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Annals of Econometric and Social Measurement, 3/4, 1974 

THE RELATIVE EFFICIENCY OF INSTRUMENTAL VARIABLES 

ESTIMATORS OF SYSTEMS OF SIMULTANEOUS EQUATIONS 

BY JAMES M. BRUNDY AND DALE W. JORGENSON 

Consistent and efficient estimators of simultaneous equations by the method of instrumental variables 
require an initial consistent estimator of the structural form. Instrumental variables estimators that are 
consistent but not necessarily efficient can be employed for this purpose. The first objective of this paper 
is to measure the relative efficiency of alternative instrumental variables estimators proposed in the 
literature. The second objective is to assess the sensitivity of limited information efficient (LIV E) and full 
information instrumental variables efficient (FIVE) estimators to the choice of an initial consistent 
estimator. 

1. INTRODUCTION 

In previous papers (1971, 1973) we have provided a complete characterization of 

the class of consistent and efficient estimators of simultaneous equations by the 

method of instrumental variables. Our characterization of consistent and efficient 

instrumental variables estimators suggests two alternative approaches to the 

estimation of simultaneous equations :' 

1. First estimate the reduced form by any consistent estimator. This approach 

underlies the methods of two- and three-stage least squares. 

2. First estimate the structural form of the model by any consistent estimator : 

then derive a consistent estimator of the reduced form from the structural 

form estimator. This approach underlies the methods of limited informa- 

tion efficient (LIVE) and fuil information instrumental variables efficient 

(FIVE) proposed in our earlier paper. 

The approach to simultaneous equations estimation based on consistent 

estimation of the structural form is easier to apply in practice. To obtain an initial 

consistent estimator of the structural form the method of instrumental variables 

provides a promising approach.” A number of alternative instrumental variables 

estimators have been proposed in the literature. Although these estimators differ 

in efficiency and in computational difficulty, all of them are consistent. The first 

objective of this paper is to compare these estimators with regard to computational 

difficulty and to evaluate their relative efficiency. 

In the following sections we first outtine the simultaneous equations model 

of econometrics. We then describe the statistical properties and computational 

requirements of alternative instrumental variables estimators. To evaluate the 

relative efficiency of the alternative estimators we compute estimates for Klein 

Model I. 

The second objective of this paper is to assess the sensitivity of the LIVE and 

FIVE estimators to the choice of an initial consistent estimator of the structural 

' A histovical survey of these alternative approaches is given in our earlier paper (1973), pp. 215-219. 
The LIVE and FIVE estimators were proposed, independently, by Dhrymes (1971). 

2 The method of instrumental variables was originated by Reiersol (1945) and Geary (1949). A 
definitive treatment of the method of instrumental variables for a single structural equation is given 
by Sargan (1958). 
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form. We also consider the effect of iteration of the LIVE and FIVE estimators. 

On the basis of our results we recommend the following approach to the estimation 

of simultaneous equations: 

1. Estimate the structural form by ordinary least squares. This method is 

generally inconsistent. 

2. Compute fitted values from the ordinary least squares estimators and use 

these as instruments for the corresponding jointly dependent variables. 

This method is consistent but generally inefficient. 

3. Compute fitted values for the second round estimator and proceed to 

compute the LIVE or FIVE estimators proposed in our earlier paper. 

The process described above can be truncated at the LIVE or FIVE estimators. 

Alternatively, the third step can be reiterated until the process converges. This 

iterative scheme coincides with Durbin’s method for full information maximum 

likelihood estimation of simultaneous equations in the case of the FIVE estimator.* 

The scheme coincides with Lyttkens’ iterative instrumental variables method in 

the case of the LIVE estimator.* 

2. THE SIMULTANEOUS EQUATIONS MODEL 

We consider a simultaneous equations model with p equations ; the structural 

form of the model is denoted: 

(1) . Yr + XB=E, 

with Y the matrix of observations on the p jointly dependent variables, X the 

matrix of n observations on the q predetermined variables, and E the matrix of 

random errors; the matrices {T’, B} of structural coefficients are unknown param- 

eters to be estimated. The reduced form of the model may be written: 

Y = XI1+Y, 

where the matrix II] = —BI~' of reduced form coefficients is unknown and 

Y =ET~'! is a matrix of random errors. 

Following the notation of Zeliner and Theil (1962), we may denote the 

individual structural equations by: 

(2) yj=Zp;+e; (6=1,2,..-.P) 

where 

rj 

B; 

in this notation y, is a vector of observations on the j-th column of Y ; the structural 

coefficient of this variable is normalized at unity ; Y; is a matrix of observations on 

the other jointly dependent variables included in the equation, X ; is a matrix of 

3 See Durbin (1963) and Malinvaud (1970), pp. 686-687. The iterative process associated with 
Durbin’s method is interpreted as an iterative application of the method of instrumental variables by 
Hausman (1974) and Lyttken:; (1971). 

* See Lyttkens (1970). 
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observations on the included predetermined variables, and ¢; is the j-th column 

of E. The vectors {1 ,, B;} are structural coefficients of the included jointly dependent 

variables (other than the variable with coefficient normalized at unity) and the 

included predetermined variables, respectively. 

Combining the p equations into a system of simultaneous equations, we may 

denote the system by: 

(3) y=Zé + & 

where 

Ty] tee [9s | re. 

y2 ae re | 6, E> 

y= , Ze d6=!]. |, e= 

| yp | oe aecee a  é, | 

In this notation we write the reduced form as: 

(4) y=[1 @ X]n + v, 

where @ is the Kronecker product and 

Px 0.... 6] mt, | [Ms | 

a Sere > D2 
l@X=zl.-. : hs) S21, om 

ee peer of | TM, | L Dp | 

The vector 7, is the j-th column of I and the vector pv, is the j-th column of Y . 

The statistical specification of the simultaneous equations model, including 

the instrumental variables, is given by the following list of assumptions : 

(i) X and W are random matrices. 

(ii) X’'X, W'W, and W’X have ranks gq, t and min (gq, t), respectively, with 

probability one. 

