

converged point estimates based on the sample evidence. See Theil [24), pp. 588- 

594 for details of the estimation procedure and pp. 596-598 for an asymptotic 

evaluation of the iterative GLS estimator.'’ : 

After converged sample estimates are obtained, mixed estimates can be 

easily computed from 

(12) Bu = (X'Q"'X + R'V5'R) (x'Q’y + R'V5'r) 

Where R = [I,, 0], V, is defined in (10), X = [X,] is the 29 x 13 by 13 observation 

matrix on the independent variables (including converged values of y; in A;,(j)), 

and Q = I,, @ £, with £ being the 13 by 13 matrix of mean squares and products 

of the converged GLS residuals.'* The vector y = [y,] consists of 29 x 13 observa- 

tions on the dependent variable and r is the 13-eleinent vector of prior estimates of 

the marginal budget shares. Standard errors of the mixed estimates are computed 

by taking the square roots of the diagonal elements of the inverse on the right 

hand side of (12). 

The sample and mixed estimates are given in Tables 2 and 3. The first two 

columns of Table 2 show the sample and mixed marginal shares. Notice that the 

gain in precision of the mixed estimates (as measured by the standard deviations) 

over those of the sample is sometimes considerable; see, for example, the estimates 

for Bread, Groceries, and Fish. Going back to column 4 of Table 1, we see that 

for all but two goods, Clothing and Other goods and services, the mixed estimates 

are between the prior and the sample estimates. It should also be noted that when 

‘7 Instead of using “prior” estimates obtained from the absolute price Rotterdam model as Theil 
[24] suggests, p. 591, we use the prior estimates given in Table | as starting values for the iterative 
estimator. 

‘8 = I,, ® = implies serial independence in the disturbances. Tests of this hypothesis were 
carried out in Paulus [15] and the serial independence hypothesis was accepted. 
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there is a sizable difference in the prior and the sample standard error of an esti- 

mate, the mixed estimate will usually be closer to the estimate with the smaller 

standard error; see the estimates for Bread, Groceries, Clothing, and Household 

and other durables. 
In columns 3 and 4, the prior and mixed estimates of the income elasticities 

are given, where the mixed estimates and standard deviations are computed by 

dividing the mixed marginal shares and standard deviations by the corresponding 

average budget shares. The two columns show how the sample information modi- 

fied our prior assessments of the income elasticities. What is particularly interest- 

ing, given that the estimates are quite close, is the difference in the size of the 

standard deviations. These differences range from about 25 per cent for Bread to a 

factor of from 3 to 5 for Clothing, Household and other durables, and Other goods 

and services, with the mixed estimates always being more precise. 

The own-price coefficients are computed from the restriction (9.2), which 

implies 
14 

Vag = Pi, — > Vij 
j#i 

For the preference irdependent goods, i = 1,2,...11, the own-price coefficients 

all equal y;, since the off-diagonal price coefficients are zero for these goods. 

The sample and mixed estimates and standard deviations are shown in columns 

5 and 6.'? The estimates of g which are used to compute the own-price coefficients 

are 

@ = —0.6678(0.0272) sample 

@ = —0.6696(0.0271) mixed. 

The sample and mixed estimates of the off-diagonal price coefficients are 

shown in Table 3. It is seen that these estimates are not affected very much by the 

introduction of stochastic prior information against the marginal shares. The 

estimates of v,,,4 and v,, ,4 are noteworthy because they imply strong comple- 

mentarity between Clothing and Other goods and services and Footwear and 

TABLE 3 

SAMPLE AND MIXED ESTIMATES OF OFF-DIAGONAL PRICE COEFFICIENTS 

Sample Mixed 

Other Other 
Clothing Footwear goods Clothing Footwear goods 

Clothing —9.43 0.02 —6.31 —8.74 — 0.02 —6.39 
(1.43) (0.20) (0.75) (1.17) (0.20) (0.75) 

Footwear — 1.06 —0.95 — 0.65 —0.92 
(0.31) (0.18) (0.22) (0.18) 

Other goods and services — 5.52 — 8.52 
(2.11) (1.69) 

Note. All figures are to be multiplied by 10-7. 

'® See H. Theil [24], pp. 373-374 and 598-602 for details on asymptotic standard errors for func- 
tions of sample moments. 
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Other goods and services. This is not too surprising in view of the composition of 

Other goods and services which includes such things as taylor’s services and shoe 

icpair. The repair of clothing, carpets, (which is included in the Clothing composite 

good) and footwear was more common in tlie Netherlands during the sample 

period than it is today in the United States. 

The two matrices shown in Table 3 are both negative definite. The sample 

and mixed 14 by 14 price matrices will then be negative definite, as required by 

cardinal utility theory,2° since the own-price coefficients of the 11 preference 

independent goods are all negative. 