(iii) plimn~'X'’X = L,.,, plimn”'W'W =¢,,.,, plimn” 'W’X =%,.., 

z,, and Z,,.,, positive definite and rank Z,,.. = min (q, f). 

(iv) E(e) = 0. 

(v) V(e) = X @ I, = positive definite. 

(vi) The vectors of disturbances (¢,,,&2,,---;€p,), each corresponding to a 

given observation (i = 1,2,...,n), are distributed independently and 

identically over observations, and are distributed independently of X 

and W. 

(vii) The structural model is complete. 

Under these assumptions: 

plim n~ 'E’E = &, 

plim n~'X’'E = 0, 

plim n~'W’E = 0. 
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| } 

Further, the vector n~ '/*[J @ X]'s is asymptoiically normal with mean zero and 

variance—covariance matrix £ @ L,.,; the vector n~ '/*[J @ W]’< is asymptotically 

normal with mean zero and variance-covariance matrix £ @ £,,.,,.° 

The most important properties of instrumental variables are that these 

variables are uncorrelated (asymptotivally) with the errors E and that they are 

correlated (asymptotically) with the predetermined variables X. From the reduced 

form we can deduce that 

plim n-'W'Y = plimn='W’XTl + plimn-'W’Y =, 

so that under our assumptions the instrumental variables are correlated (asympto- 

tically) vith the jointly dependent variables. 

An additional assumption: 

(viii) c is N(O,Z @ J), 

is essential for consideration of the problem of efficient estimation. Under this 

assumption and the other assumptions we have made, the full information maxi- 

mum likelihood estimator attains the Cramer—Rao lower bound for the asymptotic 

variance—covariance matrix of (essentially) any consistent estimator of the struc- 

tural parameters. This bound, stated in terms of the asymptotic information 

matrix, depends on the likelihood function. Without an explicit likelihood function, 

such as that associated with a normal distribution of the errors, it is impossible to 

discuss efficient estimation. Of course, the asymptotic distribution theory we 

develop for instrumental variables estimators is valid whether or not the errors 

are normally distributed, provided that our other assumptions on the distribution 

of the errors are satisfied. While alternative estimators may be compared with 

regard to relative efficiency, no lower bound is available that would enable us to 

characterize any estimator as efficient in the class of consistent estimators.° 

We consider estimation of the structural coefficients 6 in the absence of 

restrictions on the variance—covariance matrix = of the errors ; the full information 

maximum likelihood and three-stage least squares estimators are efficient. The 

asymptotic variance—covariance matrix of these estimators, also the Crazner—Rao 

bound, is {,..( ® Z,.,)~ *Zy.}~*, where X¥ = ] @ X and the matrix Z,, has the 

form, 

[ Ze, 0 7 

0 > a 0 

Ly: £5; . 

I 0 0 2, 2,- 

Further, 

Lye, — [Zy-y, a sr (Z,.I1; 2yx,) (j = l, Laie » P). 

* This specification of the simultaneous equations model is employed, for example, by Malinvaud 
(1970), pp. 250-253, 369-373. 

° For further discussion of efficiency in simultaneous equations estimation, see Rothenberg (1974). 
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In this expression X'X,; is a submatrix of X'X and II; is a submatrix of I 

corresponding to the reduced form equations, 

We also consider estimation of the structural coefficients of a single equation 

6;, subject only to the identifying restrictions for that equation; the limited 

information maximum likelihood and two-stage least squares estimators are 

efficient. The asymptotic variance—covariance matrix of these estimators, also the 

Cramer-Rao bound, is o;,{2)... 25 2.,,}~', Gj = 1,2,..., p). This completes our 

discussion of the simultaneous equations model. 

3. THE METHOD OF INSTRUMENTAL VARIABLES 

The method of instrumental variables for estimation of a single equation in 

a system of simultaneous equations is the following: We suppose that r, jointly 

dependent and s; predetermined variables are included in the j-th equation and 

that a subset of t; = r; + s; — i instrumental variables W, is selected from the 

set of t instrumental variables W. The instrumental variables estimator d; of 6; is 

obtained by solving the equation: 

Wiy, = WZ d;, 

obtaining, 

(5) d, =(W{Z) 'Wiy,. 

Examples of instrumental variables are: 

1. The indirect least squares estimator, 

d; = (X’Z,)" 'X'y,, 

where t = p=r,;+5,— 1. 

2 The two-stage least squares estimator: 

d, = {Z;X(X'X)~'X'Z;} ~'Z,X(X'X)'X’y,, 

where W, = X(X'X)” 'X'Z;, the fitted values from a regression of the right-hand- 

side variables in the equation Z, on the matrix of predetermined variables X. 

We first observe that any instrumental variables estimator d; is consistent 

since: 

plim d; = 6; + plim(n~'W;Z,)"* plimn™'W‘¢; = 4,, 

where: 

plim (n-'W5Z,) = [Eycll, Ewe) = = 

is a matrix of constants and: 

wi 

plim (n- ‘Wie) = 0, 

Second, this estimator is asymptotically normal, since the vector n~'/?W'¢, is 

asymptotically normal. Further, this distribution has expectation zero and 

variance—covariance matrix o (Ze Dw ) ARTE ae jir ww j~w'jz 55 
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The principal resuits of estimation theory for instrumental variables methods 

can be embodied in two theorems presented here without proof. They are proved, 

and their implications discussed in detail, in our earlier paper [1971]. 

Theorem A. Under the assumptions given above, the estimator 

6) a, = (W;Z)'W3y, 

of the parameters 6; of the equation (3) is asymptotically efficient if and only 

if the matrix of instrumental variables W; can be transformed by means of a 

nonsingular matrix into a matrix that includes two subsets W; = [W,,, Wj.] 

with the properties: 

plim n~'W;,X = IIx... 

plim n~'W},X = I'X,... 

This theorem provides the necessary and sufficient conditions for consistent and 

efficient estimation of one equation from the model (1). The following theorem 

provides the same conditions for an estimation of all equations taken together. 

Theorem B. Underx the assumptions given above, the estimator 

(7) d =(W'Z)"'W'y 

of the parameters 6 in model (4) is asymptotically efficient if and only if the matrix 

of instrumental variables can be transformed by means of a nonsingular matrix 

into a matrix with typical submatrix W,, (W = {W, 3) that can be partitioned ij 
into two subsets W;, = [W,,,, W;;.] such that: 

plim n~'W;,,X = o'IT;Z,.,, 

plim n~'W;,.X = oI'X..,, 

where o” is the (i, j) element of the matrix Z~*. 

With the above results available, alternative techniques for choosing W; and 

W can be considered. 

Observe that for 2SLS and 3SLS, the instrumental variables for the included 

jointly dependent variables in a particular equation may be written, in the notation 

used above, 

= Xfi, (LIVE), ji j 

and 

s,,XM; (FIVE). 

The estimator fi ; iS a consistent estimator of the portion of the reduced form 

associated with the j-th structural equations. Any consistent estimator of these 

reduced form parameters can be used to generate estimators that are consistent 

and efficient. We have called estimators based upon a consistent estimator of the 

reduced form parameters Limited Information Instrumental Variables Efficient 

(LIVE) and F ll Information Instrumental Variables Efficient (FIVE) estimators. 

The instrumental variables used in LIVE and FIVE estimation are of the 

form Xfi p fi ; 2 consistent estimator of the reduced form parameters I1,. Because 

ijl 
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model (1) is complete, 

(8) ll = —Br', 

and a consistent estimator of I is given by 

(9) fi = -Bf-', 

where B and f are consistent estimators of the structural parameter matrices B 

and I of model (1). 

Now the vectors Xfl are “‘fitted values” from a consistent estimator of the 

reduced form ; they need not be developed from least squares, as in 2SLS or 3SLS, 

but can be obtained from the derived reduced form estimates (9). The “‘fitted values” 

can be determined without solving explicitiy for the derived reduced form by the 

following iterative algorithm: 

Define the fitted values by 

(10) f.,= -2f-' —n— xB, 

for any consistent estimators f and B, and iterate until ¥., = & + uw arbitrarily 

small. At that point, 

(11) ¥ = -XBf-'-yw=xfl-u. 

The error in this iterative process (u) must be zero if LIVE estimates obtained 

from (11) are to be asymptotically efficient. 

A. “True” Exogenous Instrumental Variables 

In estimating the Liu quarterly model (1963) used to illustrate LIVE and 

FIVE estimation in our earlier paper (1971), we used as instruments those pre- 

determined variables which were not lagged values of jointly dependent variables. 

Instrumental variables do not need to be drawn from among the predetermined 

variables in the model, so long as the conditions stated above hold for the matrix 

of instrumental variables W. 

In this method a set of instrumental variables W,, which may differ from 

equation to equation, is chosen for consistently estimating the structural param- 

eters according to 

d; = (W)Z)'Wiy,. 

This preliminary consistent estimate provides the estimate of the reduced form 

from which instrumental variables for efficient estimation are obtained. 

B. Repeated Least Squares Estimators 

Theil [1958] and independently Basmann [1957] devised the method of two- 

stage least squares, in which the reduced form is estimated without constraint by 

ordinary least squares, and the resulting fitted values used as regressors in struc- 

tural estimation. Zellner and Theil [1962] proposed the method of three-stage, 

least squares for estimating all equations simultaneously in a way equivalent to 

full information maximum likelihood. Klein [1955] and Madansky [1964] demon- 

strated that the 2SLS and 3SLS estimators were instrumental variables estimators. 
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In the typical econometric modei, the number of predetermined variables is 

large in relation to the number of observations. Further, predetermined variables 

are often highly collinear. Computation of ordinary least squares estimator of the 

reduced form is difficult, and indeed, becomes impossible when the number of 

predetermined variables exceeds the number of observations. Computation of a 

derived reduced form estimator circumvents these difficulties. 

By analogy with two- and three-stage least squares, a number of estimators 

have been proposed which employ a multistage procedure. In such estimators 

regressions are run upon a subset of the predetermined variables, and the fitted 

values from these regressions substituted for the included jointly dependent 

variables in second-stage regressions to estimate the structural parameters. The 

resulting estimator can be written 

¢. AE ot OO atl Bo 
(12) i-[ 7 as : | ‘Wy, 

x;¥; XX j x’ 

where Y, is the set of fitted values from the initial regressions: 

(13) % = VV iN 'V5Y, 

In this expression V; is a set of predetermined variables chosen by any of the 

methods proposed above. 

Cooper (1972) employed arbitrary subsets of the predetermined variables in 

a repeated least squares estimator. Fisher (1965) proposed a method that took 

a priori information in the model into account in selecting subsets of the pre- 

determined variables through a stepwise regression procedure. A repeated least 

squares estimator based upon principal components of the predetermined variables 

was described by Kloek and Mennes (1960) and discussed by Amemiya (1966). 

Another version of the principal components estimator was applied by Evans and 

Klein (1968) to the Wharton model; this version has had widespread application. 

Repeated least squares estimators must be designed with care if they are to be 

consistent or efficient. In our earlier paper, we showed that such estimators are 

consistent if they reduce to instrumental variables estimators, or if the initial 

regressions happen to estimate the relevant portions of the reduced form con- 

sistently. Repeated least squares estimators are efficient only if they provide 

consistent estimators of the reduced form parameters. 

C. Structural Ordering Instrumental Variables (SOIV) 

The SOIV method was proposed by Fisher (1965), was later corrected by 

Mitchell and Fisher (1970), and was applied to the Brookings model by Mitcheil 

(1971). The method employs the following algorithm in choosing instruments for 

a jointly dependent variable: 

1. To each predetermined variable, assign a vector with a number of elements 

equal to the maximum “order” of predetermined variables appearing in 

the model. The maximum “‘order”’ is determined in the course of further 

development of the algorithm. 

2. Order one is assigned to each predetermined variable appearing in the 

equation defining the jointly dependent variable for which instruments are 
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being developed. Order two is assigned to predetermined variables 

appearing in equations defining the jointly dependent variables appearing 

in the first equation. Reappearance in the remaining equations of jointly 

dependent variables that have already been treated is ignored. Order three 

is assigned to predetermined variables appearing in the equations defining 

jointly dependent variables appearing in the second equations. The process 

continues until all of the equations to be estimated as a simultaneous block 

have been used in accumulating the ordering vector. 