7. STATISTICAL ANALYSIS OF THE MODEL 

The gain in precision that was discussed in the last section was attributed to 

the use of stochastic prior infornration. In order to determine whether this informa- 

tion is compatible with the sample evidence, we compute the compatibility test 

statistic (7.1) given in Section 3. Since Q is unknown, we use the approximation 

Q = 1 @, with £ being the matrix of mean squares and products of the con- 

verged sample residuals, to compute (7.1). The statistic is then approximately 

distributed 7?(13). The computed value of (7.1) is 13.72 which is not nearly signifi- 

cant for 77(13). We therefore accept the prior and sample information as being 

mutually compatible.?' 

After establishing the compatibility of the two sources of information, we 

shall determine the relative shares of the posterior precision contributed by each. 

To obtain values of a, and «,, we replace 2 by Q in (7.2) and use k = 17. We find 

a, = 0.3719 «, = 0.6281 

which indicates that the prior and sample information contribute about 37 and 

63 percent, respectively, to the posterior precision of the point estimates. 

It will now be shown that the product «,k can be interpreted as the “effective 

number of unconstrained parameters” in the model after stochastic prior informa- 

tion is introduced. Suppose the model is 

(13) y, = X,B + «, Ee, = 0 Vie.) =z 2 Sere 

and that prior estimates of some of the parameters are available. After the mixed 

estimator is computed, (13) becomes 

(14) y, = X,py +e t 

2° Latent roots were computed for both matrices, and all were negative. 
2! Yancy, Bock, and Judge [29] evaluate the power of the compatibility statistic using Monte Carlo 

methods. They show that for 120 samples of 10, 15, and 25 observations, using a 5 percent significance 
level, the compatibility statistic falls in the rejection region 80, 118, and 120 times when biased prior 
estimates are used, where the parameter misspecification amounted to an error of one to two standard 
deviations on each of the six parameters estimated. 
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where f,, is the vector of mixed estimates and e, is the corresponding vector of 

mixed residuals. Subtracting (13) from (14) then gives 

(15) e, = &, — X(By — B) 

Post-multiplying (15) by e;, summing over t, dividing by T and taking the expecta- 

tion, we find the expectation of the matrix of mean squares and products of the 

mixed residuals 

am 17 

(16) ET Dex) =D pL (XOX + RVE'RY'X, 
t t 

where E(By — B)(By — BY = (X’Q°'X + R'V5'R)~' is used. Equation (16) 

shows that the expectation oi 1/T }’ e,¢; is exceeded by the contemporaneous 

covariance matrix & by a positive semidefinite matrix. 

Since it is impossible to find a multiplicative correction factor which insures 

that each element of 1/T}'e,e, is an unbiased estimate of the corresponding 

element of X, we confine ourselves to an unbiasedness correction for a scalar 

function of this matrix. Suppose we post-multiply EL by £~', where £ is now the 

matrix of mean squares and products of the mixed residuals apart from the un- 

known multiplicative correction factor. If EL = = the trace of this product will 

be 13. We therefore impose tr E(Z=~') = 13 on &. To derive the correction factor 

it is sufficient to post-multiply (16) by £~' and take the trace of both sides, 

-1 2 
Ewa Deed! =tr=z™' 

| 
17 

tr [=D X(X'Q"'X + RVG 'RY XE } 

= try; — -(X'Q"'X + RVG 'RY {r x'd x, 

l 
13 — y tr (X'Q7'X)\(X'Q7'X + R'V5'R)"' 

A 
13 - Ts Il 

where tr AB = tr BA is used after the second anc third equal signs. The equality 

of (X'Q"'X) and )7 X/Z~'X, follows from Q = | @ X and X = [X,].” 

To obtain E(tr1/T};,e,e,£~') = 13, we multiply 1/T}),e,e, by 13/(13 — 

a,k/T). The corrected estimate of the covariance matrix of the disturbances is then 

¥ (6) Bee ie 
17 2 = ——_ = : 
a?) BT—ak To 

This leads to the following interpretation of the product «,k. If no stochastic prior 

information is introduced against the parameters, the analogous correction will 

be 137/(13T — k). Comparing this with equation (17), it is seen that ak plays the 

22 Recall that, for this study, the hypothesis of serial independence of the demand disturbances was 
acceptable. 
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role of the number of unconstrained parameters in the correction for loss of degrees 

of freedom after stochastic prior information is introduced. It is therefore natural 

to regard a,k as the “effective number of unconstrained parameters” in the model 

after probabilistic constraints are imposed. - 

For the 17 parameter model, with «, = 0.6281, we have a,k = 10.7. The use 

of stochastic prior information on the marginal budget shares has then led to a 

reduction in the effective number of unconstrained parameters from 17 to 10.7. 

8. SUMMARY 

In this study we have shown how stochastic prior information on a subset of 

the parameter vector can be effectively combined with the sample evidence to 

yield posterior estimates that are much more precise than those of the sample. 

The method of mixed estimation is used to combine the prior and sample informa- 

tion because of its flexibility and ease of implementation. It is determined that the 

prior information is compatible with the evidence of the sample and it appears 

that the share of the posterior precision that can be attributed to the prior informa- 

tion is a little over 35 percent. It was shown that this amounts to a reduction in 

the effective number of unconstrained parameters in the model from 17 to 10.7. 
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