3. At each occurrence of a predetermined variable in the previous procedure, 

an entry is made in the next unused location in the ordering vector for that 

variable. Entries from the equation defining the jointly dependent variable 

for which instruments are sought are defined to have order one, and the 

first unused entry is assumed to have indefinite value. 

4. The ordering vectors determine a lexicographic ordering on the predeter- 

mined variables. A variable with the ordering vector (1, 3, 00) precedes one 

with the vector (1,4, 5,00), and follows one with the ordering vector 

(1, 2, 3, 00). Frequently, two or more variables will have the same ordering 

vector ; these variables are treated together as if they were a single variable 

for purposes of the following analysis. 

5. The significance of a variable or set of variables in explaining the variance 

of the jointly dependent variable for which instruments are sought is 

tested by a stepwise procedure. A regression is performed of the jointly 

dependent variable upon the largest possible number of variables or sets 

in the ordering for which moment matrices are nonsingular, omitting only 

the variabies lowest in the lexicographic ordering, if any must be omitted. 

Then, the variable or set of variables appearing lowest in the ordering is 

dropped from the list of regressors, and the resulting regression calculated. 

If the sum of squared residuals from the latter regression is SSE,, while 

that from the former set is SSE, the test statistic 

F = SSE,/SSE [(n — q)(n — qo)}, 

where q is the number of regressors in the former regression, and gp is the 

number in the latter, is distributed as F. A level of significance is chosen, 

and the hypothesis that the variable(s) omitted from the second regression 

is significant is tested. If the variable is significant, it forms part of the 

instrumental variables for the jointly dependent variable under study. 

The process is repeated until all variables or sets in the “structural order” 

have been tested. At each stage, significant variables (s) are retained in the 

set of regressors used for testing further sets. 

If the resulting subset of the predetermined variables is denoted Xq, the 

Mitchell—Fisher (1970) estimator is 

(14) d, = (2;2)"'‘2y,. 

where 

2, = XfXoXq)" 'XoZ);. 
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This estimator is an instrumental variables estimator, since it can be written 

pak ’ -1 ’ 
d, = (2;Z,) '2Z'y,. 

The estimator then is clearly consistent. It is efficient only if (X9X9)~'XoZ, is a 

consistent estimator of the portion of the reduced form associated with the included 

jointly dependent variables. 

D. Principal Components Instrumental Variables (PCIV) 

The justification for the use of principal components of the predetermined 

variables as instruments is that the first j < q principal components capture, in a 

sense, much of the variation existing in the full set of q predetermined variables. 

Hence, principal components appear to provide an ingexious way of eliminating 

very little information from X, while significantly reducing the size of the estimation 

problem. : 

If A is the q x gq matrix of characteristic vectors of the moment matrix X’X 

of predetermined variables, then the principal components are the set of orthogonal 

linear forms F satisfying 

F = XA 

and 

F’F = A, 

where 

AA =I, 

and A is the diagonal matrix whose nonzero elements are the characteristic roots 

of X'X. 

The Kloek—Mennes (1960) procedure seeks a subset of the principal compo- 

nents which has a maximum correlation with the jointly dependent variables for 

which the principal components are to be instruments, and yet has as low a cor- 

relation as possible with the included predetermined variables in the equation to 

be estimated. To select a subset with the latter property, Kloek and Mennes noted 

that for any principal component f, 

S,X(XX)OIX f= VRP (k = 1,2,....9). 

V, is the characteristic root associated with the principal component f,, and R? is 

the multiple determination coefficient for the regression of f, on the included pre- 

determined variables X ;. Kloek and Mennes employ standardized and normalized 

variables in all of their computations. To select principal components, define 0, by 

6, = Vi(1 — R2), 

and rank the principal components in decreasing order of the value of 6,. To 

obtain m instrumental variables, choose the first m principal components in that 

ordering. No a priori rule exists for selecting the number m of principal components. 

Kloek and Mennes suggest beginning with a set that exactly identifies the equation 

to be estimated. If the resulting estimates have undesirable standard errors, the 
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number of components is increased by using the next component in the ordering, 

until all components or all degrees of freedom are used without the standard errors 

increasing. 

The Kloek and Mennes method results in a choice of V; for equation (13) that 

has the form 

V, = (XF 

so that the substitution estimator based upon the method reduces to an instrumen- 

tal variables method. As a result, the estimator always is consistent, but it will be 

efficient only in the most unlikely of circumstances. 

The principal components estimator developed by Evans and Klein (1968) is 

a substitution estimater in which 

V; = F;. 

This estimator will be consistent and efficient only if all principal components are 

used in F;, in which case 2SLS should be applied directly, or if the resulting estimate 

of the reduced form is consistent, a very unlikely event. 

Taylor (1962) used principal components directly as instrumental variables, 

not in a repeated least squares estimator, in estimating the structural equations. 

While this method always is consistent, it cannot be efficient unless the conditions 

of Theorem A, above, are fulfilled. 

E. Iterated Instrumental Variables (IIV) 

The method of iterated instrumental variables was originated by Lyttkens 

(1970) and has been employed by Dutta and Lyttkens (1974). This method is 

initiated by estimating the structural equations by ordinary least squares and 

deriving (inconsistent) estimates of the reduced form parameters for the purpose 

of computing reduced form fitted values. These fitted values then are used as 

instruments for consistent estimation of the structural parameters, and the process 

is iteratec until the parameter estimates cease to vary upon iteration. Clearly, only 

one additional iteration is required to produce LIVE estimates. 

Durbin (1963) described a method for estimating the linear structural model 

by full-information maximum likelihood that required that the following set of 

normal equations be solved by iteration: 

[I @ W'Z][S~' @ 15 = [1 @ W)(S~' @ Dy. 

In this expression, W is the set of instrumental variables obtained by fitting the 

derived reduced form estimates produced in the previous iteration and combining 

these with the predetermined variables appearing in the equations. Beginning 

from some consistent set of parameters, W and 6 are calculated and the equation 

is solved for 5. Iterating the process produces a new Wand a new dat each iteration, 

by using the implied estimator of the derived reduced form and the moment matrix 

of the residuals. At convergence, the estimator of 6 is the maximum-likelihood 

estimator. 
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4. EMPIRICAL COMPARISON OF INSTRUMENTAL VARIABLES ESTIMATORS 

In view of the fact that only large-sample results are available about the 

statistical properties of estimators for the linear simultaneous equations mcdel, it 

is of some interest to consider comparisons among consistent estimators of the 

covariance matrices of the instrumental variables estimators discussed earlier. It 

has been shown above that a number of consistent estimators of the parameters 

exist which are not efficient. Comparisons of consistent estimators of the asymptotic 

covariance matrices of these parameter estimators might provide some information 

helpful in selecting a method for choosing instrumental variables for consistent 

estimation. Intuitively, at least, it is appealing to argue that a method for choosing 

instrumental variables which is estimated to have smaller asymptotic covariance 

is superior to one having greater. Of greater importance are empirical evaluations 

of the effect that choices of instrumenta! variables for the initial consistent estima- 

tion have upon the resulting LIVE and FIVE parameter estimates. If LIVE and 

FIVE are relatively insensitive to the initial choice of instrumental variables, that 

choice becomes of much less consequence. 

Rothenberg (1947) presented measures of the gains in efficiency resulting from 

taking into account more a priori information. We employ similar measures in 

comparing the efficiency of IV, LIVE, and FIVE estimators. The results on 

minimum variance bounds given above imply that efficiency must increase as the 

estimation method moves from IV to LIVE to FIVE. Empirical estimation of the 

asymptotic covariance matrices of the estimators provides a means of evaluating 

the efficiency gain. While it is quite inexpensive to solve for reduced form fitted 

values when proceeding from IV to LIVE, LIVE estimates are at least twice as 

expensive to produce as IV estimates. The increase in cost arises from the need 

to obtain reduced form fitted values and then to re-estimate the model. FIVE 

estimates are very substantially more expensive, since they involve not only 

computation of the estimate of the structural covariance matrix Z, but also 

estimates of the coefficients. Preparation of these estimates requires inversion 

of a matrix whose order is the number of structural parameters. Even when 

this is possible, it is extremely expensive, since the computational effort involved 

in most algorithms for inversion increases with the cube of the order of the 

matrix to be inverted. The value of incurring such a computational burden 

can be weighed against the estimated increase in efficiency from proceeding 

from LIVE to FIVE. 

Forecasting with an econometric model makes use of the reduced form of the 

model. Therefore it is of interest to make the same inquiries about the estimates 

of the reduced form that have just been described for the structural form: 

1. What is the relative efficiency of alternative methods of developing reduced 

form estimates, using different choices of instrumental variables? 

2. How sensitive are the reduced form parameter estimates derived from IV, 

LIVE, and FIVE estimates of the structural parameters to alternative 

choices of the instrumental variables for initial IV estimation? 

3. How significant is the gain in efficiency from proceeding from IV to LIVE 

to FIVE in terms of the efficiency of the reduced form estimators derived 

from the structural estimator? 
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A. Klein Model I and Covariance Comparisons 

We employ an annual model of the United States economy 1921-1941 

developed by Klein (1950), commonly referred to as Klein Model I, in measuring 

the relative efficiency of alternative estimators of the structural and of the reduced 

form parameters. Klein Model I has three behavioral equations and three identities, 

and is linear. It determines six jointly dependent variables from eight predetermined 

variables, including a dummy variable of constant unit value corresponding to the 

intercept in each behavioral equation. The model, as estimated by 2SLS, is given 

in Table 1. The parameter estimates given there are in accord with previous 

TABLE 1 
KLEIN Mopet I 2SLS Estimates 

All Predetermined Variables as Instruments 

. Consumption 
C = 0.017P + 0.216P_, + 0.810W + 16.6 

(0.118) (0.107) (0.040) = (1.32) 
R? = 0.977 SE = 0.223 

2. Investment 
I = 0.150P + 0.616P_, — 0.1S8K_, + 20.3 

(0.173) (0.163) (0.036) (7.54) 
R? = 0.885 SE = 0.257 

3. Private Wages 
W* = 0.439E + 0.147E_, + 0.130T + 1.50 

(0.036) (0.039) (0.029) (1.15) 
R? = 0.987 SE = 6.151 

4. Corporate Profits 
P=C+!I1+G-—-X-—-W 

5. Wages 
W= W* + w** 

6. Private Product 
E=X+P+W* 

Exogenous Variables : 
a. P_, = Profits, lag 1 e. X = Indirect taxes 
b. K_, = Capital stock, lag 1 f. W** = Government wage bill 
c. E_, = Private product, lag 1 gG = Government expenditures 
d.T = Time trend, 1921, = —10 

estimates, for example, those reported by Rothenberg and Leenders (1964), 

although the computer program used for estimates treated 2SLS as a type of 

instrumental variables estimator. 

For the purpose of quantitative comparisons cf the relative efficiency of 

alternative estimators, we employ consistent estimates of the covariance matrices 

of the alternative estimators, and compare these estimates against consistent 

estimates of the minimum variance bounds. The assumptions stated above imply 

that 

(15) Vos = [Z)X(X'X)7'X'Z}~ "[ZjX(X'X)-' XZ] 

[Z;X(X'X)"'X’'Z,]-! +s, 
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is a consistent estimator of the minimum variance bound (9) for the covariance 

matrices of the estimators of the distinct equations which are efficient in the class 

of limited information estimators. The same assumptions, together with the 

assumptions about the properties of the instrumental variables. ensure that 

(16) Yy = (Z,W(W;W) WZ)" (ZW WW) WWW) WZ] 

[ZiWAW;W) WZ) sy 
is a consistent estimator of the covariance matrix of the estimators of two distinct 

equations, when those estimators are consistent but noi efficient. Because (15) is 

a consistent estimator of the minimum variance bound (MVB) for any consistent 

estimators of two distinct equations, (16) must differ from (15) by a positive semi- 

definite matrix, when the estimators for which (16) is the estimate of the covariance 

matrix are not efficient. 

The MVB for estimators from the class of full information estimators (10) can 

be estimated consistently, under the assumptions given above, by 

(17) Vy5 = [S~! @ Z'X(X'X)'X’Z] “1. 

The MVB for limited information estimators of all parameters, considered 

together, differs from the MVB for full information estimators by a positive semi- 

definite matrix, and the same property holds for comparisons between a consistent 

estimator of the covariance matrix of the limited information estimators and the 

consistent estimator of the covariance matrix for (efficient) full information 

estimators (17). 

Comparisons of the relative efficiency of alternative (derived) estimates of the 

reduced form depend upon the estimates of the covariance matrices for the 

structural estimators just stated. The comparisons make use of the expression 

om [rvelt)lfr0() 

for the covariance matrix of the derived reduced form, where A is the covariance 

matrix of the structural.estimator from which the reduced form estimates are 

derived. Expression (18) was obtained from Goldberger, Nagar, and Odeh (1961); 

a more direct derivation is available in Dhrymes (1970). The covariance matrix 

(18) is estimated consistently by replacing I, I, and A with consistent estimators. 

The covariance matrix of the unconstrained reduced form (8) is estimated 

consistently by 

(19) Vorr = &@ (X'X)"', 

where © is a consistent estimator of the reduced form covariance matrix Q. The 

estimator of thé covariance matrix of the unconstrained reduced form (19) differs 

from any consistent estimator of the derived reduced form (18) by a positive semi- 

definite matrix. 

Whenever the covariance matrices of the structural and reduced forms and 

Q, or any of their elements, appear in this analysis, they must be replaced by 

consistent estimators. These matrices are estimated consistently by the moment 

matrices of the residuals from consistent estimates of the structural and reduced 

forms, respectively. Throughout the subsequent analysis, I, Il, and = are replaced 
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by the estimates developed from two-stage least squares, while Q is estimated from 

the moment matrix of the residuals from ordinary least squares estimation of the 
reduced form. 

To reduce the covariance matrices which are being compared to scalar 
measures of efficiency, three functions of the covariance matrices have been 

computed: 1) the sum of the elements of a covariance matrix; 2) the trace of a 

covariance matrix ; and 3) the determinant of the covariance matrix. Each of these 

measures preserves the ranking of the matrices in terms of relative efficiency, that 

is, if B, is the covariance matrix of an estimator that is more efficient than one with 

covariance By, then any one of the measures has the property that M(B,) > M(B,), 

where M denotes the fact that the measures are functions of the elements of the 
covariance matrices. 

Table 2 contains the results of estirnating Klein Model I consistently by the 

four inefficient instrumental variables methods we have presented. The coefficient 

estimates are very similar to those prepared by two-stage least squares in Table 1. 

TABLE 2 
KLEIN Mopet I. ConsisTENT STRUCTURAL ESTIMATES BY INSTRUMENTAL VARIABLE 

Equation Coefficients 

Variables (Standard Errors) 

SOIV PCIV TEIV IV 

1. Consumption 
Constant 16.43 16.62 16.05 16.91 

(1.35) (1.42) (1.34) (1.33) 
*Profits 0.0667 — 0.0003 0.0611 — 0.1499 

(0.142) (0.165) (0.140) (0.134) 
Profits, Lag | 0.1790 0.2305 0.1650 0.3388 

(0.124) (0.145) (0.122) (0.117) 
*Wages 0.8078 0.8100 0.8248 0.8214 

(0.040) (0.040) (0.041) (0.041) 

2. Investment 
Constant 21.22 25.77 22.84 21.41 

(7.73) (11.3) (9.49) (8.04) 
*Profits 0.1197 — 0.0281 0.0671 0.1136 

(0.182) (0.325) (0.255) (0.195) 
Profits, Lag | 0.6421 0.7690 0.6874 0.6474 

(0.169) (0.287) (0.229) (0.180) 
Capital Stock, 

Lag | — 0.1620 —0.1827 —0.1694 — 0.1629 
(0.037) (0.053) (0.044) (0.038) 

3. Private Wages 
Constant 1.571 1.846 1.686 1.351 

(1.15) (1.15) (1.15) (1.15) 
*Private Product 0.4253 0.3732 0.4035 0.4673 

(0.036) (0.041) (0.039) (0.040) 
Private Product, 

Lag |! 0.1594 0.2087 0.1801 0.1198 
(0.039) (0.043) (0.041) (0.042) 

Time Trend 0.1337 0.1464 0.1390 0.1235 
(0.029) (0.030) (0.029) (0.029) 

* Indicates an endogenous variable. 
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The coefficients are relatively stable across alternative choices of instrumental 

variables, with the PCTV estimates varying slightly more from the 2SLS estimates 

than the others. 

Parameter estimates derived from the use-of each of the methods of consistent 

structural estimation to develop fitted values for use as instrumental variables in 

preparing LIVE estimates are given in Table 3. As might be expected, the parameter 

TABLE 3 

KLeIN Mopet I. StRUCTURAL PARAMETERS ESTIMATED BY LIMITED INFORMATION EFFICIENT 
INSTRUMENTAL VARIABLES (LIVE) METHODS 

Equation Coefficients 

Variable (Standard Error) 

2SLS . SOIV PCIV TEIV IlV 

1. Consumption 
Constant 16.55 16.79 16.74 16.77 16.80 

(1.32) 
*Profits 0.0173 —0.1182 — 0.1097 — 0.1153 —0.1156 

(0.118) 
Profits, Lag 1 0.2162 0.3133 0.3056 0.3105 0.3121 

(0.107) 
*Wages 0.8102 0.8214 0.8222 0.8217 0.8205 

(0.040) 

2. Investment 
Constant 20.28 21.50 21.52 21.63 21.60 

(7.54) 
*Profits 6.1502 0.1105 0.1098 0.1062 0.1076 

(0.173) 
Profits, Lag 1 0.6159 0.6500 0.6506 0.6537 0.6527 

(0.163) 
Capital Stock, 

Lag 1 — 0.1578 —06.1633 — 0.1634 ~— 0.1639 — 0.1638 
(0.036) 

3. Private Wages 
Constant 1.500 1.552 1.607 1.571 1.601 

(1.15) 
*Private Product 0.4389 0.4290 0.4186 0.4254 0.4197 

(0.036) 
Private Product, 

Lag 1 0.1467 0.1561 0.1658 0.1593 0.1648 
(0.039) 

Time trend 0.1304 0.1328 0.1353 0.1337 0.1351 
(0.029) 

* Indicates an endogenous variable 
Note: All limited information instrumental variables efficient estimators have asymptotic variances 

and covariances equal to those of two-stage least squares. 

estimates for each of the LIVE estimates except 2SLS are very similar, and they do 

not vary significantly from the 2SLS estimates. Thus, the choice of instrumental 

variables for LIVE does not make appreciable difference to the resulting coefficient 

estimates. 
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The outcome of structural estimation by full-information methods is shown 

in Table 4, for each of the methods of choosing instrumental variables, and fot 

Durbin’s method of obtaining full information maximum likelihood estimates. 

Once again, the parameter estimates show little effect of the choice of instrumental 

variables. The full information maximum likelihood estimates appear to differ 

slightly from the others, but none of the variation in coefficients is significant. 

TABLE’4 

KLEIN Mopet I. STRUCTURAL PARAMETERS ESTIMATED BY FULL INFORMATION EFFICIENT 
INSTRUMENTAL VARIABLES (FIVE) METHODS 

Equation Coefficients 

Variable (Standard Errors) 

3SLS SOIV PCIV TEIV IlV FIML 

1. Consumption 
Constant 16.61 16.60 16.44 16.54 16.55 16.52 

(1.30) 
*Profits 0.0557 0.0514 0.0583 0.0532 0.0744 0.0569 

(0.108) 
Profits, 

Lag 1 0.2240 0.2260 0.2186 0.2234 0.2134 0.2336 
(0.100) 

*Wages 0.7902 0.7913 0.7955 0.7932 0.7883 0.7881 
(0.038) 

2. Investment 
Constant 25.78 25.73 25.12 25.44 25.62 27.99 

(6.79) 
*Profits —0.0169 -—0.0158 -—0.0136 -—0.0131 -—0.0207 —0.1733 

(0.162) 
Profits, Lag 1 0.7514 0.7506 0.7462 0.7473 0.7529 0.2536 

(0.153) 
Capital Stock , 

Lag 1 —0.1822 — 0.1820 -0.1788 — 0.1805 —0.1812 — 0.1884 
(0.032) 

3. Private Wages 
Constant 1.972 1.965 2.052 1.996 2.047 2.507 

(1.12) 
*Private Product 0.3886 0.3900 0.3802 0.3866 0.3782 0.3555 

(0.032) 

Private Product, 0.1905 0.1893 0.1980 0.1922 0.2001 0.2157 
Lag | (0.034) 

Time Trend 0.1579 0.1572 0.1588 0.1577 0.1614 0.1694 
(0.028) 

* Indicates an endogenous variable. 
Note: All full information instrumental variables efficient estimates have asymptotic variances 

and covariance equal to those of three-stage least squares. 

The measures of relative asymptotic efficiency of structural estimates are 

given in Table 5. Performance of the estimators varies from equation to equation. 

Except for the consumption function, however, the method of structural ordering 

is the most efficient. 

695 



TABLE 5 

KLEIN MopeEL I. VARIANCE MEASURES FOR ALTERNATIVE STRUCTURAL ESTIMATES 

Equation 

Measure SOIV PCIV TEIV IV 2SLS 3SLS 

i. Consumption 
Sum - 1.700 1.892 1.695 1.665 1.643 1.599 
Trace 1.846 2.068 1.839 1.802 1.772 1.725 
Generalized 0.479 0.695 0.474 0.425 0.324 0.239 
Variance x10-° x10-° x10-® x10~° x10-° xio-® 

cq ti t 
ae 5883 126.5 8861 6371 5607 45.47 

Trace 59.77 128.9 90.16 64.75 56.95 46.26 

Generalized 0.667 2.13 1.31 0.772 0.607 0.476 
Variance “e x10-* x10-° x10-* x10-® x10-* 

3. Private Wages a 
Sum 1.306 1.318 1.312 1.314 1.305 1.232 
Trace 1.322 1.333 1.327 1.330 1.321 1.248 
Generalized 0.680 0.886 0.781 0.831 0.668 0.460 
Variance nee tae KI9** 15 X19" ee aa 

Entire Model 
Sum 64.65 137.5 97.45 70.74 62.66 51.42 
Trace 62.94 132.2 93.32 67.88 60.04 49.18 
Generalized 1.26 4.82 1.72 1.58 0.746 0.220 
Variance xe xi0-*° x10°?9 Xie? . 2. ae” 

The principal components method performed uniformly least well. Differences 

among the methods other than principal components (PCIV) are relatively small, 

in most cases. In view of the very considerable expense of developing SOIV 

estimates, IIV would appear to be the method of choice for estimating Klein 

Model I by instrumental variables. 

A gain in efficiency is achieved by employing limited information efficient 

estimators in place of any consistent but inefficient ones. Table 6 shows the gain 

in efficiency, based on the trace measure, from using 2SLS (or any other LIVE 

estimator) in place of the four consistent but inefficient methods. The efficiency 

gain is defined as the percentage increase from the trace of the covariance matrix 

of the LIVE estimator to the trace of the covariance matrices of the consistent but 

TABLE 6 

EFFICIENCY GAIN FROM USE OF MorRE INFORMATION STRUCTURAL ESTIMATES 
(In Percent, Based on Trace) 

Estimation Method Equation 

IV to LIVE CNS INV w* MODEL 

SOIV 4.2 49 0.0 4.8 
PCIV 16.7 126.3 0.9 120.2 
TEIV 3.8 58.3 0.5 55.4 
liv 1.7 13.7 0.7 12.4 

LIVE to FIVE 2.7 29.8 5.9 22.1 
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inefficient estimators. Since SOIV estimates are relatively the most efficient of the 

consistent but inefficient methods, the gain is least pronounced for this method. 

A further gain in efficiency is obtained by employing a full information estimator 

in place of a limited information one. The trace measure used to construct Table 6 

makes it difficult to tell whether a greater gain is achieved by employing a full 

information method instead of a limited information method or by using a 

limited information method in preference to a consistent but inefficient one. This 

result is not in accord with results we reported earlier (1971) for the Liu model 

using generalized variance as the measure but agrees with the result reported for 

Klein Model I by Rothenberg (1974). 

B. Comparison of Structural and Reduced Form Estimators 

In this section, it ‘s our objective to compare alternative estimators of the 

structural and reduced form which employ different algorithms for selecting 

instrumental variables, and which use different amounts of information. While 

we have not reproduced the tables of reduced form parameter estimates which are 

analogous to Tables 3, 4, and 5 above, the reduced form parameter estimates are 

no less stable than the structural estimates, with respect to choice of estimation 

method and choice of instrumental variables. 

TABLE 7 
KLEIN Mope I. EFFiclENCY MEASURES FOR REDUCED FORM ESTIMATES 

Equation Estimation Method 

Measure SOIV PCIV TEIV IlV 2SLS 3SLS OLSQ 

1. Consumption 
Trace 85.70 108.59 85.12 75.88 67.98 63.49 829.85 

2. Investment 
Trace 43.02 47.9% 44.89 42.45 42.01 39.74 423.72 

3. Private Wages 
Trace 52.00 62.00 54.55 50.78 48.26 45.63 576.47 

4. Model* 
Trace 535.69 650.14 550.76 496.46 467.81 441.91 5444.30 

*In addition to measures for the three structurai equations given above, the measure for the 
entire model includes the results for the three identities. 

Table 7 gives the values of the efficiency measures for estimates of the reduced 

form parameters derived from the consistent but inefficient estimation methods 

we have discussed, and for three efficient methods using differing amounts of 

information. For the derived reduced form too, principal components is uniformly 

the least efficient method. In this case, iterated instrumental variables provides 

unequivocally more efficient estimates than the other consistent but inefficient 

methods. 

Table 8 depicts the gain in efficiency of estimate of the derived reduced form 

that is obtained by employing an efficient structural estimator for each equation 

in place of a consistent but inefficient method, for each of the four instrumental 
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TABLE 8 
EFFICIENCY GAIN FROM STRUCTURAL ESTIMATION DERIVED REDUCED FORM 

(In Percent, Based upon Trace) 

Equation 
Estimation Meihod 

CNS INV w* MODEL 

IV to LIVE 

SOIV 26.1 2.4 7.7 14.5 
PCIV 59.7 14.2 28.5 39.0 
TEIV 25.2 6.8 13.0 17.7 
IIV 11.6 1.1 5.2 6.1 

LIVE to FIVE 7.1 5.7 5.8 5.9 

variables methods we have described. The table also reflects the results of employ- 

ing FIVE instead of a LIVE estimator. The percentage gain from the use of LIVE 

methods is substantial except for iterated instrumental variables, indicating that 

for Klein Model I the ITV method is nearly as efficient as LIVE. The gain from 

using structural information about the covariance matrix in obtaining derived 

reduced form estimates is modest. 

5. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH 

The results reported above lead to the following conclusions, on the basis of 

alternative estimation of Klein Model !: 

A. The most appealing method for consistent estimation of the linear struc- 

tural model is to begin with ordinary least squares applied to the structural 

form. The fitted values of jointly dependent variables can be used as 

instrumental variables to obtain a consistent estimator. 

B. For efficient estimation the fitted values of the jcintly dependent variables 

from an initial consistent estimator should be used as instruments in 

obtaining a LIVE estimator. The expense of computing FIVE estimates 

may well outweigh the benefits. 

C. Choice of instrumental variables for obtaining a consistent estimator 

appears to have litile impact on the resulting LIVE or FIVE structural or 

reduced form parameter estimates. The implication is that the initial 

instrumental variables should be chosen so as to minimize computational 

difficulty. 

D. There appears to be no advantage and great computational difficulty 

associated with iteration of the method of instrumental variables beyond 

LIVE or FIVE estimators. 

E. Where structural estimation is possible, it is to be preferred, as a means of 

deriving an estimate of the reduced form, to unconstrained estimation of 

the reduced form. 

The principal shortcoming of the research reported here is that the results 

apply with assurance only to one simple model. In the absence of general results 

on the small sample properties of estimators for the linear simultaneous 

equations model, there is no way to avoid this difficulty. It would be of considerable 

value to have available further results based on the application of our methods to 

larger models. 
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The results could also be strengthened by using Monte Carlo techniques to 

develop repeated samples for estimating the model. By repeating the analysis many 

times, based upon repeated samples from the same population, the degree of 

dependence of coefficient stability and relative efficiency upon the data used to 

estimate the model could be investigated. Direct comparisons of the methods 

could be made with respect to the error of estimate, and some additional hypotheses 

could be tested. Such Monte Carlo experiments would be expensive and as open 

to criticism for dependence on a particuiar model as the results reported here. 

The estimation techniques used here are not computationally dependent upon 

the linearity of the model in the variables. Where nonlinearities can be expressed 

in terms of identities defining variables appearing in stochastic equations, the 

instrumental variables methods can be applied. However, the statistical properties 

of such estimates are unknown; the results given above certainly do not apply. 

Since models used for practical purposes of economic analysis and forecasting 

make extensive use of nonlinearities, the most pressing theoretical problem in 

simultaneous equations econometrics is to find estimators with desirable statistical 

properties that are suitable for nonlinear models. 

The model we have used assumes that no autocorrelation is exhibited by any 

of the errors on any equation. A useful generalization of the LIVE and FIVE 

methods would be to modify them for the case of autocorrelated residuals.’ 

Federal Reserve Bank of San Francisco 

Harvard University 
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